
Journal of Computer Science and Cybernetics, V.37, N.3 (2021), 321–337

DOI 10.15625/1813-9663/37/3/16245

DEVSECOPS METHODOLOGY FOR NG-IOT ECOSYSTEM
DEVELOPMENT LIFECYCLE

ASSIST-IOT PERSPECTIVE

ÓSCAR LÓPEZ1, JORDI BLASI1, MIKEL URIARTE1, IGNACIO LACALLE2,

GONZALO GALIANA2, CARLOS E. PALAU2, EDUARDO GARRO3, MARIA GANZHA4,

MARCIN PAPRZYCKI4,∗, PIOTR LEWANDOWSKI4, KATARZYNA WASIELEWSKA4,

KONSTANTINOS VOTIS5, GEORGIOS STAVROPOULOS5, IORDANIS PAPOUTSOGLOU5

1Research and Development Department, S21Sec, Zamudio, Spain
2Communications Department, Universitat Politècnica de València, Valencia, Spain

3Research and Development Department,Prodevelop, S.L., Valencia, Spain
4Systems Research Institute Polish Academy of Sciences, Warsaw, Poland

5Information Technologies Institute, Centre for Research and Technology Hellas,
Thessaloniki, Greece

Abstract. Current software projects require continuous integration, during their whole lifetime.

In this context, different approaches regarding introduction of DevOps and DevSecOps strategies

have been proposed in the literature. The present contribution proposes introduction of DevOps, an

agile methodology for the development and instantiation of software platforms, with minimal impact

in any kind of operations environment, for the Next Generation IoT deployments. Moreover, the

novelty of the proposed approach lies in leveraging DevSecOps in different stages and layers of the

architecture. In particular, the present work describes the different DevSecOps methodology tasks,

and how the security is included within pre-design activities, such as planning, creation or adaptation,

design and implementation activities, as well as in post-implementation activities such as detection

and response. Without proper consideration of security and privacy best practices identified in this

article, the continuous delivery of services using DevOps methodologies may create risks and introduce

different vulnerabilities for the Next Generation IoT deployments.

Keywords. Devops, devsecops, IoT, NG-IoT, security controls, software development.

Dedicated to Professor Phan Dinh Dieu on the occasion of his 85th birth anniversary.

*Corresponding author.
E-mail addresses: olopez@s21sec.com (O. López); jblasi@s21sec.com ; muriarte@s21sec.com
(M. Uriarte); iglaub@upv.es; gongafor@inf.upv.es; cpalau@dcom.upv.es; egarro@prodevelop.es;
maria.ganzha@ibspan.waw.pl; paprzyck@ibspan.waw.pl (M. Paprzyck); piotr.lewandowski@ibspan.waw.pl
(P. Lewandowski); kvotis@iti.gr (K. Votis); stavrop@iti.gr (G. Stavropoulos); ipapoutsoglou@iti.gr (I.
Papoutsoglou).

mailto:olopez@s21sec.com
mailto:jblasi@s21sec.com
mailto:muriarte@s21sec.com
mailto:iglaub@upv.es
mailto:gongafor@inf.upv.es
mailto:cpalau@dcom.upv.es
mailto:egarro@prodevelop.es
mailto:maria.ganzha@ibspan.waw.pl
mailto:paprzyck@ibspan.waw.pl
mailto:piotr.lewandowski@ibspan.waw.pl
mailto:kvotis@iti.gr
mailto:stavrop@iti.gr
mailto:ipapoutsoglou@iti.gr


322 LOPEZ et al.

1. INTRODUCTION

Over the last few years, the Internet of Things (IoT) has emerged as a promising tech-
nology paradigm to be potentially applied to almost any type of Industrial environment.
Benefits of its application might range from enhanced productivity and quality, up to re-
duction of costs, or more efficient use of resources. Nevertheless, due to the increase of the
number of interconnected devices, the rise of IoT brings new challenges [1]. These chal-
lenges are, among others: (i) significant growth of volume of unstructured data sent by
the IoT devices; (ii) high degree of heterogeneity of this large volume of data, leading to
interoperability issues; (iii) scalability problems caused by explosive growth of the number
IoT devices; (iv) increased need for near-real-time reactions, close to the places of data cre-
ation and/or data consumption, and (v) dependencies between applications developed in
technological silos for individual IoT deployments. Additionally, it should be observed that
traditional, centralised IoT architectures lack the necessary capabilities to handle new re-
quirements for human-centric applications, decentralization, and moving intelligence to the
far edge of the deployment. New trends include moving from the widespread use of cloud-
based infrastructure models, which are dominated by leading Internet companies, towards
IoT edge, supporting mesh distributed processing, low latency, fault tolerance and increased
scalability, security, and privacy. Furthermore, the Alliance of Internet of Things Innovation
(AIOTI) [2], also foresees a change in the models of managing and controlling the flow and
transmission of data.

