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Abstract. This paper concerns with a problem of supoptimal finite-time control for a class of linear
large-scale delay systems. The system under consideration is subjected to the state and control delays
interacted between subsystems. Based on improved LMI approach combining with new estimation
techniques, we derive sufficient conditions for solving H, finite-time control and guaranteed cost
control of the system. A numerical example is given to illustrate the validity and effectiveness of the
theoretical results.
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1. INTRODUCTION

Over the past decades stability and control theory of large-scale systems has been exten-
sively studied due to its useful applications in various areas of applied science such as signal
processing, communications, power systems and telecommunication networks (see, e.g. [1, 2]
and the references therein). The concept of large-scale systems has been introduced when
it became clear that there are real world control problems, which cannot be solved by using
one-shot approaches. In general, a large-scale system can be characterized by a large number
of variables representing the system, a strong interaction between subsystem variables. The
control and stability analysis of large-scale systems have became complicated owing to the
high dimensionality of the system equation, uncertainties, and time-delays. In the frame-
work of large-scale interconnected systems, the problem of H., control has been received
considerable attention [3, 4, 5, 6]. On the other hand, the H, finite-time control problem

consists of the design of a state feedback control, which stabilizes the closed-loop system and
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guarantees an adequate level of system performance over a finite-time interval. It is notable
that the aforementioned results are only devoted to asymptotic stability, i.e. the stability
criteria are defined on an infinite-time interval. However, in practice we are interested not
only in the system behavior in infinite-time interval, but also in finite-time interval. Then,
instead of asymptotic stability, it is preferable to use the stability defined over a finite-time
interval, i.e. finite-time stability (FTS) [7]. The authors of [8, 9, 10, 11] proposed some suffi-
cient conditions for H, finite-time control of linear large-scale systems, however, either the
state delays or control delays were not considered. It is worth pointing out that almost the
existing results on finite-time control of large-scale systems were studied for systems without
control delays in interconnection. It is difficult to design feedback controllers for large-scale
systems when the state and control delays are both interacted between all subsystems. The
reason is that the interacted state and control delays are of high dimensions and thus require
extensive computations to implement the centralized procedure. In [12, 13, 14] the authors
studied problem of finite-time stability and stabilization for large-scale systems with delays,
however the control delays are not considered. To the best of our knowledge, the problem of
guaranteed cost finite-time control for large-scale systems with delays on both the state and
control has not yet been studied in the literature. Therefore, this problem for large-scale
systems with control and state delays in interconnection still remains open, which motivates

our present research.

In this paper, we consider the problem of robust H., finite-time control for linear large-
scale systems with state and control delays in interconnection. Our purpose is to design
state feedback controllers which guarantee not only the robust finite-time stability of the
closed-loop system, but also provide an optimal level of the cost performance. The contribu-
tion of our paper lies in three aspects. (a) The time delays are interacted in both the state
and control variables; (b) The disturbance is norm-bounded; (c) Based on Lyapunov func-
tion method combining with linear matrix inequality technique, we provide new sufficient
conditions for solving the control problem. The conditions are formulated in terms of linear
matrix inequalities (LMIs), which can be easily implemented by numerical algorithms [15].
Finally, a numerical example is given to show the validity and effectiveness of the theoretical
results.

Notations. R™" denotes the space of all (n x r)- matrices; A(A) denotes the set of all
eigenvalues of A; A\pez(A) = max{ReA : A € A(A)}; A\nin(A) = min{ReX : X € AN(A)};
C([a,b], R™) denotes the set of all R"-valued continuous functions on [a,b]; L2([0,T], R")
stands for the set of all square-integrable R"— valued functions on [0,7]; A matrix P is
symmetric positive definite, P > 0, if P = PT and ' Pz > 0 for all x € R",z # 0,
P > @ means that P — Q > 0. The symmetric terms in a matrix are denoted by *; The
segment of the trajectory z(t) is denotes by z; = {z(t + s) : s € [—7,0]} with its norm
ol = sup lat+ )]

se[—7,0
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2. PRELIMINARIES

Consider the following linear large-scale control system with delays

l’z(t) = Azxz(t) + ]ZV: Aijacj(t - dw’) + Bzu,(t)

