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Abstract. Profiled side-channel attacks are now considered as a powerful form of side channel

attacks used to break the security of cryptographic devices. A recent line of research has investigated

a new profiled attack based on deep learning and many of them have used convolution neural network

(CNN) as deep learning architecture for the attack. The effectiveness of the attack is greatly influenced

by the CNN architecture. However, the CNN architecture used for current profiled attacks have often

been based on image recognition fields, and choosing the right CNN architectures and parameters for

adaption to profiled attacks is still challenging. In this paper, we propose an efficient profiled attack

for unprotected and masking-protected cryptographic devices based on two CNN architectures, called

CNNn, CNNd respectively. Both of CNN architecture parameters proposed in this paper are based

on the property of points of interest on the power trace and further determined by the Grey Wolf

Optimization (GWO) algorithm. To verify the proposed attacks, experiments were performed on a

trace set collected from an Atmega8515 smart card when it performs AES-128 encryption, a DPA

contest v4 dataset and the ASCAD public dataset.

Keywords. Side channel attack, convolutional neural network, grey wolf optimizer, profiled attack,

points of interest.

1. INTRODUCTION

Side channel attacks (SCAs) are modern cryptanalysis techniques for revealing the secret
keys of cryptographic devices by exploiting the physical signals leaked from cryptographic
devices during their execution [1]. Typical SCAs contain power analysis attacks [1], timing
attacks [2], electromagnetic attacks [3], or combinations of them [4]. Of these attacks, power
analysis attacks have attracted the most attention from industry and academia.

Power analysis attacks were first proposed by Kocher et al. [1], who exposed the fact
that the instantaneous power consumption of a cryptographic device depends on the data
being processed and operations being performed. Many power analysis attack methods have
sprung up since then, such as Differential Power Analysis (DPA) [1], Template Attacks (TA)
[5], Correlation Power Analysis (CPA) [6], Mutual Information Analysis (MIA) [7], and
Stochastic Model based Power Analysis (SMPA) [8]. From the engineering viewpoint, power
analysis attacks are of two types, profiled and non-profiled attacks.

Profiled attacks play an important role in the security evaluation of cryptographic imple-
mentations [5]. Indeed, they provide a security assessment assuming the worst-case scenario.
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That is, the adversary has an identical cryptographic device that is almost completely con-
trolled by him. Profiled attacks consist of two phases: a profiling phase and attack phase.
During the profiling phase, the attacker analyzes the profiling device by multiple physical
leakages, for example power traces, to build profiles for each possible key so that the key of
the target device can be recovered when the attacking phase is performed.

1.1. Related works

Several profiled attacks have been introduced in the literature. A familiar one is the
template attack proposed in [5], which is based on the Gaussian assumption. It is known
to be the most powerful attack when the Gaussian assumption is verified. For the case
when the Gaussian assumption is relaxed, several profiling side-channel attacks have been
suggested, including techniques based on Machine Learning, and there are several papers on
the application of machine learning techniques to profiled SCA attacks [9, 10, 11, 12, 13].
While different attack scenarios usually require different machine learning techniques, almost
all the studies have demonstrated that Support Vector Machines (SVM) and Random Forests
(RF) are good algorithms for profiled SCA attacks.

Although machine learning based profiled attacks relax the need for probability distri-
butions of side channel leakage samples, they still require specific extraction techniques to
identify points of interest (POIs) on the trace. For unprotected devices, finding POIs is
quite easy based on methods such as signal-to-noise ratios (SNR), sum of squared differences
(SOSD), and correlation power analysis (CPA) [14, 15]. However, for protected devices,
determining POIs is a challenge for SCAs [16]. So far, no effective method has been pro-
posed for selecting POIs for such devices. Fortunately, the deep learning method can solve
the problem of modeling without extracting specific features in the pre-processing phase of
traces [16, 17]. Therefore, in recent years, deep learning has begun to demonstrate its pow-
erful efficiency in profiled SCA attacks because it almost perfectly approximates arbitrary
functions.

