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Abstract. This paper concerns with a problem of supoptimal finite-time control for a class of linear

large-scale delay systems. The system under consideration is subjected to the state and control delays

interacted between subsystems. Based on improved LMI approach combining with new estimation

techniques, we derive sufficient conditions for solving H∞ finite-time control and guaranteed cost

control of the system. A numerical example is given to illustrate the validity and effectiveness of the

theoretical results.
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1. INTRODUCTION

Over the past decades stability and control theory of large-scale systems has been exten-

sively studied due to its useful applications in various areas of applied science such as signal

processing, communications, power systems and telecommunication networks (see, e.g. [1, 2]

and the references therein). The concept of large-scale systems has been introduced when

it became clear that there are real world control problems, which cannot be solved by using

one-shot approaches. In general, a large-scale system can be characterized by a large number

of variables representing the system, a strong interaction between subsystem variables. The

control and stability analysis of large-scale systems have became complicated owing to the

high dimensionality of the system equation, uncertainties, and time-delays. In the frame-

work of large-scale interconnected systems, the problem of H∞ control has been received

considerable attention [3, 4, 5, 6]. On the other hand, the H∞ finite-time control problem

consists of the design of a state feedback control, which stabilizes the closed-loop system and
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guarantees an adequate level of system performance over a finite-time interval. It is notable

that the aforementioned results are only devoted to asymptotic stability, i.e. the stability

criteria are defined on an infinite-time interval. However, in practice we are interested not

only in the system behavior in infinite-time interval, but also in finite-time interval. Then,

instead of asymptotic stability, it is preferable to use the stability defined over a finite-time

interval, i.e. finite-time stability (FTS) [7]. The authors of [8, 9, 10, 11] proposed some suffi-

cient conditions for H∞ finite-time control of linear large-scale systems, however, either the

state delays or control delays were not considered. It is worth pointing out that almost the

existing results on finite-time control of large-scale systems were studied for systems without

control delays in interconnection. It is difficult to design feedback controllers for large-scale

systems when the state and control delays are both interacted between all subsystems. The

reason is that the interacted state and control delays are of high dimensions and thus require

extensive computations to implement the centralized procedure. In [12, 13, 14] the authors

studied problem of finite-time stability and stabilization for large-scale systems with delays,

however the control delays are not considered. To the best of our knowledge, the problem of

guaranteed cost finite-time control for large-scale systems with delays on both the state and

control has not yet been studied in the literature. Therefore, this problem for large-scale

systems with control and state delays in interconnection still remains open, which motivates

our present research.

In this paper, we consider the problem of robust H∞ finite-time control for linear large-

scale systems with state and control delays in interconnection. Our purpose is to design

state feedback controllers which guarantee not only the robust finite-time stability of the

closed-loop system, but also provide an optimal level of the cost performance. The contribu-

tion of our paper lies in three aspects. (a) The time delays are interacted in both the state

and control variables; (b) The disturbance is norm-bounded; (c) Based on Lyapunov func-

tion method combining with linear matrix inequality technique, we provide new sufficient

conditions for solving the control problem. The conditions are formulated in terms of linear

matrix inequalities (LMIs), which can be easily implemented by numerical algorithms [15].

Finally, a numerical example is given to show the validity and effectiveness of the theoretical

results.

Notations. Rn×r denotes the space of all (n × r)- matrices; λ(A) denotes the set of all

eigenvalues of A; λmax(A) = max{Reλ : λ ∈ λ(A)}; λmin(A) = min{Reλ : λ ∈ λ(A)};
C([a, b], Rn) denotes the set of all Rn-valued continuous functions on [a, b]; L2([0, T ], R

r)

stands for the set of all square-integrable Rr− valued functions on [0, T ]; A matrix P is

symmetric positive definite, P > 0, if P = P⊤ and x⊤Px > 0 for all x ∈ Rn, x ̸= 0,

P > Q means that P − Q > 0. The symmetric terms in a matrix are denoted by ∗; The
segment of the trajectory x(t) is denotes by xt = {x(t + s) : s ∈ [−τ, 0]} with its norm

||xt|| = sup
s∈[−τ,0]

||x(t+ s)||.
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2. PRELIMINARIES

Consider the following linear large-scale control system with delays

ẋi(t) = Aixi(t) +
N∑

j=1,j ̸=i

Aijxj(t− dij) +Biui(t)