=i
+ 2 Bijui(t —mij) + Diwi(t), (1)
j=Lj#i

zi(t) Eixi(t) + Fizi(t — di;),

zi(t) = @i(t), wi(t) = ¢i(t), te[-7,0]

where x;(t) € R™ is the state vector, u;(t) € R™ is the control vector; w;(t) € R™ is the
disturbance vector, z;(t) € R™ is the observation vector; 7 = max{d,m}; A;, E;, F; €
Rrixmi By € RYWX™Mi Ay € R ™ By € R ™i, D; € R"™*" are constant matrices of

appropriate dimensions; the delays satisfy

0<d;; <d, 0<my; <m, 1,j=1,N;

the disturbance w;(t) satisfies

In > 0 : max {sup{w;(t)wi(t)}} <. (2)
i=T,N L >0
A solution of large-scale system (1) is a vector function x(t) = [z1(t), z2(t),...,zn(t)] €
RN™ which satisfies system of differential equations (1). It is well-known from [1], for
ui(t) € La([0,T], R™),w;(t) € Lo([0,T],R™),i = 1,2,..., N,T > 0, the large-scale system
(1) under the initial condition ¢;(.) € C([—,0], R™) has a unique solution x(t).
Associate with system (1), we consider the following cost function

¢t N N
J(t,u) = /0 Z[xj OUizi(t) + Y ] (t = dji) Vit — djs) + v (HWawi(t) |dt,  (3)
i=1 j=1,j#i

where U; > 0, V; > 0, and W; > 0, ¢ = 1, N are given symmetric matrices. Let us set
Q=diag{Q1, - ,Qn}, z () = [r1()", ..., zn®)T],
u(t) = [ur(t),..,un(@®)], @ () =), on(®)].

Definition 1. (Robust finite-time stability) Given positive numbers T', ¢1, c2 and a symmetric
matrix Q > 0, the unforced system (1) (u(t) = 0) is said to be robustly finite-time stable
w.r.t. (c1,c,T, Q) if for all disturbances w(t) satisfying (2) the solution z(¢) of the system
satisfies the following relation

sup {0 (5)Qu(s)} <1 — ' ()Qx(t) < ¢z, ¥t € [0,T).

s€[—1,0]
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Definition 2. (Finite-time stabilization) For given positive numbers T', ¢1, ¢, and a symmet-
ric matrix @ > 0, system (1) is robustly finite-time stabilizable with respect to (c1,c2, T, Q)
if there exist state feedback controllers u;(t) = K;x;(t), i = 1, N, such that the closed-loop
system is robustly finite-time stable w.r.t. (¢1,c2, T, Q).

Definition 3. (Robust Hy finite-time control). For given positive numbers 7', ¢;, ca,y > 0,
and a symmetric matrix @) > 0, the robust Hs, finite-time control problem for system (1) is
solvable if:

(i) System (1) is robustly finite-time stabilizable w.r.t. (c1,c2, T, Q).

(ii) There is a number ¢y > 0 such that

N § st 2

sup <, (4)

N T
cllel® + ;fo [[wi ()2t

where the suppremum is taken over all ¢;(t) € C([—7,0], R™) and non-zero disturbances
w;(t) satisfying (2).

Definition 4. (Guaranteed cost control) For given positive numbers 7', ¢, co and symmetric
matrices > 0, the guaranteed cost finite-time control for system (1) is solvable if there
exist state feedback controllers u; = K;z;(t),i = 1, N and a number J* > 0 such that the
closed-loop system of (1) is robustly finite-time stable w.r.t (c1,c2, 7, Q) and J(T,u) < J*.
Number J* is the guaranteed cost value, control u(t) is the guaranteed cost controller. The
following technical lemmas are introduced for the proof of the main result.

Lemma 1. ( Cauchy matriz inequality [16]) For given a,b € R™, 0 < P € R"™ "™, we have
2a"bh < a' P 'a+b' Pb.

