
Journal of Computer Science and Cybernetics, V.37, N.3 (2021), 339–350

DOI 10.15625/1813-9663/37/3/16063

A UNIFIED APPROACH TO EXPONENTIAL STABILITY
ANALYSIS FOR A GENERAL CLASS OF SWITCHED

TIME-DELAY LINEAR SYSTEMS

NGUYEN KHOA SON1, LE VAN NGOC2,∗

1Institute of Mathematics, Vietnam Academy of Science and Technology, 18 Hoang Quoc
Viet Street, Cau Giay District, Ha Noi, Viet Nam

2Department of Scientific Fundamentals, Post and Telecommunications Institute of
Technology, Km10, Nguyen Trai Street, Ha Dong District, Ha Noi, Viet Nam

Abstract. This paper proposes a unified approach to study global exponential stability for a class

of switched time-delay linear systems described by general linear functional differential equations.

Several new delay-dependent criteria of global exponential stability are established for these systems

over the sets of switchings satisfying the assumption on the minimum dwell time or having the

average dwell time. As particular cases, the obtained results are shown to include and improve many

previously known results. An example is given to illustrate the proposed method.
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1. INTRODUCTION

A switched system is a type of hybrid dynamic system which consists of a family of

subsystems and a rule called a switching signal that chooses an active subsystem from the

family at every instant of time. Switched systems have attracted a lot of attention from

researchers in control and systems theory due to their abilities in modeling various physical

systems in engineering practice. Among a large number of interesting topics on switched

systems the study on systems dynamic behavior, in particular, stability problems have been

always the focus issues. The reader is referred to the monograph [1] and the survey paper

[2, 3] and the references therein for more details. It has been indicated, for instance, that

the switched linear system is exponentially stable under arbitrary switching signals if all

constituent subsystems have a common quadratic Lyapunov function (QLF). Recently, sim-

ilar problems have been considered intensively also for time-delay switched systems, where

different kinds of the so-called Lyapunov - Krasovskii functionals are playing a similar role.
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In the meantime, for the class of positive or compartmental switched linear systems, besides

traditional quadratic Lyapunov functions, a more restrictive notion of linear copositive Lya-

punov functions (LCLF), combining with the comparison principle for solutions, is exploited

effectively in the study of stability problems (see e.g. [4, 5, 6] and also [7, 8, 9] for time-delay

systems and the comparison method).

The main purpose of this paper is to develop a unified approach to study exponential

stability for a general class of time-delay switched linear systems, described by linear func-

tional differential equations (LFDEs), based on the comparison principle, with the use of

LCLFs and the average dwell time (ADT) switching concept. Namely, we will first over-

bound each constituent subsystem by an appropriate positive subsystem and prove that

the original switched time-delay system is uniformly exponentially stable over the set of all

switchings which have positive minimum dwell time, if all over-bounding subsystems have a

common LCLF. As a second main result, we will remove the above restrictive assumption

on common LCLF and show that exponential stability of all over-bounding subsystems is

enough to guarantee uniform exponential stability of the original switched time-delay system

over the set of all switchings satisfying some ADT assumption. While stability of LFDEs

has been widely investigated in the literature, the stability problems for switched systems of

this general type is considered for the first time in this paper, to the best of our knowledge.

As particular cases, the obtained stability criteria include and, what is more, improve many

known results in the literature.

The following notation will be used throughout the paper. R and N will stand for the

sets of real numbers and non-negative intergers, respectively. For r ∈ N, r will stand

for the set of numbers {1, 2, . . . , r}. For matrices A = (aij) and B = (bij) in Rn×m, we

write A ≥ B and A ≫ B iff aij ≥ bij and aij > bij for i ∈ n, j ∈ m, respectively. |A|
stands for the matrix (|aij |) and A⊤ is the transpose of A. Similar notation is applied for

vectors x ∈ Rn. Without loss of generality, the norm of vectors x ∈ Rn is assumed to be

the ∞-norm ∥x∥ = ∥x∥∞ = max1≤i≤n |xi|. For h > 0, C([−h, 0],Rn) denotes the Banach

space of continuous functions φ : [−h, 0] → Rn with the norm ∥φ∥ = maxθ∈[−h,0] ∥φ(θ)∥
and NBV ([−h, 0],R) is the linear space of all normalized functions ψ : [−h, 0] → R with