+
N∑

j=1,j ̸=i

Bijuj(t−mij) +Diwi(t),

zi(t) = Eixi(t) + Fixi(t− dii),

xi(t) = φi(t), ui(t) = ϕi(t), t ∈ [−τ, 0],

(1)

where xi(t) ∈ Rni is the state vector, ui(t)∈ Rmi is the control vector; wi(t)∈ Rri is the

disturbance vector, zi(t) ∈ Rni is the observation vector; τ = max{d,m}; Ai, Ei, Fi ∈
Rni×ni , , Bi ∈ Rni×mi , Aij ∈ Rni×nj , Bij ∈ Rni×mj , Di ∈ Rni×ri are constant matrices of

appropriate dimensions; the delays satisfy

0 ≤ dij ≤ d, 0 ≤ mij ≤ m, i, j = 1, N ;

the disturbance wi(t) satisfies

∃η > 0 : max
i=1,N

{
sup
t>0

{w⊤
i (t)wi(t)}

}
≤ η. (2)

A solution of large-scale system (1) is a vector function x(t) = [x1(t), x2(t), ..., xN (t)] ∈
RNn, which satisfies system of differential equations (1). It is well-known from [1], for

ui(t) ∈ L2([0, T ], R
mi), wi(t) ∈ L2([0, T ], R

ri), i = 1, 2, ..., N, T > 0, the large-scale system

(1) under the initial condition φi(.) ∈ C([−τ, 0], Rni) has a unique solution x(t).

Associate with system (1), we consider the following cost function

J(t, u) =

∫ t

0

N∑
i=1

[
x⊤i (t)Uixi(t) +

N∑
j=1,j ̸=i

x⊤i (t− dji)Vixi(t− dji) + u⊤i (t)Wiui(t)
]
dt, (3)

where Ui > 0, Vi > 0, and Wi > 0, i = 1, N are given symmetric matrices. Let us set

Q = diag{Q1, · · · , QN}, x⊤(t) = [x1(t)
⊤, . . . , xN (t)⊤],

u(t) = [u1(t), . . . , uN (t)], φ⊤(t) = [φ1(t)
⊤, . . . , φN (t)⊤].

Definition 1. (Robust finite-time stability) Given positive numbers T, c1, c2 and a symmetric

matrix Q > 0, the unforced system (1) (u(t) = 0) is said to be robustly finite-time stable

w.r.t. (c1, c2, T,Q) if for all disturbances w(t) satisfying (2) the solution x(t) of the system

satisfies the following relation

sup
s∈[−τ,0]

{φ⊤(s)Qφ(s)} ≤ c1 → x⊤(t)Qx(t) < c2, ∀t ∈ [0, T ].
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Definition 2. (Finite-time stabilization) For given positive numbers T, c1, c2, and a symmet-

ric matrix Q > 0, system (1) is robustly finite-time stabilizable with respect to (c1, c2, T,Q)

if there exist state feedback controllers ui(t) = Kixi(t), i = 1, N, such that the closed-loop

system is robustly finite-time stable w.r.t. (c1, c2, T,Q).

Definition 3. (Robust H∞ finite-time control). For given positive numbers T, c1, c2, γ > 0,

and a symmetric matrix Q > 0, the robust H∞ finite-time control problem for system (1) is

solvable if:

(i) System (1) is robustly finite-time stabilizable w.r.t. (c1, c2, T,Q).

(ii) There is a number c0 > 0 such that

sup

∫ T
0

N∑
i=1

∥zi(t)∥2dt

c∥φ∥2 +
N∑
i=1

∫ T
0 ∥wi(t)∥2dt

≤ γ, (4)

where the suppremum is taken over all φi(t) ∈ C([−τ, 0], Rni) and non-zero disturbances

wi(t) satisfying (2).

Definition 4. (Guaranteed cost control) For given positive numbers T, c1, c2 and symmetric

matrices Q > 0, the guaranteed cost finite-time control for system (1) is solvable if there

exist state feedback controllers ui = Kixi(t), i = 1, N and a number J∗ > 0 such that the

closed-loop system of (1) is robustly finite-time stable w.r.t (c1, c2, T,Q) and J(T, u) ≤ J∗.

Number J∗ is the guaranteed cost value, control u(t) is the guaranteed cost controller. The

following technical lemmas are introduced for the proof of the main result.

Lemma 1. ( Cauchy matrix inequality [16]) For given a, b ∈ Rn, 0 < P ∈ Rn×n, we have

2a⊤b ≤ a⊤P−1a+ b⊤Pb.

