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Abstract. This paper proposes a unified approach to study global exponential stability for a class
of switched time-delay linear systems described by general linear functional differential equations.
Several new delay-dependent criteria of global exponential stability are established for these systems
over the sets of switchings satisfying the assumption on the minimum dwell time or having the
average dwell time. As particular cases, the obtained results are shown to include and improve many
previously known results. An example is given to illustrate the proposed method.
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tems, average dwell time.

1. INTRODUCTION

A switched system is a type of hybrid dynamic system which consists of a family of
subsystems and a rule called a switching signal that chooses an active subsystem from the
family at every instant of time. Switched systems have attracted a lot of attention from
researchers in control and systems theory due to their abilities in modeling various physical
systems in engineering practice. Among a large number of interesting topics on switched
systems the study on systems dynamic behavior, in particular, stability problems have been
always the focus issues. The reader is referred to the monograph [1] and the survey paper
[2, 3] and the references therein for more details. It has been indicated, for instance, that
the switched linear system is exponentially stable under arbitrary switching signals if all
constituent subsystems have a common quadratic Lyapunov function (QLF). Recently, sim-
ilar problems have been considered intensively also for time-delay switched systems, where
different kinds of the so-called Lyapunov - Krasovskii functionals are playing a similar role.
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In the meantime, for the class of positive or compartmental switched linear systems, besides
traditional quadratic Lyapunov functions, a more restrictive notion of linear copositive Lya-
punov functions (LCLF), combining with the comparison principle for solutions, is exploited
effectively in the study of stability problems (see e.g. [4, 5, 6] and also [7, 8, 9] for time-delay
systems and the comparison method).

The main purpose of this paper is to develop a unified approach to study exponential
stability for a general class of time-delay switched linear systems, described by linear func-
tional differential equations (LFDEs), based on the comparison principle, with the use of
LCLFs and the average dwell time (ADT) switching concept. Namely, we will first over-
bound each constituent subsystem by an appropriate positive subsystem and prove that
the original switched time-delay system is uniformly exponentially stable over the set of all
switchings which have positive minimum dwell time, if all over-bounding subsystems have a
common LCLF. As a second main result, we will remove the above restrictive assumption
on common LCLF and show that exponential stability of all over-bounding subsystems is
enough to guarantee uniform exponential stability of the original switched time-delay system
over the set of all switchings satisfying some ADT assumption. While stability of LFDEs
has been widely investigated in the literature, the stability problems for switched systems of
this general type is considered for the first time in this paper, to the best of our knowledge.
As particular cases, the obtained stability criteria include and, what is more, improve many
known results in the literature.

The following notation will be used throughout the paper. R and N will stand for the
sets of real numbers and non-negative intergers, respectively. For r € N, r will stand
for the set of numbers {1,2,...,r}. For matrices A = (a;;) and B = (b;;) in R™™™, we
write A > B and A > B iff a;; > bj; and a;; > by for i € n, j € m, respectively. |A]
stands for the matrix (|a;;|) and A" is the transpose of A. Similar notation is applied for
vectors x € R™. Without loss of generality, the norm of vectors x € R" is assumed to be
the co-norm ||z|| = ||z]lcc = maxi<i<n |zi|. For h > 0,C([—h,0],R™) denotes the Banach
space of continuous functions ¢ : [~h,0] — R"™ with the norm ||| = maxe|_p g [ (0)]]
and NBV ([—h,0],R) is the linear space of all normalized functions ¢ : [—h,0] — R with
bounded variation Var([—h,0],%) (so that 9 is left-side continuous on the interval (—h,0)
and ¥(—h) = 0). It is well-known that, for any ¢ € NBV([—h,0],R) and any continuous
function 5 € C([—h,0],R), we have

0
| aw®)8) < Var(-h.0.0) max |36)), o

_h 0e[—h,0]

where the integral is understood in the sense of Riemann-Stieltjes. Similarly, NBV ([—h, 0], R"*")
will stand for the linear space of all matrix functions 7 :[—h, 0] = R™™" such that 7;;(-) €
NBV([—h,0],R),Vi,j €n. Thus, to each n € NBV([—h,0],R"*™) we can associate a non-

negative (n x n)-matrix of variations

V(n) = (Var([=h,0],7;;)) = 0. (2)
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Recall that A € R™ " is said to be a Metzler matriz if all off-diagonal elements of A are
nonnegative: a;; > 0,Vi # j. Finally, for any matrix A € R"*" we associate the Metzler
matrix M(A) = (&ij), by setting dij = |aij] if ¢ # j and a4 = a4, Vi € n.