Several studies have already investigated the performance of deep neural networks in
profiled SCA attacks. Maghrebi et al. [18] first compared the SCA-efficiency of deep learning
and machine learning in terms of the number of side channel traces. The work by Cagli et
al. [19] evaluates the performance of convolutional neural networks (CNNs) in scenarios
where power consumption traces are misaligned due to countermeasures or hardware-related
effects. Their research shows that CNNs combined with data augmentation techniques can
effectively suppress those misalignment effects. Prouff et al. [20] give an empirical solution
to the problem of choosing hyper-parameters for CNNs and multi-layer perceptrons (MLP),
and further established the power of applying deep learning to profiled SCA attacks. The
other important contribution is the release of the public ASCAD dataset, which provides
side-channel traces of a masked 128-bit AES implementation. The ASCAD dataset makes
it easy for researchers to improve existing models or compare new deep neural network
architectures.

Zaid et al. [21] highlight the importance of configuring the hyperparameters and ar-
chitecture; without proper configuration, the models do not perform well. They state that
when we do not comprehend the influence of a hyperparameter we cannot realize the maxi-
mum potential of an architecture. To address this problem, three methods are used, namely
weight visualization, gradient visualization, and heatmapping, chosen for the explanatory
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ability and interpretability of their respective hyperparameters. These techniques allow for
an adversary to determine the influence of each hyperparameter and facilitate hyperparame-
ter configuration. Furthermore, they introduce methodologies for protected and unprotected
implementations using the three visualization methods. Zaid’s CNN architecture applies to
profiled attacks on the trace dataset from unprotected AES-128 devices in DPA contest v4
and the trace data of AES-128 implementing a mask defense [20], the best attack results
published to date have used only 7 to 8 traces to attack unprotected devices or about 200
traces to attack protected devices. However, Zaid’s approach is based on the empirical anal-
yses of the interpretability of convolutional neural networks and has yet not give a reason
for CNN architecture for masking-protected devices. These issues will be addressed in this
paper. To determine the effectiveness of our method, the results of the attacks in this article
will compared to those of Zaid.

1.2. Motivation and contributions

All of the above studies have focused on improving deep learning performance for SCAs.
Although deep learning has the potential to be used for SCA, the issue of tuning and con-
figuring the parameters for deep learning architecture should also be studied and applied
according to the specific trace sets. In this paper, we investigate the properties of POIs in
the power traces of unprotected and protected devices as well as the convolution operations
used in CNN to form base for the choice of deep learning architectures for profiled attacks
on both devices. The proposed architectures only identify the number of layers, and so the
parameters in each layer need to be determined. To achieve improved input-output mapping
capabilities of deep learning architecture for trace datasets, an evolutionary optimization
technique, i.e., the Grey Wolf Optimizer, has been utilized to determine the optimal values
of the CNN parameters in each layer. The main contributions of this paper are as follows:

First, we propose a profiled attack using CNN with minimum architecture on unprotected
cryptographic devices.

Second, we propose a CNN architecture for profiled attack on masking-protected devices
that can reach higher efficiency in terms of the number of traces than the state-of-the-art
profiled attacks.

Third, we propose using GWO to select the parameters for the CNN architectures. To
the best of our knowledge, this is the first study applying the evolutionary optimization
method to select parameters of CNN architectures for profiled attacks.

The paper is structured as follows: Section 2 introduces the basics of profiled attacks
and deep learning. Section 3 presents the method of profiled attacks using deep learning.
Experiments and experimental results are presented in Section 4. The conclusions of the
paper are presented in Section 5.

2. BACKGROUND

2.1. Profiled attack

For profiled SCA attacks, the adversary is assumed to have a pair of identical devices: a
profiling device and a target device. In the attack scenario of our paper, the target device
runs a symmetric cryptographic algorithm with a fixed secret key. The attacker has access
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to control the input and the key of the profiling device, so he has the ability to characterize
the leaked information very precisely by applying statistical techniques. The profiled SCA
attacks are performed in two phases: the profiling phase and the attack phase.

In the profiling phase, a dataset of Np profiling traces is acquired on the profiled device. It
will be seen as a realization of the random variable Sp ≜

{
(x1, z1) , . . . ,

(
xNp , zNp

)}
∼ Pr[X |

Z]Np , where all the xi are traces corresponding to the intermediate value zi = φ(P,K)
processing by device. Based on Sp, a model is built to characterize the side channel leakage
of the cryptographic device for each hypothetical values zi. This can be modeled as F (X |
Z) : x → P (Z).