Lemma 2. (Schur complement lemma [16]) For given matrices U, V, Q with appropriate

dimensions satisfying V = V ⊤ > 0, U = U⊤, we have

U +Q⊤V −1Q < 0 ⇔
[
U Q⊤

Q −V

]
< 0.

Lemma 3. For given matrices M1, M2, Z, Y, Q with appropriate dimensions satisfying

M1 = M⊤
1 , Q = Q⊤ > 0 and Y = Y ⊤ > 0, we have

[
M1 + Z⊤Y −1Z M⊤

2

M2 −Q

]
< 0 ⇔

M1 M⊤
2 Z⊤

M2 −Q 0
Z 0 −Y

 < 0.

Proof. We have [
M1 + Z⊤Y −1Z M⊤

2

M2 −Q

]
=

[
M1 M⊤

2

M2 −Q

]
+

[
Z⊤Y −1Z 0

0 0

]
.
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Since

[
Z⊤Y −1Z 0

0 0

]
=

[
Z⊤

0

]
Y −1

[
Z 0

]
, we apply the Schur complement lemma, Lemma

2, and obtain that [
M1 M⊤

2

M2 −Q

]
+

[
Z⊤

0

]
Y −1

[
Z 0

]
< 0,

which is equivalent to M1 M⊤
2 Z⊤

M2 −Q 0
Z 0 −Y

 < 0.

■

3. MAIN RESULTS

In this section, we provide sufficient conditions for solving finite-time supoptimal finite-

time control of systems (1). Before presenting the theorem, we introduce the following

notations of several matrix variables for simplicity.

Pi1 = P−1
i , Ri1 = P−1

i RiP
−1
i ,

H i
1,1 = AiPi + PiA

⊤
i +

1

γβ
DiD

T
i +BiYi + Y T

i B⊤
i + (N − 1)Ri +

N∑
j=1,j ̸=i

AijA
⊤
ij ,

H i
1+i,1+i = −I, H i

1,1+i =
√
N − 1Pi, H

i
1+j,1+j = −Rj , H

i
1,1+j = BijYj , i, j = 1, N, j ̸= i,

H i
1,N+2 = PiE

⊤
i , H

i
1,N+3 = PiF

⊤
i , H i

N+2,N+2 = H i
N+3,N+3 = − 1

β I,

H i
ij = 0, for all other i, j, j ̸= i,

α1 = min
i=1,N

{λmin(Pi1)

λmax(Qi)
},

α2 = max
i=1,N

(λmax(Pi1)

λmin(Qi)

)
+ 2βτ max

i=1,N

(λmax(F
⊤
i Fi)

λmin(Qi)

)
+ (N − 1)τ

[
max
i=1,N

( 1

λmin(Qi)

)
+ max

i=1,N

(λmax(Ri1)

λmin(Qi)

)]
,

α3 = max
i=1,N

{
λmax(Pi1)

}
+ 2βτ max

i=1,N

{
λmax(F

⊤
i Fi)

}
+ (N − 1)τ

[
1 + max

i=1,N

{
λmax(Ri1)

}]
.

Next theorem gives sufficient conditions for H∞ finite-time control of system (1).

Theorem 1. For given positive numbers T, c1, c2, and a symmetric matrix Q > 0, the

robust H∞ finite-time control problem for the systems (1) is solvable if there exist symmetric

matrices Pi > 0, Ri > 0, i = 1, N, matrices Yi, i = 1, N, and a number β > 0 satisfying the

following conditions
H i

11 H i
12 . . . H i

1(N+3)

∗ H i
22 . . . H i

2(N+3)

. . . . . .
∗ ∗ . . . H i

(N+3)(N+3)

 < 0, i = 1, N, (5)

α2c1 +NγβηT

α1
≤ e−βT c2. (6)

Moreover, the state feedback controllers are defined by ui(t) = YiP
−1
i xi(t), i = 1, N.
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Proof. Consider the following Lyapunov-Krasovskii functional

V (t, xt) =
N∑
i=1

[Vi1(t, xt) + Vi2(t, xt) + Vi3(t, xt)],

where

Vi1(t, xt) =eβtxi(t)
⊤Pi1xi(t),

Vi2(t, xt) =eβt
t∫

t−dii

2βxi(s)
⊤F⊤

i Fixi(s)ds,

Vi3(t, xt) =eβt
N∑

j=1,j ̸=i

( t∫
t−dji

xi(s)
⊤xi(s)ds+

t∫
t−mji

xi(s)
⊤Ri1xi(s)ds

)
.