2. MAIN RESULTS

Consider a switched time-delay linear system of the general form
0
(1) = A%o(t)+ | oy (Oa(t+6).t > 0 3)

where o(+) is a switching signal such that for each t > O,Ag(t) € {AVk e N} CR™™ - a
given family of N real matrices and 7,4 € {m,k € N} C NBV([—h,0,R"™") - a given
family of N matrix functions with normalized bounded variation elements 7y ;;. Denote by
¥4 the set of all switching signals o:[0, +00) — N which are piece-wise constant, right-side
continuous functions, with points of discontinuity 7%,k = 1,2,... (known as the switching
instances) satisfying the following assumption on the minimum dwell time

Tmin(0) == lilelg(Tk_H — 1) > 0. (4)

It is clear that ¥, does not contain any switching signal whose discontinuities have a fi-
nite accumulation point. Also, any signal ¢ having switching instances 1o = k, k41 =
k + #ﬂ’ k=0,1,2,... does not satisfy (4) because in this case Tyin(c) = 0.

Thus, each o € ¥ performs switchings between the following N time-delay linear sub-
systems (A, ;) of the form

0

3(0) = Afa(t) + [ dim(@)lalt +6), 20, ke N, )
—h
where the i-th component of the second term in (5), for each k € N and i = 1,...,n, is
defined as . -
([ dm@ate+0) =3 [ dos(@lasie+0). (6)
_ i o=

For any ¢ € C([—h,0],R™) and any switching signal o € ¥, the system (3) admits a unique
solution z(t) = x(t,p,0), t > —h, satisfying the initial condition z(0) = ¢(0), 6 € [—h,0].
Note that the solution z(t) is absolutely continuous function on [0, 4+00) and differentiable
everywhere, except for the set of switching instances {7} of o where x(¢) has only Dini right-
and left-derivatives DV x(7y), D™ x (1) which are generally different.

Definition 1. The switched system (3) is said to be globally exponentialy stable (shortly,
GES) over the set of switching signals ¥ if there exist positive numbers M, « such that for
any ¢ € C([—h,0],R™) and any o € 3, the solutions z(t, ¢, o) of (3) satisfies

||$(t7<)070)|| < Me_at”QDH, Vvt > 0. (7)
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Obviously, for each k € N, the switching law o(t) = k,t > 0, belongs to ;. Therefore, if
the switched system (3) is GES over ¥ then all of the constituent subsystems (5) are uni-
formly exponentially stable or, equivalently, all zeros of their characteristic quasi-polynomials
Py(s) = sI — AY — f?h e*d[ni(0)], k € N, have negative real parts (see e.g. [10]). The last
condition is, however, not sufficient for exponential stability of (3) under arbitrary switching
(see, e.g. [1] for the case when 7 = 0,Vk € N).

Finally, we recall that the system (3) is said to be positive if z(t) > 0,Vt > 0 whenever
v(0) >0, Vb € [—h,0]. It is trivial to show that (3) is positive if and only if all subsystems
(5) are positive. The latter is equivalent to the condition that, for each k € N, A is a
Metzler matrix and nj is increasing on [—h, 0] : g (61) < nr(02), if —h < 0; < 0 < 0 (see,
e.g. [11, 12]). Clearly, in this case, we have

M(AY) = A}, V() =m(0), Vk € N.

We are now in position to prove the first main result of this paper which gives a verifiable
criterion for exponential stability of the class of switched time-delay linear systems of the
form (3) over the set of switching signals ¥ . The main idea of the proof is essentially based
on the comparison principle of solutions (see and compare with [7, 9]). The case of non-delay
linear systems (i.e. when 7, = 0,Vk € N) has been considered in our recent work [13]. We
give a detailed proof in Appendix for the convenience of the readers.