bounded variation V ar([−h, 0], ψ) (so that ψ is left-side continuous on the interval (−h, 0)
and ψ(−h) = 0). It is well-known that, for any ψ ∈ NBV ([−h, 0],R) and any continuous

function β ∈ C([−h, 0],R), we have∫ 0

−h
d[ψ(θ)]β(θ) ≤ V ar([−h, 0], ψ) max

θ∈[−h,0]
|β(θ)|, (1)

where the integral is understood in the sense of Riemann-Stieltjes. Similarly, NBV ([−h, 0],Rn×n)

will stand for the linear space of all matrix functions η : [−h, 0]→Rn×n such that ηij(·) ∈
NBV ([−h, 0],R),∀i, j ∈n. Thus, to each η ∈ NBV ([−h, 0],Rn×n) we can associate a non-

negative (n× n)-matrix of variations

V (η) :=
(
V ar([−h, 0], ηij)

)
≥ 0. (2)
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Recall that A ∈ Rn×n is said to be a Metzler matrix if all off-diagonal elements of A are

nonnegative: aij ≥ 0,∀i ̸= j. Finally, for any matrix A ∈ Rn×n we associate the Metzler

matrix M(A) = (âij), by setting âij = |aij | if i ̸= j and âii = aii, ∀i ∈ n.

2. MAIN RESULTS

Consider a switched time-delay linear system of the general form

ẋ(t)=A0
σ(t)x(t)+

∫ 0

−h
d[ησ(t)(θ)]x(t+θ), t ≥ 0, (3)

where σ(·) is a switching signal such that for each t ≥ 0, A0
σ(t) ∈ {A0

k, k ∈ N} ⊂ Rn×n - a

given family of N real matrices and ησ(t) ∈ {ηk, k ∈ N} ⊂ NBV ([−h, 0],Rn×n) - a given

family of N matrix functions with normalized bounded variation elements ηk,ij . Denote by

Σ+ the set of all switching signals σ : [0,+∞) → N which are piece-wise constant, right-side

continuous functions, with points of discontinuity τk, k = 1, 2, . . . (known as the switching

instances) satisfying the following assumption on the minimum dwell time

τmin(σ) := inf
k∈N

(τk+1 − τk) > 0. (4)

It is clear that Σ+ does not contain any switching signal whose discontinuities have a fi-

nite accumulation point. Also, any signal σ having switching instances τ2k = k, τ2k+1 =

k + 1
2k+1 , k = 0, 1, 2, . . . does not satisfy (4) because in this case τmin(σ) = 0.

Thus, each σ ∈ Σ+ performs switchings between the following N time-delay linear sub-

systems (A0
k, ηk) of the form

ẋ(t) = A0
kx(t) +

∫ 0

−h
d[ηk(θ)]x(t+ θ), t ≥ 0, k ∈ N, (5)

where the i-th component of the second term in (5), for each k ∈ N and i = 1, . . . , n, is

defined as (∫ 0

−h
d[ηk(θ)]x(t+ θ)

)
i

=

n∑
j=1

∫ 0

−h
d[ηk,ij(θ)]xj(t+ θ). (6)

For any φ ∈ C([−h, 0],Rn) and any switching signal σ ∈ Σ+, the system (3) admits a unique

solution x(t) = x(t, φ, σ), t ≥ −h, satisfying the initial condition x(θ) = φ(θ), θ ∈ [−h, 0].
Note that the solution x(t) is absolutely continuous function on [0,+∞) and differentiable

everywhere, except for the set of switching instances {τk} of σ where x(t) has only Dini right-

and left-derivatives D+x(τk), D
−x(τk) which are generally different.

Definition 1. The switched system (3) is said to be globally exponentialy stable (shortly,

GES) over the set of switching signals Σ+ if there exist positive numbers M,α such that for

any φ ∈ C([−h, 0],Rn) and any σ ∈ Σ+, the solutions x(t, φ, σ) of (3) satisfies

∥x(t, φ, σ)∥ ≤Me−αt∥φ∥, ∀t ≥ 0. (7)
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Obviously, for each k ∈ N , the switching law σ(t) ≡ k, t ≥ 0, belongs to Σ+. Therefore, if

the switched system (3) is GES over Σ+ then all of the constituent subsystems (5) are uni-

formly exponentially stable or, equivalently, all zeros of their characteristic quasi-polynomials

Pk(s) = sI − A0
k −

∫ 0
−h e

sθd[ηk(θ)], k ∈ N, have negative real parts (see e.g. [10]). The last

condition is, however, not sufficient for exponential stability of (3) under arbitrary switching

(see, e.g. [1] for the case when ηk = 0, ∀k ∈ N).