Taking the derivative of V (t, xt) in t, we have

V̇i1(t, xt) =βVi1(t, xt) + eβt2xi(t)
⊤Pi1

[
Aixi(t) (7)

+
N∑

j=1,j ̸=i

[Aijxj(t− dij) +BijYjPj1xj(t−mij)] +BiYiPi1xi(t) +Diw(t)
]
,

V̇i2(t, xt) =βVi2(t, xt) + eβt2β
[
xi(t)

⊤F⊤
i Fixi(t)− xi(t− dii)

⊤F⊤
i Fixi(t− dii)

]
, (8)

V̇i3(t, xt) =βVi3(t, xt) + eβt(N − 1)
[
xi(t)

⊤xi(t) + xi(t)
⊤Ri1xi(t)

]
− eβt

N∑
j=1,j ̸=i

[
xi(t− dji)

⊤xi(t− dji) + xi(t−mji)
⊤Ri1xi(t−mji)

]
. (9)

Applying Cauchy matrix inequality, Lemma 1, for the following inequalities

2xi(t)
TPi1

[ N∑
j=1,j ̸=i

Aijxj(t− dij)
]
≤

N∑
j=1,j ̸=i

[x⊤i (t)Pi1AijA
⊤
ijP

⊤
i1xi(t)

+ xj(t− dij)
⊤xj(t− dij)],

2x⊤i (t)Pi1

[ N∑
j=1,j ̸=i

BijYjPj1xj(t−mij)
]
≤

N∑
j=1,j ̸=i

[x⊤i (t)Pi1BijYjR
−1
j Y ⊤

j B⊤
ijP

⊤
i1xi(t)

+ xj(t−mij)
⊤Rj1xj(t−mij)],

2x⊤i (t)Pi1Diwi(t) ≤
1

γβ
x⊤i (t)Pi1DiD

⊤
i Pi1xi(t) + γβw⊤

i (t)wi(t),
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we obtain that

V̇i1(t, xt) ≤βVi1(t, xt) + eβtxi(t)
⊤[Pi1Ai +A⊤

i P
⊤
i1 +

1

γβ
Pi1DiD

⊤
i Pi1 + Pi1(BiYi

+ Y ⊤
i B⊤

i )Pi1]xi(t)

+ eβt
{ N∑

j=1,j ̸=i

[
xi(t)

⊤Pi1AijA
⊤
ijPi1xi(t) + xj(t− dij)

⊤xj(t− dij)

+ xi(t)
⊤Pi1BijYjR

−1
j Y ⊤

j B⊤
ijPi1xi(t) + xj(t−mij)

⊤Rj1xj(t−mij)
]}

+ eβtγβ

N∑
i=1

w⊤
i (t)wi(t).

Moreover, using the following identities

N∑
i=1

N∑
j=1,j ̸=i

xj(t− dij)
⊤xj(t− dij) =

N∑
i=1

N∑
j=1,i ̸=j

xi(t− dji)
⊤xi(t− dji),

N∑
i=1

N∑
j=1,j ̸=i

xj(t−mij)
⊤Rj1xj(t−mij) =

N∑
i=1

N∑
j=1,i ̸=j

xi(t−mji)
⊤Ri1xi(t−mji),

∥zi(t)∥2 ≤ 2xTi (t)E
T
i Eixi(t) + 2xTi (t− dii)F

T
i Fixi(t− dii).

we obtain from (7)-(9) that

V̇ (t, xt)− βV (t, xt) ≤eβt
N∑
i=1

[
xi(t)

⊤[Pi1Ai +A⊤
i Pi1 +

1

γβ
Pi1DiD

⊤
i Pi1

+ Pi1(BiYi + Y T
i B⊤

i )Pi1 + 2βE⊤
i Ei + 2βF⊤

i Fi]xi(t)

+
N∑

j=1,i ̸=j

xi(t)
⊤Pi1AijA

⊤
ijPi1xi(t)

+
N∑

j=1,i ̸=j

xi(t)
⊤Pi1BijYj R−1

j Y ⊤
j B⊤

ijPi1xi(t)

+ (N − 1)[xi(t)
⊤xi(t) + xi(t)

⊤Ri1xi(t)]
]

+ γβeβt
N∑
i=1

w⊤
i (t)wi(t)− βeβt

N∑
i=1

z⊤i (t)zi(t)

≤eβt
N∑
i=1

yi(t)
TMiyi(t) + γβeβt

N∑
i=1

w⊤
i (t)wi(t) (10)

− βeβt
N∑
i=1

z⊤i (t)zi(t),
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where yi(t) = Pi1xi(t), i = 1, N, and

Mi =AiPi + P⊤
i A⊤

i +BiYi +
1

γβ
DiD

⊤
i + Y T

i B⊤
i + 2βP⊤

i E⊤
i EiPi + 2βP⊤

i F⊤
i FiPi

+ (N − 1)[Ri + P 2
i ] +

N∑
j=1,j ̸=i

[AijA
⊤
ij +BijYjR

−1
j Y ⊤

j B⊤
ij ].