Theorem 1. Consider the switched time-delay linear system (3). Assume that there exist a
strictly positive vector &€ > 0 (i.e. all elements of vector & are positive) and a number o > 0
such that

(M(AD) + "V (i) € < —a&, Vk € N, (8)

where the nonnegative matrices V(ny) are defined by (2). Then the switched time-delay linear
system (3) is GES over the set of switching signals o € ¥ .

Remark 1. If (8) holds for some a > 0 then it obviously holds also for &« = 0. The
latter in turn implies straightforwardly (see e.g. [14] ) that all positive linear subsystems
i(t) = Dya(t),k € N, are exponentially stable, with Dy := M(A?) + V (n;) being obviously
Metzler matrices. These positive linear subsystems can be considered as over-bounding
systems for the original time-delay subsystems (A, ),k € N. Moreover, (8) implies that
the dual systems @(t) = D,Im(t), k € N, share a common linear co-positive Lyapunov function
(shortly LCLF) v(z) = ¢ (see, e.g.[5]). Note additionally that in order to check whether
or not Metzler matrices D,;r, k € N, share a common LCLF one can use the procedure given
by Theorem 4 in [6].

As the most important particular case of Theorem 1, let us consider the class of switched
linear systems with multiple discrete-time delays and distributed time delays of the form

Mg (t) 0

i=1 “He(t)
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where, for each k € N, 0= h) <hl < .. < h'*, matrices A}, € R™*" and matrix functions
By(-) € C([—hy,0],R"*") are given. Defining h = maxen icmhk, bk}, m :=max{my, k €
N} and setting, for each k € N,By(f) = 0,0 € [~h,—hy) (if hy < h) and Al = 0 for
i = Mkt1,...,m (if myp < m), it is easy to see that (9) is just a particular case of (3)

m .
with ng(0) = > ALX(“hi 0] (0) + f_eh By(s)ds,k € N, where xjs denotes the characteristic
i=1

function of a set M C R. Obviously, V() < ; | AL | +f£)h | Br.(s)|ds, but if the system (9)
is positive (i.e. when M(AY) = A, Al >0, Bi(0) > 0forall k € N,i € m,0 € [~h,0]) then
Vi) =Y Al —{—ffh By (s)ds. Therefore, by Theorem 1, we get

i=1

Corollary 1. If there exist £ € R", & > 0 and a non-negative number o > 0 satisfying

m 0
(M(AD) + e 3|4} + eah/ |Bi(s)|ds)€ < —aé, Wk € N, (10)
—h

=1

then the system (9) is exponentially stable for any switching o € . Moreover, if the system
(9) is positive then the modulus symbol in (10) can be removed.

The above corollary gives a new and improved delay-dependent criterion of exponential
stability for the switched time-delay linear system(9), which gets back obviously to results
proved in [7, 9] by letting a | 0 in (10).

It is worth noticing that in Theorem 1 the switching signals are assumed to be taken
arbitrarily from the class ¥, defined by the assumption (4) which is a rather mild property.
The cost to pay is that we have to impose the conservative condition on existence of a
common vector £ in (8) to ensure GES of (3) for each switching o € ¥,. In the next
theorem, by using the average dwell time (or ADT, for short) concept, we will relax this
condition by assuming only the existence of a set of vectors &, k € N which maybe different
but satisfying (8). However, GES of (3) is then guaranteed only over a subset of ¥, namely
the set of all switching signals having ADT 7, > 7, where the lower bound 7 is calculated
via &,k € N.

We recall (see, e.g. [15]) that, for a given positive number 7,, a switching signal o is said
to have an ADT 7, if for any ¢ > 0 the number N, (0,t) of discontinuities of o on the interval
(0,t) satisfies ,

Ta

N,(0,t) < (11)

The set of all switching signals having ADT 7, is denoted by ¥, . It follows that for any
o € X,,, the average dwell time between any two consecutive switching instances is at least
Tq. We have obviuosly that, for any 7 > 7 > 0,

S, C 3y C 54

Therefore, if the system (3) is GES over X it is also GES over X, for any 7, > 0. On the
other side, in case of non-delay linear systems (i.e. when 1, = 0,Vk € N), it is well known
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that if every constituent subsystem is GES then the corresponding switched system is also
GES for each switching ¢ having ADT 7, sufficiently large (see, e.g. Lemma 1 in [16]) and
it is an important problem to find such a lower bound 7, > 0 that the associate switched
system is exponentially stable for any o € ¥, with ADT 7, > 7, (see, e.g. [1, 15, 17, 8, 9]).
In the following theorem we establish a similar result for the general class of FDE of the
form (3).