Finally, we recall that the system (3) is said to be positive if x(t) ≥ 0,∀t ≥ 0 whenever

φ(θ) ≥ 0, ∀θ ∈ [−h, 0]. It is trivial to show that (3) is positive if and only if all subsystems

(5) are positive. The latter is equivalent to the condition that, for each k ∈ N,A0
k is a

Metzler matrix and ηk is increasing on [−h, 0] : ηk(θ1) ≤ ηk(θ2), if −h ≤ θ1 ≤ θ2 ≤ 0 (see,

e.g. [11, 12]). Clearly, in this case, we have

M(A0
k) = A0

k, V (ηk) = ηk(0), ∀k ∈ N.

We are now in position to prove the first main result of this paper which gives a verifiable

criterion for exponential stability of the class of switched time-delay linear systems of the

form (3) over the set of switching signals Σ+. The main idea of the proof is essentially based

on the comparison principle of solutions (see and compare with [7, 9]). The case of non-delay

linear systems (i.e. when ηk = 0, ∀k ∈ N) has been considered in our recent work [13]. We

give a detailed proof in Appendix for the convenience of the readers.

Theorem 1. Consider the switched time-delay linear system (3). Assume that there exist a

strictly positive vector ξ ≫ 0 (i.e. all elements of vector ξ are positive) and a number α > 0

such that (
M(A0

k) + eαhV (ηk)
)
ξ ≪ −αξ, ∀k ∈ N, (8)

where the nonnegative matrices V (ηk) are defined by (2). Then the switched time-delay linear

system (3) is GES over the set of switching signals σ ∈ Σ+.

Remark 1. If (8) holds for some α > 0 then it obviously holds also for α = 0. The

latter in turn implies straightforwardly (see e.g. [14] ) that all positive linear subsystems

ẋ(t) = Dkx(t), k ∈ N , are exponentially stable, with Dk := M(A0
k) + V (ηk) being obviously

Metzler matrices. These positive linear subsystems can be considered as over-bounding

systems for the original time-delay subsystems (A0
k, ηk), k ∈ N . Moreover, (8) implies that

the dual systems ẋ(t) = D⊤
k x(t), k ∈ N , share a common linear co-positive Lyapunov function

(shortly LCLF) v(x) = ξ⊤x (see, e.g.[5]). Note additionally that in order to check whether

or not Metzler matrices D⊤
k , k ∈ N , share a common LCLF one can use the procedure given

by Theorem 4 in [6].

As the most important particular case of Theorem 1, let us consider the class of switched

linear systems with multiple discrete-time delays and distributed time delays of the form

ẋ(t) = A0
σ(t)x(t) +

mσ(t)∑
i=1

Ai
σ(t)x(t− hiσ(t)) +

∫ 0

−hσ(t)

Bσ(t)(θ)x(t+ θ)dθ, t ≥ 0, (9)
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where, for each k ∈ N, 0 = h0k <h
1
k < ... < hmk

k , matrices Ai
k ∈ Rn×n and matrix functions

Bk(·) ∈ C([−hk, 0],Rn×n) are given. Defining h :=maxk∈N,i∈mk
{hik, hk},m :=max{mk, k ∈

N} and setting, for each k ∈ N,Bk(θ) ≡ 0, θ ∈ [−h,−hk) (if hk < h) and Ai
k = 0 for

i = mk+1, . . . ,m (if mk < m), it is easy to see that (9) is just a particular case of (3)

with ηk(θ) =
m∑
i=1

Ai
kχ(−hi

k,0]
(θ) +

∫ θ
−hBk(s)ds, k ∈ N, where χM denotes the characteristic

function of a set M ⊂ R. Obviously, V (ηk) ≤
m∑
i=1

|Ai
k|+

∫ 0
−h |Bk(s)|ds, but if the system (9)

is positive (i.e. when M(A0
k) = A0

k, A
i
k ≥ 0, Bk(θ) ≥ 0 for all k ∈ N, i ∈ m, θ ∈ [−h, 0]) then

V (ηk) =
m∑
i=1

Ai
k +

∫ 0
−hBk(s)ds. Therefore, by Theorem 1, we get

Corollary 1. If there exist ξ ∈ Rn, ξ ≫ 0 and a non-negative number α > 0 satisfying

(
M(A0

k) + eαh
m∑
i=1

|Ai
k|+ eαh

∫ 0

−h
|Bk(s)|ds

)
ξ ≪ −αξ, ∀k ∈ N, (10)

then the system (9) is exponentially stable for any switching σ ∈ Σ+. Moreover, if the system

(9) is positive then the modulus symbol in (10) can be removed.