Lemma 2. (Schur complement lemma [16]) For given matrices U, V, Q with appropriate
dimensions satisfying V=V >0, U=U", we have

_ U QT

T 1

U+Q'V Q<0<:>{Q _V}<0.

Lemma 3. For given matrices My, My, Z, Y, Q with appropriate dimensions satisfying
MlelT, Q=Q">0andY =Y >0, we have

My My ZT
]<0<:> My —Q 0 | <o0.

[M1+ZTY—1Z My
zZ 0 -Y

My -Q

Proof. We have

My+2Z"Y1Z M) [My M) N Z'y='z o
M -Q]  [M2 -Q 0 0]
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Since

0 0 0
2, and obtain that

Ty -1 T
2 Yz O} = [Z } y—! [Z 0] , we apply the Schur complement lemma, Lemma

b Yl

My —O O}Y‘l[Z 0] <0,

which is equivalent to

My M Z7
My —Q 0 |<o.
Z 0 -Y

3. MAIN RESULTS

In this section, we provide sufficient conditions for solving finite-time supoptimal finite-
time control of systems (1). Before presenting the theorem, we introduce the following
notations of several matrix variables for simplicity.

Py = P!, Ry =P 'RiP ",

. 1 N

Hi, = AP+ PA] + %DZDZT +BYi+Y Bl +(N-1DRi+ Y A;AL
J=1,j#i
Hi+i’1+i =1, Hi,,lJri =N — 1Pi,'H{+j71+j = ij, Hi,1+j = B;;Yj, i,j =1,N, j #1,
Hf,N+2 = PiEiT7Hf,N+3 = Pin'T7 HJZV+2,N+2 = H]ZV+3,N+3 = —%I,
H;; =0, for all other 4,7, j # 1,
Amin (B

a1 = min {7”””( ! )},

i=T,N  Amax(Qi)
(9 = max (M> + 207 max ()Wax(ﬁm) + (N — 1)7'[‘ ax (#>

i=T,N N Amin(Q4) i=T,N N Amin(Qi) i=T,N N Amin(Q4)
Amaa: Rz
T nax ( )\mm((Qil)) ﬂ ’
a3 = zril% {)\max(Pil)} + 287 g%{/\maz(FiTFi)} + (N -1 [1 + zril% {)\max(Ril)H-

Next theorem gives sufficient conditions for Hy finite-time control of system (1).

Theorem 1. For given positive numbers T, c1,c2, and a symmetric matriz QQ > 0, the
robust H, finite-time control problem for the systems (1) is solvable if there exist symmetric
matrices P; > 0, R; >0, i = 1, N, matrices Y;, i = 1, N, and a number 3 > 0 satisfying the
following conditions

Hi, Hi, . . . H

v 1(V+3)
(A (A
x  Hi, . .. H2(N+3) <0, i=1N, (5)
* * L HZN+3)(N+3)
aser + NGl _ o, ©)
(%1 - '

Moreover, the state feedback controllers are defined by u;(t) = Y}Pl-_lazi(t), 1=1,N.
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Proof. Consider the following Lyapunov-Krasovskii functional
N
V(t,a) =Y [Vaa(t,zp) + Via(t, z) + Via(t, 1),

=1

where

Via(t, ) =Py, (t)TPilxi(t)

¢
Via(t, 2;) =€l / 26zi(s) " F,' Fzi(s)ds,
t—dyi
N ¢ t
Vis(t, x) =eP! Z (/:ri(s)—rxi(s)ds—l— / -’Ei(S)TRil.’Iii(S)dS).
I=LIF g, t—mji

Taking the derivative of V (¢, x;) in ¢, we have

Via(t, 20) =BV (t, 20) + 222,(1) T Py [Aixi(t) (7)

+ Z [Aijz;(t — dij) + Bij Y Pja(t mz’j)]+Bin’Pz‘1$z’(t)+DiW(t)}»
J=Llj#i

VZ‘Q(t, act) :5‘/;2(t, $t) + €'Bt25 [wi(t)TFiTFixi(t) — wi(t — dii)TFZ-TFi(I}i@ — Clu)} s (8)