In the attack phase, a dataset of Na attack traces are acquired on the target device. It
will be seen as a realization of Sa ≜ (k∗, {(x1, p1) , . . . , (xNa , pNa)}) such that k∗ ∈ K, and for
all i ∈ [1, Na], pi Pr[P ] and xi ∼ Pr [X | Z = φ (pi, k

∗)]. After that, a prediction vector is
computed for each attack trace, based on a previously built model yi = F (xi), ∀i ∈ [1, Na].
A score, for example the probability, is assigned to each trace for each intermediate value
hypothesis zj , with j ∈ [1, |Z|]. The j-value of yi describes the probability of zj according to
the model when the attack trace is xi. These scores are combined over all the attack traces
to output a likelihood for each key hypothesis and the candidate with the highest likelihood
is predicted to be the right key. The maximum likelihood score can be used for predicting.
For every key hypothesis k ∈ K, this likelihood score is defined by equation (1) and the key
with the highest score is the most likely prediction

dSa [k] ≜
Na∏
i=1

yi [zi] where zi = φ (pi, k) . (1)

2.2. Deep learning

Deep learning is a branch of machine learning that has been applied to image classifi-
cation, speech recognition, and other fields [22]. Machine learning usually requires manual
feature engineering while CNNs learn the automatic features directly from raw data. Fur-
thermore, the features extracted by convolutional layers are independent of their position in
the data, and dense layers can identify the features related to the labeled traces. Therefore,
convolutional neural networks should be robust to jitter effects from unstable clock domains
or even desynchronization [19]. The common architecture of CNNs consists of two parts,
namely, feature extraction and classification. The main block of a CNN is a CONV layer
directly followed by an ACT layer. The former locally extracts information from the input
thanks to filters and the latter increases the complexity of the learned classification function
through its non-linearity. After the activation, batch normalization (BN) is used to train
deep neural networks to be faster and more stable [23]. After some (CONV ◦ ACT◦ BN)
blocks, a POOL layer is usually added to reduce the number of neurons. This block is re-
peated in the neural network until an output of reasonable size is achieved. Then, some
fully connected (FC) layers are introduced in order to obtain a global result that depends
on the entire input. To sum-up, a common convolutional network can be characterized by
the following formula

IN ◦ [CONV ◦ACT ◦ BN ◦ POOL]n1 ◦ [FC ◦ACT]n2 o FC o Softmax (2)

when n1 and n2 are the numbers of convolution and fully connected layers.
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Figure 1: Basic profiled attack by CNN

3. METHODOLOGIES

3.1. CNN-based profiled attacks

The application of deep learning requires carefully analyzing the problem and configur-
ing the neural network. The network for performing SCA attacks on cryptographic devices
require at least one section for performing the function of detecting and learning the char-
acteristics of traces and one section for performing the classification. Of the deep learning
network architectures, the convolutional neural network CNN satisfies these purposes effec-
tively. In CNN networks, the convolution layers are responsible for detecting the features
of traces and the hidden neurons in the MLP network structure are responsible for classify-
ing. Therefore, the proposed deep learning network architecture for use in profiled attacks
is CNN, following the general diagram shown in Figure 1. The profiled attack using CNN in
Figure 1 proceeds through two phases: a profiling phase and an attack phase. In the profiling
phase, traces collected during the operation of the cryptographic algorithm are performed on
the device to form a trace set. This trace set is labeled according to the intermediate value
of the algorithm that needs to be profiled Z1, ..., Zm. Usually these intermediate values are
taken at the output of S-box. This labeled set of traces is used to train a CNN to obtain a
CNN network model describing the dependency characteristic of the intermediate value Zi

on device power consumption. During the attack phase, an unlabeled trace dataset collected
from the target is classified by the trained CNN model to determine the probabilities of the
traces for classes Z1, ..., Zm. These class probabilities are then associated with a key byte
hypothesis in order to extract the likelihood (equation (1)) for each key byte candidate.
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time

Figure 2: 1D trace signal

3.2. Kernel size of convolution layer selection

The input of the first convolution in the CNN is the trace, that is, 1D signals as illustrated
in Figure 2 and formulated in the equation

x = [. . . , x−2, x−1, x0, x1, x2, . . .] . (3)

A signal can be processed by filtering. This involves a convolution operation between the
signal and a kernel or filter, as we shall define next. A kernel is a compact support sequence
of weights

ω = [. . . , ω−2, ω−1, ω0, ω1, ω2, . . .] .