The above corollary gives a new and improved delay-dependent criterion of exponential

stability for the switched time-delay linear system(9), which gets back obviously to results

proved in [7, 9] by letting α ↓ 0 in (10).

It is worth noticing that in Theorem 1 the switching signals are assumed to be taken

arbitrarily from the class Σ+ defined by the assumption (4) which is a rather mild property.

The cost to pay is that we have to impose the conservative condition on existence of a

common vector ξ in (8) to ensure GES of (3) for each switching σ ∈ Σ+. In the next

theorem, by using the average dwell time (or ADT, for short) concept, we will relax this

condition by assuming only the existence of a set of vectors ξk, k ∈ N which maybe different

but satisfying (8). However, GES of (3) is then guaranteed only over a subset of Σ+, namely

the set of all switching signals having ADT τa > τ∗ where the lower bound τ∗ is calculated

via ξk, k ∈ N .

We recall (see, e.g. [15]) that, for a given positive number τa, a switching signal σ is said

to have an ADT τa if for any t > 0 the number Nσ(0, t) of discontinuities of σ on the interval

(0, t) satisfies

Nσ(0, t) ≤
t

τa
. (11)

The set of all switching signals having ADT τa is denoted by Στa . It follows that for any

σ ∈ Στa , the average dwell time between any two consecutive switching instances is at least

τa. We have obviuosly that, for any τ1 > τ2 > 0,

Στ1 ⊂ Στ2 ⊂ Σ+.

Therefore, if the system (3) is GES over Σ+ it is also GES over Στa for any τa > 0. On the

other side, in case of non-delay linear systems (i.e. when ηk = 0, ∀k ∈ N), it is well known
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that if every constituent subsystem is GES then the corresponding switched system is also

GES for each switching σ having ADT τa sufficiently large (see, e.g. Lemma 1 in [16]) and

it is an important problem to find such a lower bound τ∗ > 0 that the associate switched

system is exponentially stable for any σ ∈ Στa with ADT τa > τ∗ (see, e.g. [1, 15, 17, 8, 9]).

In the following theorem we establish a similar result for the general class of FDE of the

form (3).

Theorem 2. Consider the switched linear time-delay system (3). Assume that there exist

vectors ξk ∈ Rn, ξk ≫ 0, k ∈ N and a positive number α > 0 satisfying(
M(A0

k) + eαhV (ηk)
)
ξk ≪ −αξk, ∀k ∈ N. (12)

Then the switched system (3) is GES over the set Στa of switching signals with ADT

τa > τ∗ :=
ln γ

α
, (13)

where

γ := max{
ξk,i
ξl,i

: k, l ∈ N, i ∈ n}, ξk := (ξk,1 ξk,2 · · · ξk,n)⊤. (14)

Proof.

The proof is partly similar to that of Theorem 1. Without loss of generality we can assume

that ∥ξk∥ = 1, k ∈ N. Let τa satisfy (13) and σ ∈ Στa be an arbitrary switching signal, with

switching instances 0 = τ0 < τ1 < . . . < τk < τk+1 < . . . Let x(t) = x(t, φ, σ) be the

corresponding solution of (3) satisfying the initial condition x(θ) = φ(θ), θ ∈ [−h, 0], ∥φ∥ =

1. Assume that σ(τk) = lk ∈ N, i.e. the subsystem (A0
lk
, ηlk) is active on [τk, τk+1), k =

0, 1, . . .. For any δ > 1, define the functions yi(t), t ≥ −h, i ∈ n, by setting

yi(t) =

{
Mδe

−αtξl0,i if t ∈ [−h, τ0),
Mδe

−αtξlk,i if t ∈ [τk, τk+1), k = 0, 1, 2, . . .
(15)

where Mδ = δ.γ. Then we verify readily that Mδ > 1 and

|xi(t)| = |φi(t)| ≤ 1 < Mδe
−αtξl0,i = yi(t), ∀t ∈ [−h, 0], ∀i ∈ n. (16)