Applying Lemma 3, the condition (5) is equivalent to Mi < 0, i = 1, N, and hence from (10)

it follows that

V̇ (t, xt)− βV (t, xt) ≤ γβeβt
N∑
i=1

w⊤
i (t)wi(t).

Moreover, since

d

dt

[
e−βtV (t, xt)

]
= e−βtV̇ (t, xt)− βe−βtV (t, xt),

we get

V (t, xt) ≤ (V (0, x0) +NγβηT )eβT , ∀t ∈ [0, T ]. (11)

Next, in the view of V (t, xt) we have

V (t, xt) ≥
N∑
i=1

xi(t)
⊤Pi1xi(t) ≥

N∑
i=1

λmin(Pi1)xi(t)
⊤xi(t)

≥α1

N∑
i=1

xi(t)
⊤Qixi(t) = α1x(t)

⊤Qx(t).

(12)

On the other hand, the following estimation for V (0, x0) can be derived

V (0, x0) =
N∑
i=1

xi(0)
⊤Pi1xi(0) +

N∑
i=1

0∫
−dii

2βxi(s)
⊤F⊤

i Fixi(s)ds

+

N∑
i=1

N∑
j=1, j ̸=i

( 0∫
−dji

xi(s)
⊤xi(s)ds+

0∫
−mji

xi(s)
⊤Ri1xi(s)ds

)
≤α2 sup

s∈[−τ,0]
{φ(s)⊤Qφ(s)} ≤ α2c1.

(13)

Therefore, combining the derived inequalities (10)-(13) with the condition (6) gives

x(t)TQx(t) ≤ 1

α1
(V (0, x0) +NβγηT )eβt

≤ 1

α1
(α2c1 +NγβηT )eβT ≤ c2, ∀t ∈ [0, T ].
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To complete the proof of the theorem, it remains to show the γ−optimal level condition (4).

For this, we consider the following relation

N∑
i=1

∫ T

0
β∥zi(t)∥2 − γβ∥wi(t)∥2dt =

∫ T

0
{

N∑
i=1

[
β∥zi(t)∥2 − γβ∥wi(t)∥2

]
+

d

dt

[
e−βtV (t, xt)

]
}dt

−
∫ T

0

d

dt

[
e−βtV (t, xt)

]
dt.

Since V (t, xt) ≥ 0, we have

−
∫ T

0

d

dt

[
e−βtV (t, xt)

]
dt = −e−βTV (T, xT ) + V (0, x0) ≤ α3∥φ∥2.

It follows from (10) that

N∑
i=1

[
β||zi(t)∥2 − γβ∥wi(t)∥2

]
+

d

dt
[e−βV (t, xt)] < 0,

hence
N∑
i=1

[

∫ T

0
(β∥zi(t)∥2 − γβ∥wi(t)∥2)dt] ≤ α3∥φ∥2.

Setting c0 =
α3

γβ
> 0, the above inequality yields

sup

∫ T
0

N∑
i=1

∥zi(t)∥2dt

c0∥φ∥2 +
N∑
i=1

∫ T
0 ∥wi(t)∥2dt

≤ γ.

This condition holds for all non-zero wi ∈ L2([0, T ], R
ri), φi ∈ C([−τ, 0];Rni), and then the

condition (4) is derived. This completes the proof of the theorem. ■

Next theorem gives sufficient conditions for solving the guaranteed cost finite-time control

of system (1). Let us denote

H i
1,1 = AiPi + PiA

⊤
i +DiD

T
i +BiYi + Y T

i B⊤
i + (N − 1)Ri +

N∑
j=1,j ̸=i

AijA
⊤
ij ,

H i
1+i,1+i = −I, H i

1,1+i =
√
N − 1Pi, H

i
1+j,1+j = −Rj , H

i
1,1+j = BijYj , i, j = 1, N, j ̸= i,

α2 = max
i=1,N

(
λmax(Pi1)
λmin(Qi)

)
+ (N − 1)τ

[
max
i=1,N

(
λmax(Ii+Vi)
λmin(Qi)

)
+ max

i=1,N

(
λmax(Ri1)
λmin(Qi)

)]
.