Theorem 2. Consider the switched linear time-delay system (3). Assume that there exist
vectors & € R™, & > 0,k € N and a positive number o > 0 satisfying

(M(AY) + eV (my)) & < —aky, Yk € N. (12)

Then the switched system (3) is GES over the set ¥, of switching signals with ADT

In ~
a * = T, 13
Ty > T - (13)
where ¢
Y= maX{ ’;71 : kal € Nal € Q}a gk‘ = (gk,l gk,? o gk:,n)—r' (14)
Proof.

The proof is partly similar to that of Theorem 1. Without loss of generality we can assume
that ||&|| = 1,k € N. Let 7, satisfy (13) and o € ¥,, be an arbitrary switching signal, with
switching instances 0 = 79 < 71 < ... < T < Tp41 < ... Let x(t) = z(t,p,0) be the
corresponding solution of (3) satisfying the initial condition x(6) = ¢(6), 6 € [—h,0], ||¢]|| =
1. Assume that o(7;) =l € N, i.e. the subsystem (A?k,mk) is active on [7, Tk11), k =
0,1,.... For any 6 > 1, define the functions y;(t),t > —h, i € n, by setting

M(;e*atfl oif te —h, 7'0),
ity = 4 Mo i HLE (15)
Mse=¢, ;i if t € [m, 1), K=0,1,2,...
where Mg = §.y. Then we verify readily that Mz > 1 and
lzi ()] = |@s(t)] <1 < Mge_o‘télw- =y,(t), Vt € [=h,0], Vi € n. (16)

Therefore, noticing that the subsystem (A?O, M, ) is active on [0, 71) = [19, T1) we can proceed
similarly as in the proof of Theorem 1, by using (12) (with & = ly) and (16), to show that
(16) keeps hold on the interval |79, 71)

\xz(t)| < yl(t) = Mgeiatflo,i, Vit € [T(),Tl), Vi € n. (17)

Letting ¢ tend to 71 and ¢ tend to 1 we get from (17), (14) and (15) that

3 :M16’_Ml£z1,z‘ <y Mse "™, i =y yi(m), Vien  (18)
1,2

lzi(11))| < Mie™ &, =
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Further, using the strict inequality above, we now prove that
lzi(t)| < yyi(t) = yMse &, ;, Vt € [r1,m2), Vi € n. (19)

Assume again that (19) does not hold then, by continuity, there exist iy € n, t; € (11, 72)
and € > 0 such that
lzi(t)] < ywi(t),Vt € [11,t1), Vi €n, (20)

and
|ZC2‘1 (51)’ = VY (El)a ‘xil (t)| > VY, (t)? Vi e (Elvfl + 6)' (21)
Noticing that the subsystem (A?177711) is active on [y, 72), by using (1), we can estimate the
Dini right-derivative D |z(t1)| as
n n
DTz, (f1)] < “?1,1‘1 i |y (T1) |+ Z |al01,i1j| ‘xj(fl)H'Z V(ml,m)@él[lfg(o} lzj(t1+0)]. (22)
j=Lin j=1 ’

Here, we have to consider two cases: 7 < t; — h and t; — h < 7. In the first case,
we have, by (20), that for any 0 € [—h,0], |z;(t1 + 0)] < vy;(t1 +0) < yy;(t1 — h) =
yMse=ti=hg . Vj € n. In the second case, by using (17) and (14), we deduce that, for
any 0 € [—h, 0],

|z (t1 4+ 0)] <yt +0) = Mée_a(t_1+6)€lo,j < Mae_a(tl_h)&o,j < 7M56_a(t1_h)€l1,j, Vi € n.