The convolved signal between x and ω is the signal

z = [. . . , z−2, z−1, z0, z1, z2, . . .]

denoted by z = x ∗ ω, and defined by

zj =
∞∑

k=−∞
xj+kωk∗ . (4)

The above infinite sum makes sense since w has only a finite number of nonzero elements.
Each component of the convolved signal z is a weighted sum of the components of the
initial signal x. The effect of convolution is to average out a signal using a given weighting
system. Equivalently, sliding the filter ω, then multiplying by x and summing, produces
the filtered signal z. It is worth noting that formula (4) is known in signal processing as
cross-correlation. This property can be used to determine the filter size of a convolution
layer in CNN. We propose the following proposition as the basis for determining the kernel
size of the convolution layer in CNN.

Proposition 1. The features of power consumption traces spread as they pass though the
convolution layer.

Proof.
Assuming the network can optimally detect features or POIs, the number of POIs is often
much smaller than the length of the trace. The POIs corresponding to side channel traces
are given by

ℓ = (ℓi,0, ℓi,1, . . . , ℓi,d) , i = 1 : T .
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Figure 3: POIs in power trace

In the expression above ℓ, the sample, contains the POIs of the power consumption
trace of length dT , where T is the number of samples considered as POIs when the device
processes a share. Figure 3 depicts the POIs found for the traces of an unprotected device
corresponding to d = 0 and a first-order masked device with d = 1.

Let W ∈ Rn be a matrix of kernel sizes of n, used by the convolution to detect POIs.
Assuming this detection is optimal then

(x⊗W )[i] =
∑n

j=0

(
x
[
j + i− n

2

]
×W [j]

)
,

such that

x
[
j + i− n

2

]
×W [j] =

{
wj × x

[
j + i− n

2

]
if j ∈ ℓi

ϵ otherwise
,

where ϵ ≈ 0, and wj corresponds to the weight corresponding to the position j.
Considering a leakage point, ℓi,j , based on the convolution operation expression, this

value will affect n successive samples at its output. Therefore, if the kernel size is large, the
information about the POI will be spread out and the detection of the POIs by the network
is more complicated.

From Proposition 1, it can be seen that as traces of power consumption pass through
the convolution layer, their characteristics will be spread according to filter size. In side
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channel attacks for unprotected devices require that POIs are detected by the network and
for protected device, both POIs and the combination between the POIs must also be detected.
Therefore, to optimize the detection of POIs, the convolution kernel size should be equal to
the width of the POIs range. To detect the combination between the locations of POIs, the
kernel size should be equal to the distance between the POIs bands.

3.3. CNN architecture for unprotected devices

Our proposed CNN architecture needs to perform two functions: to detect features from
power consumption traces and to classify those traces into 256 labels corresponding to the
intermediate values zj . The first function is done by the pipeline of convolution and pooling
blocks. Since the features in the power consumption traces are POIs. Those are valuable
samples such that power consumption depends on the intermediate values. When the values
are labeled and learned by the CNN network, only the POIs are used for the classification
process. As shown in Figure 3b, for unprotected devices, the POIs are close to each other
temporally and only exist at over a small range compared to the overall length of the trace.
This POIs could be considered as the local features. As the traces pass though the convo-
lution layer, the POIs will be spread out and the more convolution layer results in a large
amount of spreading of information in POIs. More, the information in POIs is affected by
the subsampling process of pooling layer that follow the convolution layer. Therefore, the
number of convolution and pooling bocks is recommended set to 1 in CNN architecture for
unprotected devices.

The convolution layer is responsible for detecting the POIs, and the parameters at this
layer include the number of kernels γ1 and kernel size γ2. As shown in section 3.2, the
optimal kernel size to detect POIs is equal to the width of the POIs range. For unprotected
equipment, the POIs of the trace occur at a small number of locations compared to the
overall length of the trace. In the best case, there would be only one location, corresponding
to when the device processes the intermediate value. However, due to the high sampling
rate of the measuring devices, some surrounding points will also be considered as POIs.
Therefore, the recommendation of the kernel size is γ2 = 1 : 10.

The rest of the CNN architecture is classification part that consists some fully connected
layers and one output layer. In our CNN, we set number of fully connected layer of δ1 neurons
to 1 as recommended by [21]. Because, there are 256 possible intermediate values must be
classified, the output layer comprises of 256 neurons with softmax activation function.

To sum up, the CNN architecture and its parameters for unprotected devices, called
CNNn, are shown in Figure 4 and details are given in Table 1. The parameters γ1, γ2 and
δ1 are further heuristically determined by Grey Wolf Optimizer.