Theorem 2. For given positive numbers T, c1, c2, and symmetric matrices Qi > 0, Wi >

0, Ui ≥ 0, Vi ≥ 0, i ∈ 1, N, the guaranteed cost finite-time control for system (1) is solvable

if there exist symmetric matrices Pi > 0, Ri > 0, i = 1, N, matrices Yi, i = 1, N, and a

number β > 0 satisfying the following conditions
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H i
11 H i

12 . . . H i
1,N+1 Y ⊤

i W
1/2
i PiU

1/2
i

√
N − 1PiV

1/2
i

∗ H i
22 . . . H i

2,N+1 0 0 0

. . . . . . . . .
∗ ∗ . . . H i

N+1,N+1 0 0 0

∗ ∗ . . . ∗ −I 0 0
∗ ∗ . . . ∗ ∗ −I 0
∗ ∗ . . . ∗ ∗ ∗ −I


< 0, (14)

α2c1 +NηT

α1
≤ e−βT c2. (15)

Moreover, the guaranteed cost controllers are defined by ui(t) = YiP
−1
i xi(t), i = 1, N and

the guaranteed cost value is defined by J∗ = α2c1 +NηT.

Proof. We take the following Lyapunov-Krasovskii functional

V (t, xt) =
N∑
i=1

[
Vi1(t, xt) + Vi2(t, xt)

]
,

where Vi1(t, xt) = eβtxi(t)
⊤Pi1xi(t),

Vi2(t, xt) = eβt
N∑

j=1, j ̸=i

( t∫
t−dji

xi(s)
⊤(I + Vi)xi(s)ds+

t∫
t−mji

xi(s)
⊤Ri1xi(s)ds

)
.

By the same arguments used in the proof of Theorem 1 we have derived the following

estimation:

V̇ (t, xt)− βV (t, xt) ≤eβt
N∑
i=1

[
xi(t)

⊤[Pi1Ai +A⊤
i Pi1 + Pi1DiD

⊤
i Pi1

+ Pi1(BiYi + Y T
i B⊤

i )Pi1]xi(t) +
N∑

j=1, j ̸=i

xi(t)
⊤Pi1AijA

⊤
ijPi1xi(t)

+

N∑
j=1, j ̸=i

xi(t)
⊤Pi1BijYj R−1

j Y ⊤
j B⊤

ijPi1xi(t)

+ (N − 1)xi(t)
⊤[I + Vi +Ri1]xi(t)

]
+ eβt

N∑
i=1

w⊤
i (t)wi(t)

− eβt
N∑
i=1

N∑
j=1, j ̸=i

xi(t− dji)
⊤Vixi(t− dji)

⊤.

(16)

Adding and substituting the value eβtf0(t), where f0(t) is denoted by

f0(t) :=

N∑
i=1

[x⊤i (t)Uixi(t) +

N∑
j=1,j ̸=i

x⊤i (t− dji)Vixi(t− dji) + u⊤i (t)Wiui(t)],

on the right hand-side of (16), we have

V̇ (t, xt)− βV (t, xt) ≤ eβt
N∑
i=1

yi(t)
TMiyi(t) + eβt

N∑
i=1

w⊤
i (t)wi(t)− eβtf0(t), (17)
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where yi(t) = Pi1xi(t) and

Mi = AiPi + PiA
⊤
i +BiYi +DiD

⊤
i + PiUiPi + Y T

i B⊤
i + (N − 1)[PiViPi +Ri + P 2

i ]

+Y ⊤
i WiYi +

N∑
j=1,j ̸=i

[AijA
⊤
ij +BijYjR

−1
j Y ⊤

j B⊤
ij ].

Applying the Schur complement lemma, Lemma 2, and Lemma 3, the condition (14) is

equivalent to Mi < 0, ∀i = 1, N, and hence from the inequality (17) it follows that

V̇ (t, xt)− βV (t, xt) ≤ −eβtf0(t) + eβt
N∑
i=1

w⊤
i (t)wi(t), ∀t ∈ [0, T ]. (18)

Therefore, using the same arguments used in the proof in Theorem 1, we can prove the robust

finite-time stabilization of the closed system by the feedback controllers ui(t) = YiP
−1
i xi(t).