Via(t, @) =BVis(t,w0) + €™ (N = 1) [wi() Twi(t) + (1) T Rui(1)]
N
_ eﬁt Z |:$1(t — dji)—rl‘i(t — dji) + l’i(t — mji)TRilxi(t — mﬂ)] . (9)
j=1,j#

Applying Cauchy matrix inequality, Lemma 1, for the following inequalities

N

20:(t)" Pu | S Ayl d)| < 3 ] OPa Ay AT Pz
J=1,j#i J=1,j#
+ 2 (t — dig) "y (= dij)],
N
[ Z BijY; Ppaj(t mz‘j)} < Y [x (PaBy YRy, B Pa()
J=L1j#i Jj=L1j#i

+ 2 (t — mag) " Rjww(t — myj)),

1
2z, (t) P Dywi(t) < %xj(t)PﬂDz’DiTB‘m(t) + 8w, (t)w;i(t),



Ho. FINITE-TIME CONTROL OF LARGE-SACLE DELAY SYSTEMS 535

we obtain that

1
+ — Py D;D; Pyy + Py (B;Y;

Vii(t, ) <BVir(t, @) + ePlai(t) T [Pa A + A P N

+Y; B Palai(t)
N
+66t{ > [l‘z‘( )T P Aij Al Pai(t) + ot — dig) " (t — dij)
=L
+2;(t) " PaBijYiR; 'Y B Pawi(t) + aj(t —mij) " Rjua;(t — mz‘j)} }
N
+ e8> w (twi(t).
=1

Moreover, using the following identities

N N N N
Z Z x;(t dl])T‘rj(t dij) = Z Z it — d]Z)Txl<t dji)
i=1 j=1,j#i i=1 j=1,i#j
N N N N
Z Z zj(t —mij) Rjx;(t —mi;) = Z Z zi(t —myi) Rixi(t —my;)
=1 j=1,j#1 i=1 j=1,i#j
lz:(0)]* < (O E] Eixi(t) + 22] (t — dis) F Fyi(t — dig).
we obtain from (7)-(9) that
1
V(t, ) — BV (L, 2¢) <€Btz [ [P1A;i + Al Py + ’yﬁpilDiDz‘TF)il

+ Pl( Y + YT B Py + 28E] E; + 28F, Fy|a;(t)

+ :ZJZ( )TPﬂAUA Plxz( )

Mz

I
—

J=Li#j

zi(t) " PiyBy;Y; Ry YTBTPm( t)

+
Mz

I¥
=

J=1i#]
(V= Dfat) (1) +xz~<t>TRmi<t>]}

—i—’yﬁeBtZw BeBtZz

=1

<eﬁtZy ()T My;(t) +7ﬁ65tzw1(t)wz’(t) (10)

i=1
— BePt Z z () zi(t
i=1
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where y;(t) = Pjjzi(t), i1 =1, N, and

4 1
M =A;P;+ PAl + B;Y; + ,y—BD,DiT +Y'B! +28PE E;P, + 26P F,' F; P,

N
+(N = D[R+ P+ Y [AyAf + ByY;R; Y] Byj).
=15

Applying Lemma 3, the condition (5) is equivalent to M? < 0, i = 1, N, and hence from (10)

it follows that

(t xy) — BV (t,x) < ’yﬂeﬂtZw i(t).

=1

Moreover, since
d .
E [e_ﬁtv(t7 ZL‘t):| = e_ﬁtv(tv ~Tt) - /Be_ﬁtv(ta wt)7

we get
V(t,x;) < (V(0,20) + NvAnT)ePT, Vit € [0,T].