3.4. CNN architecture for protected devices

Attacks against the masking-protected devices are known as higher-order side channel
attacks, where an attacker needs to combine independent leakage information by the opera-
tions that relate to the mask values and masked values [24]. In the power traces, the target
leakage information represents in POIs. The POIs of this device usually emerge when the
mask values and masked values are processed. So, there are some POIs bands and they
often appear unclear and are spaced out to allow the device to process other values. For first
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Figure 4: CNNn architecture for the unprotected devices

order masking, there are two POIs as shown in Figure 3c. In order to conduct successfully
profiled attacks based on CNN, the CNN network must be able to detect POIs bands and
the combination between them. For detecting POIs, we can utilize the CNNn architect for
unprotected devices. The features that represent the combination between POIs bands can
be considered as global features. Therefore, the based CNNn architecture should require one
more convolution layer to detect these global features. As shown in Section 3.2, the kernel
size of this convolution layer should be equal to the distance between the POIs bands.

To sum up, the proposed CNN architecture for the profiled attack on a masking-protected
device is based on CNNn with one more convolution and pooling blocks. This modified
architecture is called CNNd and its recommended parameters are described in Figure 5 and
details are given in Table 1. As the same in subsection 3.3, undetermined parameters in
CNNd are further selected through optimization by GWO.

3.5. Parameter optimization by GWO

There is no mature method in the literature for determining key CNN parameters. In
this paper, we employ a swarm-based method called Grey Wolf Optimizer (GWO), which is
one of the latest additions to a group of nature-inspired optimization heuristics, in order to
determine the optimum parameters of the trained 1D CNN. The GWO is inspired by the
natural leadership hierarchy and hunting mechanism of grey wolves and has demonstrated
results comparable to some well-known evolutionary algorithms such as particle swarm opti-
mization, genetic algorithms, and differential evolution [25]. The population of the GWO is
divided into four hierarchies. The three most fit solutions are alpha (α), beta (β), and delta
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Figure 5 CNNd architecture for for the masking-protected devices

(δ), and they guide the hunting of the other omega (w) wolves. The main hunting phases
include: encircling, hunting, attacking, and searching.

In circling, the wolves update their positions with respect to the prey as follows

D⃗ =
∣∣∣C⃗ · X⃗p(t)− X⃗(t)

∣∣∣ ,
X⃗(t+ 1) = X⃗p(t)− A⃗ · D⃗,

(5)

where t is the current iteration, X⃗p is the position vector of the prey, and X⃗ denotes the

position vector of a grey wolf. A⃗, C⃗ are coefficient vectors, A⃗ = 2a⃗ · r⃗1 − a⃗, C⃗ = 2 · r⃗2, in
which a⃗ is linearly decreased from 2 to 0 over the course of iterations, and r⃗1, r⃗2 are random
vectors in the range [0, 1].

During hunting, all wolves are obliged to update their positions according to the three
best solutions obtained from encircling as follows

D⃗α =
∣∣∣C⃗1 · X⃗α − X⃗

∣∣∣ , D⃗β =
∣∣∣C⃗2 · X⃗β − X⃗

∣∣∣ , D⃗δ =
∣∣∣C⃗3 · X⃗δ − X⃗

∣∣∣ ,
X⃗1 = X⃗α − A⃗1 · D⃗α,

X⃗2 = X⃗β − A⃗2 · D⃗β,

X⃗3 = X⃗δ − A⃗3 · D⃗δ,

X⃗(t+ 1) =
X⃗1 + X⃗2 + X⃗3

3
,

(6)

where
−→
Xα,

−→
Xβ and

−→
Xδ are the positions of alpha, beta and delta, respectively, and

−→
Dα,

−→
Dβ

and
−→
Dδ are calculated using Equation (5) with different coefficient C⃗.
Attacking occurs when |A| < 1, and otherwise, wolves diverge from each other for search-

ing, promoting further global exploration. The optimization procedure of CNN by GWO is
presented in Figure 6.
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Table 1: Architecture hyperparameters of CNNn, CNNd

CNNn CNNd

Layer Parameters Layer Parameters

CONV
Activation function: SeLU [26]
Number of kernels: γ1 = 1 : 5

Kernel Size: γ2 = 1 : 10
CONV1

Activation function: SeLU
Number of kernels: γ1
Kernel Size:γ2 = 1 : 10

Batch Normalization \ Batch Normalization \
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Pooling Size: 2; Stride: 2;
Type: Average Pooling[21]