Therefore, noticing that the subsystem (A0
l0
, ηl0) is active on [0, τ1) = [τ0, τ1) we can proceed

similarly as in the proof of Theorem 1, by using (12) (with k = l0) and (16), to show that

(16) keeps hold on the interval [τ0, τ1)

|xi(t)| ≤ yi(t) =Mδe
−αtξl0,i, ∀t ∈ [τ0, τ1), ∀i ∈ n. (17)

Letting t tend to τ1 and δ tend to 1 we get from (17), (14) and (15) that

|xi(τ1))| ≤M1e
−ατ1ξl0,i =

ξl0,i
ξl1,i

M1e
−ατ1ξl1,i < γ Mδe

−ατ1ξl1,i = γ yi(τ1), ∀i ∈ n. (18)
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Further, using the strict inequality above, we now prove that

|xi(t)| ≤ γyi(t) = γMδe
−αtξl1,i , ∀t ∈ [τ1, τ2), ∀i ∈ n. (19)

Assume again that (19) does not hold then, by continuity, there exist i1 ∈ n, t̄1 ∈ (τ1, τ2)

and ε > 0 such that

|xi(t)| < γyi(t),∀t ∈ [τ1, t̄1), ∀i ∈ n, (20)

and

|xi1(t̄1)| = γyi1(t̄1), |xi1(t)| > γyi1(t), ∀t ∈ (t̄1, t̄1 + ϵ). (21)

Noticing that the subsystem (A0
l1
, ηl1) is active on [τ1, τ2), by using (1), we can estimate the

Dini right-derivative D+|x(t̄1)| as

D+|xi1(t̄1)| ≤ a0l1,i1 i1 |xi1(t̄1)|+
n∑

j=1,j ̸=i1

|a0l1,i1j | |xj(t̄1)|+
n∑

j=1

V (ηl1,i1j) max
θ∈[−h,0]

|xj(t̄1+θ)|. (22)

Here, we have to consider two cases: τ1 ≤ t̄1 − h and t̄1 − h < τ1. In the first case,

we have, by (20), that for any θ ∈ [−h, 0], |xj(t̄1 + θ)| ≤ γyj(t̄1 + θ) ≤ γyj(t̄1 − h) =

γMδe
−α(t̄1−h)ξl1,j , ∀j ∈ n. In the second case, by using (17) and (14), we deduce that, for

any θ ∈ [−h, 0],

|xj(t̄1 + θ)| ≤ yj(t̄1 + θ) =Mδe
−α(t̄1+θ)ξl0,j ≤Mδe

−α(t̄1−h)ξl0,j ≤ γMδe
−α(t̄1−h)ξl1,j , ∀j ∈ n.

Thus in both cases, using the equality in (21) and (22), (12) we get the following estimate

D+|xi1(t̄1)| ≤ γMδe
−αt̄1

((
M(A0

l1)+e
αhV (ηl1)

)
ξl1

)
i1
< γMδe

−αt̄1(−αξi1)= γ
d

dt
yi1(t̄1). (23)

On the other hand, by the inequality in (21) it follows readily that D+|xi1(t̄1)| ≥ γ
d

dt
yi1(t̄1),

a contradiction. Thus (19) is proved. By letting t → τ2, δ → 1 in (19) we get |xi(τ2))| <
γ2 Mδe

−α(τ2−τ1)ξl1,i = γ2 yi(τ2), ∀i ∈ n, which implies, from the same reasoning as above,

that |xi(t)| ≤ γ2yi(t), ∀t ∈ [τ2, τ3), ∀i ∈ n. Proceeding as above steps we conclude that

for each k = 0, 1, 2, . . . and each i ∈ n, we have |xi(t)| ≤ γkyi(t) = γkMδe
−αtξlk,i ≤