To obtain the guaranteed cost value, we derive from (18) that

e−βtV̇ (t, xt)− βe−βtV (t, xt) ≤ −f0(t) +

N∑
i=1

w⊤
i (t)wi(t). (19)

Integrating both sides of (19) from 0 to T leads to∫ T

0
f0(t)dt ≤V (0, x0)− e−βtV (t, xt) +NηT

≤V (0, x0) +NηT,

due to V (t, xt) ≥ 0. On the other hand, we see that

V (0, x0) =

N∑
i=1

xi(0)
⊤Pi1xi(0) +

N∑
i=1

N∑
j=1, j ̸=i

( 0∫
−dji

xi(s)
⊤[I + Vi]xi(s)ds

+

0∫
−mji

xi(s)
⊤Ri1xi(s)ds

)
≤α2c1,

hence, we obtain that

J(u) ≤ α2c1 +NηT = J∗.

This completes the proof of the theorem. ■

Remark 1. Note that the condition (6) (or (15)) is not a LMI w.r.t. β > 0. Since β is not

included in LMI (5) (or in LMI (14)), we first find solutions Pi, Ri, Yi from the LMI (5) (or

from the LMI (14)), and then define β > 0 from condition (6) (or from (15)).

4. A NUMERICAL EXAMPLE

In this section, an illustrative example is given to show the validity and effectiveness of

the theoretical result.
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Consider the dynamic of the mechanical machine (see, e.g. [2]) described by the large-

scale complex system (1), whereN = 3 and the absolute rotor angle, acceleration and angular

velocity in each subsystem are respectively denoted by xi = (xi1, xi2)
⊤, i = 1, 2, 3; the

observation vector zi, i = 1, 2, 3; the coefficient matrices Ai, Aij , the perturbation coefficient

matrices Di, the time-delays dij are given by
ẋ1(t) = A1x1(t) +A12x2(t− d12) +A13x3(t− d13) +B1u1(t) +B12u2(t−m12)

+B13u3(t−m13) +D1w1(t),

z1(t) = E1x1(t) + F1x1(t− d11),

x1(t) = φ1(t), u1(t) = ϕ1(t), t ∈ [−τ, 0],
ẋ2(t) = A2x2(t) +A21x1(t− d21) +A23x3(t− d23) +B2u2(t) +B21u1(t−m21)

+B23u3(t−m23) +D2w2(t),

z2(t) = E2x2(t) + F2x2(t− d22),

x2(t) = φ2(t), u2(t) = ϕ2(t), t ∈ [−τ, 0],
ẋ3(t) = A3x3(t) +A31x1(t− d31) +A32x2(t− d32) +B2u2(t) +B31u1(t−m31)

+B32u2(t−m32) +D3w3(t),

z3(t) = E3x3(t) + F3x3(t− d33),

x3(t) = φ3(t), u3(t) = ϕ3(t), t ∈ [−τ, 0],

and d12 = 0.4; d13 = 0.09; d21 = 0.06; d23 = 0.2; d31 = 0.3; d32 = 0.04;m12 = 0.42; m13 =

0.5; m21 = 0.28; m23 = 0.37; m31 = 0.45; m32 = 0.1; τ = 0.5.

A1 =

[
−2 0.1
−0.1 −4

]
, A2 =

[
−3 0
−1 1

]
, A3 =

[
−5 0.1
0 1

]
, B1 =

[
1 0
2 0.1

]
,

B2 =

[
−1 1
1.9 −5

]
, B3 =

[
2 0.1
0.4 −2

]
, A12 =

[
0.2 1
0.1 0

]
, A13 =

[
0.5 0.1
0 3

]
,

A21 =

[
0.5 0
−0.1 0.5

]
, A23 =

[
0.4 −0.1
0 1

]
, A31 =

[
−0.02 −1
0.1 −0.2

]
,

A32 =

[
1 0.4
0 −2

]
, B12 =

[
−1 0
0.1 3

]
, B13 =

[
−2 0
1 0.2

]
, B21 =

[
−1 0.1
0 −1

]
,

B23 =

[
−1 0
−0.5 0

]
, B31 =

[
−2 0
0.2 −3

]
, B32 =

[
1 0
−1 3

]
, D1 =

[
0.1
0.2

]
,

D2 =

[
0.05
0.1

]
, D3 =

[
−0.1
0.01

]
, E1 =

[
0.1 −0.2
0.2 0.1

]
, E2 =

[
1 0.2
0 −0.1

]
,

E3 =

[
−1 0
−1 −2

]
, F1 =

[
0.2 0
0 0.1

]
, F2 =

[
1 0
0 −0.1

]
, F3 =

[
−0.1 0
−0.5 0.5

]
,

and the matrices

Q = diag(Q1, Q2, Q3), Q1 =

[
0.5 0
0 0.5

]
,
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Q2 =

[
0.64 0
0 0.64

]
, Q3 =

[
0.42 0
0 0.42

]
.