POOL 1
Pooling Size: 2; Stride: 2;
Type: Average Pooling [21]

Flatten CONV 2
Activation function: SeLU
Number of kernels: γ3

Kernel Size: γ4 = 20 : 100

Fully Connected
Number of layers: 1

Number of neurons:δ1 = 1 : 50
Batch Normalization \

Output 256 neurons, softmax activation POOL2
Pooling Size: 2; Stride: 2;
Type: Average Pooling

Flatten

Fully Connected
Number of FCs = δ1

Number of neurons/FC = δ2
Output 256 neurons, softmax activation
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Figure 6: CNNn architecture for for the masking-protected devices
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4. EXPERIMENTS

4.1. Score for evaluation

In this section, we present the experimental results of implementing profiled attacks
based on the proposed CNN architecture in two cases: unprotected and first order masking-
protected AES-128. We compared the effectiveness of the proposed method to that of the
state-of-the-art published by Zaid et al. [21]. The parameters used to evaluate effectiveness
are as follows:

• The ability to reveal the correct key. To confirm that our profiled attacks can reveal
the correct key used by AES-128, we figure out the probability of the correct key over all
keys. The key with highest probability is the best one.

• The guessing entropy (GE) [27]. This is widely used to evaluate the effects of attacks in
multi-trace experimental scenarios. When using maximum likelihood estimation to recover
the secret key, we pay more attention to the final probability output of each side channel
trace. The output probability of each key candidate is ranked in descending order. The
guessing entropy is then defined as the index or real key’s rank within the sorted probabilities.
We care about the amount of traces that are required to achieve a guessing entropy of zero,
that is, the amount of traces required to recover the key. We estimate such a guessing entropy
after 10 independent attacks.

• The Complexity of the CNN architecture. This parameter is the number of trainable
parameters during CNN training.

Label 

Label: 

Label: 

Label: 

Training traces dataset

Label 

Attack traces dataset

Label: 

Label: 

Label: 

Figure 7: Example of a structure of traces dataset

4.2. Dataset

The dataset for profiled attack contains power consumption traces which is divided into
training traces dataset and attack trace dataset as shown in Figure 7 for example. These
traces are used as input of CNN. The labels of traces can be viewed as output values of the
Sbox and known with training traces. The labels of attack traces are further predicted by
CNN in key recovery phase. In this paper, we work on three datasets as follows:

• DataSet1. 60000 traces are collected while AES-128 processes the intermediate value
at the S-box output. AES-128 was implemented on Smartcard Atmega8515 running
on Sakura G/W.



EFFICIENT CNN-BASED PROFILED SIDE CHANNEL ATTACKS 13

• DataSet2. This is DPA contest v4 dataset. The set consists of 100000 traces, each
consisting of 4000 features, of a masked AES implementation. However, the traces
leak first-order data and this dataset is only used as an unprotected dataset after
unmasking the S-box output. The targeted sensitive variable is the output of S-box,
sbox (Pi + k∗)⊕M , where M is the known mask. This dataset is publicly available at
http://www.dpacontest.org/v4.

• DataSet3. This is the ASCAD dataset presented in [20]. The dataset is set up like
the MNIST dataset and has 50000 profiling traces, and 10000 attack traces. The
traces are recovered from an 8-bit AVR microcontroller from a masked implementa-
tion of AES-128. The traces were captured from electromagnetic emanations. The
dataset consists of raw traces comprising measurements covering the entire encryption
process. From this, the authors have pre-selected a window in the raw traces that
corresponds to the S-box operation of third subkey and consists of 700 features. This
part of the dataset is used for our experiments. This dataset is publicly available at
https://github.com/ANSSI-FR/ASCAD.

4.3. Experimental procedure

Training CNNDataSet CNN model

Trained CNN Analysis

Show correct key
(k*)

Compare correct 
key, wrong key

Caculate GE

GWO
Optimal parameters 

for CNN

Figure 8: Experiments procedure

We implement each experiment though 3 phases as shown in Figure 8, namely, the CNN
parameters optimization phase, the profiled phase, and the attack phase. The CNNs are
implemented in Python language using the Keras library [28]. During the optimization of
the CNNs the MSE loss function is used with the Adam optimization method [22] and a batch
size of 50. To choose the appropriate learning speed, the learning rate was selected according
to One-Cycle Policy strategies [29]. Using this speed-adjustment strategy allows the use of a
large learning rate while avoiding overfitting. The SeLU activation function is used to avoid
vanishing and exploding gradient problems [26]. To improve weight initialization, we use He
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Uniform initialization [30]. All the experiments in this section use the above initialization
with the number of epochs initially set at 50.