γkMδe
−αt, t ∈ [τk, τk+1), taking into account that ∥ξk∥ = maxi∈n |ξk,i| = 1,∀k ∈ N . There-

fore, by the assumption that σ ∈ Στa with ADT τa satisfying (13) it follows that, for each

t > 0,

|xi(t)| ≤ γNσ(t,0)Mδe
−αt =Mδe

Nσ(t,0) ln γe−αt ≤Mδe
( ln γ

τa
−α)t, (24)

where ln γ
τa

− α < 0. This completes the proof. ■

Similarly as Corollary 1 we have

Corollary 2. Consider the switched time-delay linear system (9). If there exist ξk ∈
Rn, ξk ≫ 0, k ∈ N and a positive number α > 0 satisfying(

M(A0
k) + eαh

m∑
i=1

|Ai
k|+ eαh

∫ 0

−h
|Bk(s)|ds

)
ξk ≪ −αξk, ∀k ∈ N, (25)

then the system (9) is GES over the set of switching signals Στa with ADT τa satisfying (13).
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It is obvious that the main result in [8] is just a particular case of the above Corollary 2

(by letting m = 1, Bk(s) ≡ Ck,∀s, k, and α ↓ 0 in (25)).

Remark 2. The above proof keeps valid also for a more general definition of switching

signals σ having ADT τa (see, e.g. [15]) where, instead of (11), the number of discontinuities

of σ on each interval (0, t) satisfies

N(0, t) ≤ N0 +
t

τa
, (26)

with a given number N0 ≥ 0 (called a ‘chatter bound’ of the signal). Actually, in this case,

instead of (24), we can easily deduce

|xi(t)| ≤ γNσ(t,0)Mδe
−αt =Mδe

N0 ln γe(
ln γ
τa

−α)t, (27)

implying again that the system is GES.

Remark 3. Theorem 2 and its corollary above resemble the main results in [18]. However,
the analysis in [18] can not be applied to deal with the problem considered in Theorem
2 since conditions (12) and (25) do not necessarily imply that such a common vector ξ
exists. Instead, an average dwell time (ADT) approach (that is different from the method
in the mentioned work) has been used to establish our above results. Notice, moreover, that
Theorem 1 can be obtained from Theorem 2. Indeed, if there exist ξk = ξ ≪ 0, ∀k ∈ N
satisfying (8) with some α > 0 then γ = 1, by (14), and so τ∗ = 0, in view of (13). Then, by
Theorem 2, the switched system (3) is GES over the set Στa for any ADT τa > 0 and hence
over Σ+.

In the following example, a numerical simulation in R2 is given to illustrate Theorem 2.

Example 1. Consider the switched time-delay linear system (3) in R2 with h = 0.5, N = 2,

A0
1 =

[
−1 0.15

−0.15 −0.55

]
, A0

2 =

[
−0.5 −0.1
0.15 −1

]
, ηk(θ) =

{
0 if θ = −0.5

Bk if θ ∈ (−0.5, 0],
for k = 1, 2,

where B1 =

[
0.15 0.25
0.25 0.15

]
, B2 =

[
0.25 0.15
0.15 0.15

]
. Thus, we have

M(A0
1) =

[
−1 0.15
0.15 −0.55

]
, M(A0

2) =

[
−0.5 0.1
0.15 −1

]
, V (η1) = η1(0) = B1, V (η2) = η2(0) = B2.

Note that there does not exist a vector ξ = [c1, c2]
⊤ > 0 that satisfies (8) with α = 0, because

otherwise, we would get c1 < c2 and c2 < c1, a contradiction. On the other hand, there exist
two vectors ξ1 = [0.6, 1]⊤ and ξ2 = [1, 0.5]⊤ which satisfy (12) with α = 0.1. Therefore, by
Theorem 2, we conclude that the switched time-delay system of the form (3) is exponentially
stable GES for any switching signal with ADT τa >

ln γ
α = ln 2

0.1 ≈ 6.93. For instance, choose
τa = 7 > τ∗ = 6.93, a switching signal σ ∈ Στa as shown in Figure 1 and the initial condition
given by the function φ(θ) ≡ (1 − 1)⊤, θ ∈ [−0.5, 0], then the solution trajectory of the
above switched system is shown in Figure 2, where the simulation has been performed with
the MATLAB code dde23.
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Figure 1: The switching with ADT τa = 7
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Figure 2: The sulution trajectory of Example 1 under switching with ADT τa = 7 > 6.93

3. CONCLUSIONS

We have studied exponential stability problem for a general class of time-delay switched
systems described by linear functional differential equations. Unlike the previous results,
which were based on the comparison principle and common Lyapunov functions, stability
criteria in this paper are derived under ADT switching. Finally, a numerical example is
included to illustrate the main results. The results of this paper can be extended, with
appropriate modifications, to the case of switched linear systems with time-varying delays
of the form