For η = 0.1; γ = 4, β = 0.01, c1 = 1, c2 = 115, T = 10, using the LMI algorithm in

Matlab [15] to find solutions of the LMI (5), we have

P1 =

[
0.9327 0.0107
0.0107 1.8988

]
, P2 =

[
1.5631 0.0416
0.0416 0.2447

]
, P3 =

[
2.3185 −0.0769
−0.0769 1.7110

]
,

R1 =

[
0.6955 1.0743
1.0743 2.2041

]
, R2 =

[
1.1333 −1.0559
−1.0559 3.1772

]
, R3 =

[
0.4498 0.4507
0.4507 60.3971

]
,

Y1 =

[
−0.9953 −2.0142
−0.2314 −0.5320

]
, Y2 =

[
0.4243 −1.1587
−0.1651 0.4800

]
, Y3 =

[
−0.0363 −2.2345
0.3305 37.5152

]
.

By Theorem 1, the system is robust finite-time H∞ stabilizable, and the state feedback

control ui(t) = YiP
−1
i xi(t) are given by

u1(t) =

[
−1.0550 −1.0548
−0.2449 −0.2788

]
x1(t),

u2(t) =

[
0.3992 −4.8024
−0.1585 1.9883

]
x2(t),

u3(t) =

[
−0.0590 −1.3086
0.8708 21.9651

]
x3(t).

0 2 4 6 8 10
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10
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14

16
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20

x
T
(t)Rx(t)

c1=1

c2=83

Figure 1. Time history of x⊤(t)Rx(t) for the system

For the guaranteed cost control, we take c1 = 1, c2 = 83, T = 10 and the cost matrices

V1 =

[
0.01 0
0 0.01

]
, V2 =

[
0.01 0
0 0.04

]
, V3 =

[
0.04 0
0 0.04

]
,

U1 =

[
0.01 0
0 0.0225

]
, U2 =

[
0.04 0
0 0.01

]
, U3 =

[
0.04 0
0 0.0625

]
,
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W1 =

[
0.0225 0

0 0.0225

]
, W2 =

[
0.01 0
0 0.01

]
, W3 =

[
0.01 0
0 0.04

]
,

the solutions of the inequalities (14), (15) are defined as

P1 =

[
0.9743 0.0060
0.0060 1.9313

]
, P2 =

[
1.5824 −0.0107
−0.0107 0.3980

]
, P3 =

[
2.3362 −0.0215
−0.0215 1.2289

]
,

R1 =

[
0.7025 0.9511
0.9511 1.9673

]
, R2 =

[
1.5972 −1.6245
−1.6245 5.5039

]
, R3 =

[
1.2160 0.0388
0.0388 14.3699

]
,

Y1 =

[
−0.8592 −1.7635
−0.1222 −0.3062

]
, Y2 =

[
0.6132 −1.7502
−1.7502 0.8320

]
, Y3 =

[
−0.0447 −0.6375
−0.5078 14.6352

]
.

By Theorem 2, the guaranteed cost control problem is solvable and the guaranteed cost value

is J∗ = 66.7, the guaranteed cost controllers are

u1(t) =

[
−0.8763 −0.9104
−0.1245 −0.1582

]
x1(t),

u2(t) =

[
0.3578 −4.3874
−0.1566 2.0862

]
x2(t),

u3(t) =

[
−0.0239 −0.5192
−0.1077 11.9073

]
x3(t).

Figure 1 shows the time history x⊤(t)Rx(t) of the system with the initial conditions

φ1(t) = (0.5 sin t, 0.5); φ2(t) = (et, 0.02t); φ3(t) = (0.01et, 0.1 cos t), t ∈ (−0.5; 0) and c1 =

1, c2 = 83.

5. CONCLUSIONS

In this paper, we have studied the problem of supoptimal finite-time control for linear

large-scale systems with the state and control delays in interconnection. Exploiting the

Lyapunov function method and linear matrix inequality technique, we have proposed new

LMI conditions for the robust H∞ finite-time control and guaranteed cost finite-time control

of such systems. The conditions are presented in terms of tractable LMIs, which can be

solved by standard computational LMI toolbox algorithms. The validity and effectiveness of

the proposed results have been illustrated by a numerical example.
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