Next, in the view of V (¢, z;) we have

N N
tl‘t Z 111'1 Z mzn Py ':Ul )Txi(t)
> Z xz szz = alx(t)TQx(t)'

On the other hand, the following estimation for V' (0, zg) can be derived

N N 0
V(0,20) = > 2:(0)T Puai(0) + / 26zi(s) " F' Fyzi(s)ds
i=1 i= l—d
N N 0 0
+y Y ( / zi(s)  zi(s)ds + / xi(s)TRﬂxi(s)ds)
=1 j=1, j#i —dji —mj;

<y up }{w(S)T@P(S)} < ager.
se[—T1,0

Therefore, combining the derived inequalities (10)-(13) with the condition (6) gives

207 Qu(t) < ~-(V(0.0) + NyiT)e*

1
< —(ager + NyBnT)ePT < ¢y, Vt € [0, T7].
aq

(12)

(13)
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To complete the proof of the theorem, it remains to show the y—optimal level condition (4).
For this, we consider the following relation

Zi\’;/OTﬁHZz(t)”z _'YﬂHwi(t)Hth / {Z [ﬂ”zz ”2 — ~yBJwi () } [ —pt V(t, xt)] Yt

—/OTCZ[ Pty (t, xt)}dt

Since V (t,x¢) > 0, we have

T
d _
‘/ eVt ) |dt = =TV (T 2r) + V(0,20) < s
0

It follows from (10) that

> [Bl=I? 181w dI?] + SVt 2) <o,
=1
hence
N T
S| Gl - 28luiolP)dd < aslel®
i=1 70

Setting cop = a—; > (, the above inequality yields
Y

I Z 2 (t)||dt

sup <.
collol* + Z Jo Ilwi(t)[|2dt

This condition holds for all non-zero w; € L2([0,T], R"™), ¢; € C([—7,0]; R™), and then the
condition (4) is derived. This completes the proof of the theorem. |

Next theorem gives sufficient conditions for solving the guaranteed cost finite-time control
of system (1). Let us denote
Hi, = AP+ PA] + D;DI + BY; + V"B + (N - 1)R; + Z Aij AL,

J=137#i
HiJrz 1+ = —1, Hi A+ T VN — 1P, H]Z-+J 145 = —Rj, Hi,lJr] = BijYj, 1,j = 1,N, j # 1,

a0 = ma (Jestf)) + (¥ - 1>TLI§&X (Mgt + max (3eGy) |

Theorem 2. For given positive numbers T, c1, co, and symmetric matrices QQ; > 0, W; >
0, Uy >0, V; >0, i € 1,N, the guaranteed cost finite-time control for system (1) is solvable
if there exist symmetric matrices P; > 0,R; > 0,9 = 1, N, matrices Y;, 1 = 1,N, and a

number § > 0 satisfying the following conditions
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(Hi, Hi, . . . Hiy, YW/ pul? JN-1RV
«  Hiy, ... H%,N-s—l 0 0 0
* * HJZ‘\,JFLNJrl 0 0 0 <0, (14)
* * * -1 0 0
* * * * -1 0
* * * * _—
i .. N 37'7 J
azc1 + Nl < e_ﬁTCQ. (15)
aq

I

\'b—‘
=
s}
N
S

Moreover, the guaranteed cost controllers are defined by u;(t) = Y; P, 'z;(t), i
the guaranteed cost value is defined by J* = agocy + NnT.

Proof. We take the following Lyapunov-Krasovskii functional
N

Vta) =3 [Valt) + Vialt w0,
i=1
where Vi (t, z) = ePla;(t) T Piyay(t),
N t ¢
Valta)=e® S ([ z(s) T+ Vi)ag(s)ds + [ xi(s)TRﬂxi(s)ds).
J=1, j#i tfdji t—mji
By the same arguments used in the proof of Theorem 1 we have derived the following

estimation:
V(t.z)) — BV (t, 1) <e‘”2[ [Padi + A Pa + PuDiD] Py
=1
N
+ -le(Bzifz + }/iTBT il 1:1 + Z 551 zlAZJA Plxz( )
J=1, j#i
N
+ Z Jf@ TPZIB’L]Y R YTBTPlel() (16)
J=1, j#i
+ (N = a1+ Vi + Rale(t)| —l—e’BtZw
N
- eﬁt Z Z l‘i(t — dji)—r‘/%$i(t - dji)—r.
i=1 j=1, j#i
Adding and substituting the value e fO(t), where f°(t) is denoted by
N N
) =] OUmi(t) + > @ (= djo)Vias(t — dji) +u () Wiui(?)],
i=1 J=1,j#i

on the right hand-side of (16), we have

V(t, o) — BV (t, ) < et Zy ()" M'y; +eﬁtzw — M0, )
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where y;(t) = Pizi(t) and
M = 4;P;+ P,A] + B;Y; + D;D] + PU;P, + Y;' B] + (N —1)[P,V;P;, + R; + P?|
N
+Y,TWiYi+ Y [AgAj + ByY;R 'Y B