Thus in both cases, using the equality in (21) and (22), (12) we get the following estimate

D¥[ay, (1) < yMse™ " ((MAD)+e*"V (my)) &), < YMse " (—a&iy) = W%yil (t1). (23)
On the other hand, by the inequality in (21) it follows readily that D*|z;, (¢1)] > 'y%yil (t1),
a contradiction. Thus (19) is proved. By letting ¢ — 7,0 — 1 in (19) we get |z;(m2))| <
v? Mse=(2=m)¢; + = 4% yi(79), Vi € n, which implies, from the same reasoning as above,
that |z;(t)| < 7?yi(t),Vt € [r2,73), Vi € n. Proceeding as above steps we conclude that
for each k = 0,1,2,... and each i € n, we have |z;(t)] < YFy;(t) = Y*Mse ¢, ; <
V¥ Mse=2t, t € [rx, Tk41), taking into account that ||& | = maxien, [€i| = 1,k € N. There-
fore, by the assumption that ¢ € ¥, with ADT 7, satisfying (13) it follows that, for each
t>0,

Iny )

|23 (1)] < AN O Mye=ot = MyelNeEOMYe—at < ppselse =t (24)
In~y

where - —a<0. This completes the proof. ]
Similarly as Corollary 1 we have

Corollary 2. Consider the switched time-delay linear system (9). If there exist & €
R™ & >0, k€ N and a positive number a > 0 satisfying

m 0
(M(AD) + e )47 | + e‘“h/ |Bi(s)|ds) & < —aky, Yk € N, (25)
i=1 —h

then the system (9) is GES over the set of switching signals X;, with ADT 7, satisfying (13).
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It is obvious that the main result in [8] is just a particular case of the above Corollary 2
(by letting m = 1, B(s) = Ck, Vs, k, and a | 0 in (25)).

Remark 2. The above proof keeps valid also for a more general definition of switching
signals o having ADT 7, (see, e.g. [15]) where, instead of (11), the number of discontinuities
of o on each interval (0,¢) satisfies

t
N(0,t) < No+ —, (26)
Ta
with a given number Ny > 0 (called a ‘chatter bound’ of the signal). Actually, in this case,
instead of (24), we can easily deduce

|2:(8)] < AN O Myemt = MyeNo Iy (57—t (27)

implying again that the system is GES.

Remark 3. Theorem 2 and its corollary above resemble the main results in [18]. However,
the analysis in [18] can not be applied to deal with the problem considered in Theorem
2 since conditions (12) and (25) do not necessarily imply that such a common vector &
exists. Instead, an average dwell time (ADT) approach (that is different from the method
in the mentioned work) has been used to establish our above results. Notice, moreover, that
Theorem 1 can be obtained from Theorem 2. Indeed, if there exist { = £ < 0,Vk € N
satisfying (8) with some « > 0 then v = 1, by (14), and so 7 = 0, in view of (13). Then, by
Theorem 2, the switched system (3) is GES over the set ¥, for any ADT 7, > 0 and hence
over > .

In the following example, a numerical simulation in R? is given to illustrate Theorem 2.

Example 1. Consider the switched time-delay linear system (3) in R? with h = 0.5, N = 2,

~1 015 —05 —0.1 0if§ = —0.5
AV = ,AO:[ ] 6) = for k= 1,2,
1 [—0.15 —0.55} 2= o5 —1 | O =15 e (—0.5,0],

where By — [0.15 0.25} By = [0.25 0.15

0.25 0.15 0.15 0,15]-Thus, we have

M(AY) = [0115 _00155] , M(AY) = [6(155 (iﬂ , V(m) =m(0) = By, V(n2) =n2(0) = Bo.