Those rapid advances in IoT ecosystems require more secure and private approaches, in
terms of continuous integration and deployment. In particular, for the Next Generation IoT
(NG-IoT) scenarios [3], there is a demand for highly decentralised ecosystems that need to be
supported by security, privacy, and trust enablers to ensure proper protection. Furthermore,
the human-centric approach that will characterise NG-IoT systems will require new ways of
interacting with legacy IoT ecosystems as well as with humans, posing a whole new set of
security and privacy related challenges. Overall, the security and privacy by design aspects
will be the crucial pillars to maintain trust in NG-IoT technologies. Hence, they will need
to be extended along the lifecycle of involved systems, by making use of secure software
development practices and security operations.

The aim of this contribution is to outline how the DevSecOps methodology can be ap-
plied to NG-IoT deployments in general, and within the ASSIST-IoT project [4] that aims
to tackle the mentioned challenges, in particular. Figure 1 outlines (on the meta-level) the
multilevel architectural approach of ASSIST-IoT, which is proposing a decentralized archi-
tecture for NG-IoT, combining the deployment of components on the edge and even near
the far edge. As a summary, the ASSIST-IoT project designs, implements, and validates an
open, decentralised reference architecture, with its associated enablers, services and tools, to
assist human-centric IoT applications in multiple verticals. ASSIST-IoT will deliver, in a re-
alistic, measurable, and replicable way, a unified innovative multi-plane (semi-) autonomous
edge-to-cloud-continuum architecture for the future IoT deployments. ASSIST-IoT proposes
to be primarily based on open source software technologies, relying on the most recent trends
on microservices, containerisation, and orchestration, supplemented by cross-cutting digital
enablers. ASSIST-IoT proposed architecture supports continuous integration and long-term
sustainability of domain-agnostic, interoperable, self-* capable, intelligent, distributed, scal-
able, secure, and trustworthy IoT ecosystems.



DEVSECOPS METHODOLOGY: ASSIST-IOT PERSPECTIVE 323

APPLICATION AND SERVICES

DATA MANAGEMENT

SMART NETWORK AND CONTROL

DEVICE AND EDGE

M
a

n
a

g
e

a
b

il
it

y

S
ca

la
b

il
it

y

In
te

ro
p

e
ra

b
il

it
y

S
e

cu
ri

ty
, 

P
ri

v
a

cy
 a

n
d

 T
ru

st

S
e

lf
-*

Figure 1: ASSIST-IoT multilevel approach architecture [4]

Technical components of the architecture will rely on smart distributed software (and/or
hardware) components (namely enablers), providing self-managed and automated capabil-
ities. Those provisions will allow ASSIST-IoT-powered systems to respond with a more
user-centric approach to the technology, with a decentralized security and privacy by de-
fault. Here, ASSIST-IoT’s perspective will be applied to provide the foundations for the
proposed DevSecOps approach.

The rest of the paper is structured as follows: Section II presents the methodologies
in software development, and efforts in formulating requirements for IoT security. After-
wards, while Section III provides an overview of the strategies of DevOps and DevSecOps
in general, Section IV specifies the different stages that constitute both methodologies and
their application to NG-IoT deployments. Next, Section V describes the approach that has
been proposed for ASSIST-IoT, in terms of security controls and DevSecOps tools to be
used. Finally, Section VI concludes the paper with the presentation of the achievements and
proposals of future work.

2. SOFTWARE DESIGN APPROACHES

Software development is a complicated process that calls for cooperation between pro-
fessionals from multidisciplinary fields. For this reason, methodologies are conceived to
establish the fundamentals for the efficient management of such projects. Therefore, organi-
zations have different methodologies to choose from, based on their requirements and focal
points.

As different methodologies exist in software development, Gitlab has documented the use
of each methodology in a survey [5]. The most practiced methodologies are DevOps/DevSecOps
and Agile, while methodologies like Kanban, Waterfall, and Lean are significantly lagging
behind the most widely adopted ones.