ẋ(t)=A0
σ(t)x(t)+

∫ 0

−hσ(t)(t)
d[ησ(t)(θ)]x(t+θ), t ≥ 0, (28)

where, for k ∈ N, hk : [0,+∞) → R+ are continuous functions, such that supk∈N,t≥0 hk(t) ≤
h. The case of unbounded time-varying delays can also be treated by our approach. This
will be reported in our future work.
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APPENDIX

Proof of Theorem 1. Let σ ∈ Σ+ be an arbitrary switching law satisfying (4) and x(t) =
x(t, φ, σ) be the solution of (3) satisfying the initial condition x(θ) = φ(θ), θ ∈ [−h, 0]
with an arbitrary φ ∈ C([−h, 0].Rn), ∥φ∥ ≤ 1. Assume (8) holds for some α > 0 and
ξ := (ξ1 ξ2 ... ξn)

⊤ ∈ Rn with ξi > 0, ∀i ∈ n. Without loss of generality we can assume

∥ξ∥ = 1. For an arbitrary δ > 1, define Mδ =
δ

minj∈n ξj
> 1 and

y(t) =Mδe
−αtξ, t ∈ [−h,∞). (29)

Then, since Rn is equipped with the ∞-norm, in order to prove (7) it suffices show that

|xi(t)| ≤ yi(t), ∀t ∈ [0,∞), ∀i ∈ n, (30)

To this end, observe first that (30) clearly holds also for t ∈ [−h, 0], that is

|xi(t)| = |φi(t)| ≤ 1 < yi(t) =Mδe
−αtξi, ∀t ∈ [−h, 0], ∀i ∈ n. (31)

Assume to the contrary that (30) does not hold, then, by the continuity, there exist i0 ∈
n, t̄0 > 0 and ε > 0 such that

|xi(t)| < yi(t), ∀t ∈ [−h, t̄0), ∀i ∈ n, (32)

and
|xi0(t̄0)| = yi0(t̄0), |xi0(t)| > yi0(t), ∀t ∈ (t̄0, t̄0+ϵ). (33)

Let {τk}+∞
k=1 be the sequence of switching instances of σ and t̄0 ∈ [τm0 , τm0+1), then, by the

assumption (4), τm0+1 − τm0 ≥ τmin(σ) > 0. Therefore, one can choose a sufficiently small
ϵ1 > 0, ϵ1 < ϵ such that [t̄0, t̄0 + ϵ1) ⊂ [τm0 , τm0+1). Letting the subsystem (A0

k0
, ηk0) be

active on the interval [τm0 , τm0+1) (or equivalently the solution x(t) satisfies (5) with k = k0)
and denoting elements of A0

k0
and ηk0(θ), respectively, by ak0,ij and ηk0,ij(θ), i, j ∈ n then,

from (6),(32) and (5) with k = k0, we can deduce, for any t ∈ [τm0 , τm0+1) and every i ∈ n,
that

D+|xi(t)| ≤ ak0,ii|xi(t)|+
n∑

j=1,j ̸=i

|ak0,ij | |xj(t)|+
n∑

j=1

V (ηk0,ij) max
θ∈[−h,0]

|xj(t+θ)|

≤ ak0,iiyi(t) +
n∑

j=1,j ̸=i

|ak0,ij | yj(t) +
n∑

j=1

V (ηk0,ij)yj(t− h). (34)

Therefore, by (29), (31) and (34) (with i = i0, t = t̄0), using the equality in (33) and (8) we
get

D+|xi0(t̄0)| ≤Mδe
−αt̄0

((
M(A0

k0) + eαhV (ηk0)
)
ξ
)
i0
< Mδe

−αt̄0(−αξi0)=
d

dt
yi0(t̄0).

On the other hand, by definition of the Dini right-derivative and the inequality in (33), we
have

D+|xi0(t̄0)| = lim
ϵ→0+

|xi0(t̄0 + ϵ)| − |xi0(t̄0)|
ϵ

≥ lim
ϵ→0+

yi0(t̄0 + ϵ)− yi0(t̄0)

ϵ
=

d

dt
yi0(t̄0),

a contradiction, completing the proof. ■
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