4.4. Results with unprotected device

Experiment with DataSet1

In this experiment, we use 4000 traces in the parameter optimization and training phases
and 500 traces in the attack phase. GWO was employed to optimize the three key parameters,
the number of kernels γ1, the kernel size γ2, and the number of neurons in the FC layer n.
The classification accuracy was set as the fitness function. The CNN parameter setting with
GWO is shown in Table 2.

Figure 9: Estimation probability of all
hypothetical keys with Dataset1

Figure 10: Guessing entropy results
for Dataset1

Figure 11: Estimation probability of all hypothetical keys against number of traces with Dataset1

In the attack phase, the estimated probability of the hypothetical keys is determined
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by the maximum likelihood estimation. The correct key is defined as the key with the
highest probability. Figure 7 shows the trace set collected in this experiment on the first
key byte of AES-128, with 63 having the largest probability value. Figure 9 and Figure 10
respectively describe the average rank of the correct key and the estimated probability of
the keys according to the number of traces used for the attack. In general, as the number
of attack traces increases, the estimation probability of the correct key compared to the
estimation probability of the wrong key becomes clearly distinguishable. The wrong keys
give probability estimates quite similar and indistinguishable from each other. As shown in
Figure 11, the average GE value of the correct key reaches 0 very quickly after only 3 to 4
trace attacks.

Table 2: CNNn parameters selected by GWO with Dataset1

Parameter Input values of GWO Value after GWO
Number of kernels γ1 1:10 4

Kernel size γ2 1:10 3
Number of neurons in FC (n) 1:50 10

Experiment with DataSet2

The purpose of this experiment is to verify the proposed attack method against different
datasets and compare its performance with the currently considered state-of-the-art results
described by Zaid et al. The results of using 4000 traces in the optimization phase to find
the parameters for CNNn are shown in Table 4. The CNNn with the parameters given in
Table 3 is trained with the 4,000-trace dataset above and then used in the attack phase
to find the correct key. The estimated probability of the keys given by Figure 12 shows
that the correct key value is 130 with the first byte of the key used in AES-128 having the
highest estimated probability. The large distinction between the estimated probability of
the correct key and the estimated probability of the other keys reflects this dataset being
easy to attack. This result is consistent with the claims made in [31]. Table 4 compares the
effectiveness of the proposed method with that of Zaid. The GE values obtained by attacks
using both methods are shown in Figure 13. Our CNNn architecture is more effective in
terms of the number of traces required for GE to reach 0. Our method requires only 2 traces
to reach 0 while Zaid’s method requires 7 traces. This result demonstrates that our CNNn
architecture can learn POIs from power traces more precisely than the CNN architecture
proposed by Zaid. However, the number of trainable parameters and the training time is
more for CNNn than the proposed method of Zaid. Neither of these CNN architectures is
too complicated, but they do have good offensive results. Therefore, for unprotected devices,
the CNN architecture does not need to be very complicated; only one convolution layer with
a small number of kernels and a small kernel size and one FC layer containing relatively few
neurons is needed.

In this section, we present two experiments of profiled attacks on unprotected devices
using our dataset and the DPAContestV4 dataset. Both of them use the same CNN ar-
chitecture. Although, according to the theorem “No Free Lunch” [32], there is no optimal
architecture for all problems, according to the analysis as well as the experimental results
with the two datasets, the CNNn architecture with the parameters given in Table 5 should
be used for profiling with unprotected devices.
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Table 3: CNNn parameters selected by GWO with Dataset2

Parameter Input values of GWO Value after GWO

Number of kernels:γ1 1:10 4

Kernel size:γ2 1:10 3

Number of neurons in FC (n) 1:50 10

Table 4: Comparison of performance on Dataset2

Template Attack [31] Zaid et al. method [21] Our proposal

Trainable parameters \ 8.782 8.858

Number of traces for GE=0 3 7 2

Training time (s) \ 103 158

Table 5: Optimal parameters of CNNn for unprotected devices

Layer Parameter

CONV

One layer, Activation function SeLU

Number of kernels γ1 = 4
Kernel size γ2 = 3

Batch Normalization \

POOL
Pooling size = 2;