One of the earliest software development methodologies is the Waterfall, introduced
by Dr Royce [6]. As the methodology’s name implies, it is a linear sequential flow of the
processes involved in software development. Each phase commences only after the conclusion
of the previous phase, which results in having a working software late into the cycle. The
methodology has reported drawbacks like high cost and effort, along with late integration
and testing [7].

Kanban is a methodology originating from the Japanese manufacturing sector, while
its name translates into a signboard [8]. Kanban was initially associated with software
development by David J. Anderson, in his work with smalls teams in Microsoft [9]. The
methodology’s beliefs are (i) work visualization; (ii) limitation of the work in progress; (iii)



324 LOPEZ et al.

explicitness of management policies; (iv) adoption of scientific methods; and (v) continuous
improvement.

The Lean methodology sets principles for software development by applying the Toy-
ota Product Development System [10]. In brief, the Lean principles are the elimination of
waste, quality delivery, knowledge creation, fast delivery, respect for people, and continuous
optimization.

Agile is one of the most practiced methodologies in software development. It incorporates
multiple frameworks, such as Scrum. The methodology was popularized by the publication
of the Agile manifesto [11]. The principles set in the manifesto focus on individuals and
interactions, working software, customer collaboration, and response to changes. Similarly,
other works share the same principles [12], or define the term agility [13].

Despite the comparable popularity, DevOps differs from Agile methodology. The first
one focuses on pipeline optimization, while the latter is a project management strategy [14].
DevOps is a term that has been around for a bit over a decade, but a generally acknowledged
definition of the approach is absent. The most cited definition for DevOps, available in the
literature, describes the methodology as “a collaborative and multidisciplinary effort within
an organization to automate continuous delivery of new software versions, while guaranteeing
their correctness and reliability” [15].

In the efforts to continuously improve the DevOps methodology, an extension emerged
to cover also issues related to security, leading to the so-called DevSecOps methodology.
Security was traditionally considered at the final stages of the DevOps pipeline. In contrast,
DevSecOps is a conscious effort to swift the security considerations towards the development
pipeline, to address adequately and timely any security considerations. Specifically, in [16]
DevSecOps is defined as DevOps embedded with security controls, aiming to provide contin-
uous security assurance in all stages of the workflow. Hence, a set of additional secure rules
to aid organizations to implant security deep in their DevOps development and operations
processes is composing the DevSecOps [17].

As the principles for software development are set by all the aforementioned methodolo-
gies, there are efforts in defining security requirements in IoT deployments. The following
statements are briefly outlining these considerations, as stated in in IoT Security Compliance
Framework [18]:

• IoT sensors in machines that provide data are assumed to be reliable;

• Workstations used to access collected data from machines are assumed to be reliable
and operative;

• Software on the servers deployed in the IoT service framework is reliable and continu-
ously updated;

• Servers and IoT services framework are reliable with data protection and privacy con-
cerns, and reliable applying appropriate security mechanisms at network level;

• Users of the software are authenticated and authorized, and the owner of the provided
service is also considered to be trustworthy.

Secure software and firmware updates are a technical measure for IoT, associated with
authorization, as described in ENISA Good Practices for IoT [19]. They aim at mitigating



DEVSECOPS METHODOLOGY: ASSIST-IOT PERSPECTIVE 325

different threats associated with failures, malfunctions among other operational threats re-
lated to IoT devices. Software distribution should be controlled in IoT environments, not
only associated with authorization but also on the software update process. Overall, De-
vOps paradigm deals with the above statements related to software distribution and secure
operation.

3. DEVOPS AND DEVSECOPS IN IOT

The following section describes how DevOps and DevSecOps methodologies can be ap-
plied and materialized in the deployment of NG-IoT ecosystems, considering the needs of
permanent updates that NG-IoT components will require, and also the needs related to
collaboration and automation. DevOps and DevSecOps methodologies have as their main
objective to facilitate integration, delivery and deployment in a continuous cycle. This ap-
proach, understood as a continuous loop methodology is to enable the delivery of NG-IoT
security ready applications and services.