Note that there does not exist a vector &€ = [c1, 2] T > 0 that satisfies (8) with a = 0, because
otherwise, we would get ¢; < ¢o and co < ¢1, a contradiction. On the other hand, there exist
two vectors & = [0.6,1]T and & = [1,0.5]" which satisfy (12) with a = 0.1. Therefore, by
Theorem 2, we conclude that the switched time-delay system of the form (3) is exponentially
stable GES for any switching signal with ADT 7, > h% = 15%12 ~ 6.93. For instance, choose
Ta = 7> T = 6.93, a switching signal o € ¥, as shown in Figure 1 and the initial condition
given by the function ¢(f) = (1 —1)T, 6 € [-0.5,0], then the solution trajectory of the
above switched system is shown in Figure 2, where the simulation has been performed with

the MATLAB code dde23.
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Switching signal
L

-1 Il Il Il Il Il Il Il Il Il
0 5 10 15 20 25 30 35 40 45 50
Time(sec)

Figure 1: The switching with ADT 7, =7

1 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50
Time (sec)

Figure 2: The sulution trajectory of Example 1 under switching with ADT 7, =7 > 6.93

3. CONCLUSIONS

We have studied exponential stability problem for a general class of time-delay switched
systems described by linear functional differential equations. Unlike the previous results,
which were based on the comparison principle and common Lyapunov functions, stability
criteria in this paper are derived under ADT switching. Finally, a numerical example is
included to illustrate the main results. The results of this paper can be extended, with
appropriate modifications, to the case of switched linear systems with time-varying delays
of the form

0

(1) =AY () + / hg(t)(t)d[ng(t)(9)]x(t+«9),t >0, (28)

where, for k € N, hy, : [0,+00) — Ry are continuous functions, such that supgey ;>0 hi(t) <
h. The case of unbounded time-varying delays can also be treated by our approach. This
will be reported in our future work.
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APPENDIX

Proof of Theorem 1. Let o € ¥, be an arbitrary switching law satisfying (4) and z(t) =
z(t,,0) be the solution of (3) satisfying the initial condition z(0) = ¢(0), 6 € [—h,0]
with an arbitrary ¢ € C(|—h,0].R"),|l¢]| < 1. Assume (8) holds for some o > 0 and
£:= (& & .. &) € R* with & > 0, Vi € n. Without loss of generality we can assume

)
II€|| = 1. For an arbitrary 6 > 1, define Ms = ——— > 1 and
minje, &;
y(t) = Mse™ ¢, t € [—h, 0). (29)

Then, since R™ is equipped with the oco-norm, in order to prove (7) it suffices show that
|z ()| < yi(t), Vt € [0,00), Vi € n, (30)
To this end, observe first that (30) clearly holds also for ¢ € [—h, 0], that is
lz:(t)] = |pi(t)| < 1 < y;(t) = Mse™®¢;, Vt € [~h,0], Vi € n. (31)

Assume to the contrary that (30) does not hold, then, by the continuity, there exist ig €
n, top > 0 and € > 0 such that

\2i(8)] < i (t), V¢ € [~h, o), Vi €, (32)

and

[%iq (o) | = Yo (F0), [io ()] > wio (1), VE € (fo, fo+e). (33)
Let {7}/ > be the sequence of switching instances of o and o € [Ty, Tmg+1), then, by the
assumption (4), Tmg+1 — Tme = Tmin(0) > 0. Therefore, one can choose a sufficiently small
e1 > 0,e; < e such that [to, o+ €1) C [Tmg, Tmot1) Letting the subsystem (A ,nx,) be
active on the interval [7,,,, Tmo+1) (or equivalently the solution x(t) satisfies (5) with k& = ko)
and denoting elements of Ago and 7y, (6), respectively, by ay, i; and 7y, i;(6),%,j € n then,
from (6),(32) and (5) with k& = ko, we can deduce, for any t € [T, Tmo+1) and every i € n,
that

D¥ai(t)] < angilzi(®)] + D largisl |25(8)] + ZV(%,M)QGI@?O] |25 (t+0)|

j=Li#i i=1
n n
< aroiti() + Y kol U5 (8) + >V (o) (t — B). (34)
J=Li#i i=1

Therefore, by (29), (31) and (34) (with ¢ = ig, t = ty), using the equality in (33) and (8) we
get

DYy, (f0)] < Mye o0 ((M(Ago) + eahV(nko))f)iO < Mse= " (—at;,)= %yio (to).

On the other hand, by definition of the Dini right-derivative and the inequality in (33), we

have
Pl (7 — pin (i Ol =i ()| o o Yio(fo+€) —wi(to) _ d -
Do) =l S SRR > iy SR R — h ),

a contradiction, completing the proof. n
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