J=Li#i
Applying the Schur complement lemma, Lemma 2, and Lemma 3, the condition (14) is

equivalent to M! < 0, Vi = 1, N, and hence from the inequality (17) it follows that
V(t,x) — BV (t,x) < —ePEfO>t) + eﬁtzw , Vt e [0,T]. (18)
Therefore, using the same arguments used in the proof in Theorem 1, we can prove the robust

finite-time stabilization of the closed system by the feedback controllers u;(t) = Y; P, a;(t).
To obtain the guaranteed cost value, we derive from (18) that

e PV (t, ) — Be PV (t, my) < —fO(t) + Zw . (19)
Integrating both sides of (19) from 0 to 1" leads to

T
/ fo(tydt <V (0,z0) — e PV (t, ) + NyT
0
<V(0,z9) + NnT,

due to V(¢t,2z;) > 0. On the other hand, we see that

N N 0
V(0,20) = i(0) T Puas(0) + > > / zi(s) T[I 4 Vi]zi(s)ds
i=1 i=1j=1, j#i _g,
0
+ / xi(s)TR 12 ( )ds)
in
<agcy,

hence, we obtain that
J(u) < ager + NnT = J*.
This completes the proof of the theorem. ]

Remark 1. Note that the condition (6) (or (15)) is not a LMI w.r.t. 5 > 0. Since S is not
included in LMI (5) (or in LMI (14)), we first find solutions P;, R;,Y; from the LMI (5) (or
from the LMI (14)), and then define 5 > 0 from condition (6) (or from (15)).

4. A NUMERICAL EXAMPLE

In this section, an illustrative example is given to show the validity and effectiveness of
the theoretical result.
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Consider the dynamic of the mechanical machine (see, e.g. [2]) described by the large-
scale complex system (1), where NV = 3 and the absolute rotor angle, acceleration and angular
velocity in each subsystem are respectively denoted by x; = (21, 2:2) ', 4 = 1,2,3; the
observation vector z;, i = 1,2, 3; the coeflicient matrices A;, A;;, the perturbation coeflicient

matrices D;, the time-delays d;; are given by

VU N. PHAT, PHAM T. HUONG

and dijo = 0.4; dig = 0.09; do1 = 0.06; dog = 0.2; d31 = 0.3; d3o = 0.04;m19 = 0.42; my3 =

iy (t) =
+Bizug(t — mi3) + Dywi(t),
z1(t) = Eyx1(t) + Fizi(t — diy),
(21(1) = »1(t), wi(t) = d1(t), t€[-7,0]
io(t) =
+Bagug(t — mag) + Dawa(t),
z9(t) =  Eaxa(t) + Faxa(t — da2),
(22(t) = @2(t), uz(t) = ¢2(t), t€[-7,0]
(5(1) =
+Bsaua(t — maz2) + D3ws(t),
z3(t) = Esws(t) + Faws(t — ds3),
z3(t) = @3(t), us(t) = ¢3(t), te€[-7,0]

0.5; mo1 = 0.28; mao3 = 0.37; ma31 = 0.45; mszo = 0.1; T =0.5.