Stride = 2

Flatten \

Fully Connected
Number of layers =1

Number of neurons δ1 = 10

Output 256 neurons, softmax activation
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4.5. Results on masking - protected device

The experiment in this section uses the DataSet3 dataset, which is divided into 3 parts:
45000 traces for training, 5000 traces for validation, and 10000 traces for the attack. The
training and validation data are used by the GWO optimization algorithm to find optimal
parameters for the CNNd architecture. The basic CNN architecture used in the experiments
in this section is the CNNd proposed in Section 3.4.

The parameters optimized for CNNd given in Table 6 are generated by the GWO algo-
rithm. Next, CNNd is trained to create a model for data traces. The probabilities of the
256 hypothetical keys estimated in the attack phase are presented in Figure 14, and it is
apparent that the maximum probability value corresponds to that of key 224, which is the
actual AES-128 key used. Although the probability difference between the right and wrong
keys is not substantial, as Figure 15 shows, when the number of attack traces is increased,
the probabilities of the wrong keys remain the same, while that of the correct key signifi-
cantly increases. Table 7 compares the efficiency of the proposed method to that of Zaid
[21] and Prouff [20]. The GE value obtained by attacking using both methods is shown in
Figure 16. The CNNd method proposed by us is more effective in terms of the number of
traces required to achieve a GE of 0. Our method requires about 183 traces to reach GE = 0
while Zaid’s method requires 195 traces, which represents an approximately 5% reduction.
This result demonstrates that our CNNn architecture can learn POIs from the power traces
of masked devices more precisely than the CNN architectures proposed by either Zaid or
Prouff. However, the number of trainable parameters and the training time of the proposed
CNN are larger than those of the method proposed by Zaid yet much smaller than those of
the method proposed by Prouff. This can be explained by the architecture of CNNd being
more complex than that the architecture used by Zaid yet much simpler than that used by
Prouff.

Figure 14: Estimation probability of all hypothetical keys with Dataset3
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Table 6: CNNd parameters selected by GWO with Dataset3

Parameter Input values of GWO Value after GWO

CONV 1

Number of kernels: γ1 1-10 4

Kernel size: γ2 1-10 3

Batch Normalization \ \
POOL 1

Pooling size 2 2

Stride 2 2

CONV 2

Number of kernels: γ3 1-20 8

Kernel size: γ4 20-100 51

Batch Normalization \ \
POOL 2

Pooling size 2 2

Stride 2 2

Flatten \ \
Fully Connected

Number of FCs: δ1 1-3 2

Number of neurons/FC: δ2 1-50 10

Output
256 neurons

Activation function: Softmax

Figure 15: Estimation probability of all hypothetical keys

against number of traces with Dataset3
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Figure 16: Guessing entropy results for Dataset3

Table 7: Comparison of performance on DataSet3

Template Attack
[12]

CNN Profiled attack
[12]

CNN proposed
by Zaid [13]

CNN proposed
by us

Trainable
parameters

\ 66.652.444 16.960 26.334

Number of traces
for GE=0

450 1.146 195 183

Training time
(s)

\ 5417 253 790

5. CONCLUSION

In this paper, we have demonstrated that deep learning can be successfully applied to
profiled attacks on cryptographic devices. By analyzing the POIs characteristics of power
traces and convolution operations, we have proposed two basic CNN architectures, CNNn
and CNNd, used for unprotected and masking-protected devices, respectively. The param-
eters of the proposed basic CNN architecture are optimized by the GWO algorithm. Our
CNNn architecture has minimal complexity, and requires only 2 to 4 traces, to reveal the cor-
rect key of unprotected devices. After experimenting successfully on both trace datasets, we
claim that CNNn should be the first choice when conducting profiled attacks on unprotected
devices. Regarding attacking masking-protected devices, although the architecture of CNNd
has one more convolution layer than the CNN architecture of Zaid, it gives better results,
specifically a 5% decrease in the number of traces required for GE to equal 0. Therefore,
both CNN architectures should be used with the protected device. As a final note, CNN
can be used to conduct profiled attacks efficiently assuming its architecture and parameters
have been carefully selected.
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