T L O P P
B = [1_91) —15]  Bs = [0?4 Oé] Ao _8:? (1)} A = [
O R [P T P
A”Z[é (1121’312:[(11 (3)]’313:{_12 0[.)2]’321 [
Bas = {—_0%5 8] » Ba1 = {(;; 03]  Baz [—11 g] » D
N N I R R
E3:[j —02]’5:[062 o?J’FQ:[(l) —81}’&_[—05

and the matrices

Q = diag(Q1,Q2,Q3), Q1= [

0.5

A1z (t) + Arpza(t — dia) + Arzzs(t — dig) + Biui(t) + Biaua(t — ma2)

Aoxa(t) + Aorz1(t — dor) + Agszs(t — dag) + Baua(t) + Boajui(t — mar)

Asxzs(t) + Ag121(t — ds1) + Asexa(t — dag) + Boua(t) + Baiui (t — maq)
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064 0 042 0
@2 = [ 0 0.64]’ @s = [ 0 0.42] '

Forn =0.1; vy =4, 8 =0.01, ¢y =1, cog = 115, T = 10, using the LMI algorithm in
Matlab [15] to find solutions of the LMI (5), we have

~ [0.9327  0.0107 15631 0.0416 ~ [23185 —0.0769
17 10.0107  1.8988|° "2 7 |0.0416  0.2447|° "3~ |=0.0769 1.7110 |’
p _ [06955  1.0743) L [1.1333 ~1.0559]  _ [0.4498  0.4507
V= 11.0743  2.2041]° 72 7 | —1.0559 3.1772 |7 7% 7 10.4507  60.3971|°
v _ [F09953  —2.0142 [ 0.4243 —1.1587 ~ [-0.0363  —2.2345
1= 102314 —05320]° "2~ |-0.1651 0.4800 |’ "~ | 0.3305 37.5152 |

By Theorem 1, the system is robust finite-time H., stabilizable, and the state feedback
control u;(t) = Y; P, 'x;(t) are given by

[—1.0550  —1.0548]
ult) = | gou9 02788 1)

[0.3992 —4.8024]
ull) =| g1585 19883 | ()

[—0.0590  —1.3086]
ust) =1 gg708 219651 )

20

18

16

14

12 -

s 10
Figure 1. Time history of z ' (t)Rz(t) for the system

For the guaranteed cost control, we take ¢; =1, co = 83, T = 10 and the cost matrices

0.0l 0 0.0l 0 0.04 0
Vl[o 0.01}"/2[0 0.04]"/3[0 0.04]’

0.01 0 0.04 0 0.04 0
U= { 0 0.0225] V2= [ 0 0.01} Vs = [ 0 0.0625] ’
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0.0l 0 0.0l 0
}’%_[0 0.01]’W3_[0 0.04]’

the solutions of the inequalities (14), (15) are defined as

0.0225 0

W= { 0 0.0225

p _ [0.9743  0.0060 [ 1.5824 —0.0107 [ 2.3362 ~0.0215
L= 10.0060  1.9313]° "% |-0.0107 0.3980 |’ "%~ | =0.0215 1.2289 |~
R [07025  09511) [ 15072 ~1.6245) ., _ [1.2160  0.0388
V= 109511 1.9673| 7 |—1.6245 55039 |* 73 7 10.0388  14.3699|°
v _ [-08592  —1.7635] [ 0.6132 ~1.7502] . _ [-0.0447  —0.6375
1= 101222 —0.3062|° "2~ |=1.7502 0.8320 |’ "3~ |=0.5078  14.6352|°

By Theorem 2, the guaranteed cost control problem is solvable and the guaranteed cost value
is J* = 66.7, the guaranteed cost controllers are

—0.8763  —0.9104]
w) =1 51045 _0.1582] 210
[ 0.3578 —4.3874]
w®)=| 01566 20862 | 221
[-0.0239  —0.5192]

w) =1 _g1077 119073 )

Figure 1 shows the time history z'(¢)Rx(t) of the system with the initial conditions
©1(t) = (0.5sint,0.5); pa(t) = (e!,0.02t); p3(t) = (0.01e!,0.1cost), t € (—0.5;0) and ¢; =
1, Cy = 83.

5. CONCLUSIONS

In this paper, we have studied the problem of supoptimal finite-time control for linear
large-scale systems with the state and control delays in interconnection. Exploiting the
Lyapunov function method and linear matrix inequality technique, we have proposed new
LMI conditions for the robust H, finite-time control and guaranteed cost finite-time control
of such systems. The conditions are presented in terms of tractable LMIs, which can be
solved by standard computational LMI toolbox algorithms. The validity and effectiveness of
the proposed results have been illustrated by a numerical example.
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