3.1. DevOps in IoT

It has been noticed that IoT environments are usually dependent on smart networks
and network functions, built upon Infrastructure as a Code (IaC), and with strong soft-
ware dependencies on the deployment. Smart IoT devices need to manage efficiently the
frequent software and firmware updates, since there are several threats associated with soft-
ware distribution that should be controlled in IoT environments. In parallel, edge and cloud
deployments need tools to support automation for implementing a workflow that can be au-
tomated, tested in a continuous workflow, reproducible and repeatable. Security by design
principle is one of the most relevant approaches to be considered for software development
and to perform a secure operation of the software in the deployment phase [20].

Following the systematic analysis of the literature carried out in [15], the conceptual
framework of DevOps is composed of a conceptual map outlining four categories: (i) process
which encompasses business-related concepts, (ii) people which covers skills and concepts
regarding the culture and collaboration, (iii) delivery related to the Continuous Integration
/ Continuous Delivery and Continuous Deployment (CI/CD) concept1 , and (iv) runtime
that synthesizes concepts needed to guarantee the stability and reliability of services in a
continuous delivery environment. Consequently, DevOps methodology deals with the state-
ments related to software development, and software distribution in a project management.
Traditionally, DevOps [21] is the combination of best practices in software development and
IT operations, provided to shorten software development, or System Development Life Cycle
(SDLC), enabling continuous delivery without impacting quality [22]. In addition, DevSec-
Ops methodology introduces security by design among other principles to be applicable in
the former DevOps methodology.

The DevOps practices are organized as follows: Continuous Planning, Continuous Inte-
gration, Continuous Delivery, Continuous Deployment, Continuous Operation and Continu-

1The “CD” in CI/CD refers to continuous delivery and/or continuous deployment, which are related concepts
that sometimes get used interchangeably. Both are about automating further stages of the pipeline, but they
are sometimes used separately to illustrate just how much automation is happening.



326 LOPEZ et al.

ous Feedback ([23, 16]):

• Continuous Planning: In continuous planning, all the stages of a workflow are
taken into consideration. It involves planning, execution, and monitoring of different
activities of development, testing, release, deployment, and operations phases. The
tasks related to people, process, and technologies, like priorities management, bud-
get allocation, resource management (allocation, education, collaboration, etc.), pro-
cess enforcement (threat modelling, design review, code reviews, access and privileges,
change management, vulnerability and patch management, etc.), environment setup,
integration and infrastructure availability, communication, sharing, governance, etc.,
are identified and planned for execution at relevant stages in the software development
workflow.

• Continuous Integration: DevOps aims at supporting collaboration among Devel-
opment and Operations teams. However, coordinating a software development team,
where many developers work simultaneously on a single codebase, can become an is-
sue. A shared code repository is the most natural solution to this problem. Continuous
integration (CI) aligns with the Code and Build phases of the DevOps pipelines. Gen-
erally, it refers to performing all of code tests, unit tests, and integration tests at each
stage. By merging smaller changes more regularly, the issues become smaller and easier
to manage, improving overall productivity.

• Continuous Delivery: Automates the process of deploying new builds into produc-
tion. The goals of Continuous Delivery are: (i) to perform automated testing on each
new build in order to verify that builds are ready for release into production; (ii) to
manage the automatic provisioning and configuration of deployment environments as
well as stability, performance, security compliance testing of these environments; and
(iii) to deploy a new release into production, when approved and manually triggered
by the organisation. Continuous Delivery embraces the Test and Release phases of the
pipeline (described later in more detail), allowing organisations to manually trigger the
release of new builds as regularly as possible.

• Continuous Deployment: It is an advanced version of Continuous Delivery, where
the manual step of approving new releases into production is now automated. It
involves the Test, Release, and Deploy phases of the pipeline. In the Continuous
Deployment model, each build that passes all the checks and balances of the pipeline
is automatically deployed into the production environment.

• Continuous Operation: Helps to monitor and to adapt changes of the stages of
the workflow. The objective of continuous operation is to ensure service continuity.
It involves automated continuous logging, scanning, monitoring, event correlation and
analysing system and application events. Continuous operation requires also continu-
ous scanning for the vulnerabilities and anomalous events. Infrastructure orchestration
tools are used to scale according to the service demand and enables continuous opera-
tion with an infrastructure prepared to respond to different failures of services deployed.

• Continuous Feedback: Traditionally included in DevOps in the operation and moni-
tor phase, continuous feedback practices during operation and monitoring is important
to get the relevant feedback based on monitoring observation and performance data
analytics.



DEVSECOPS METHODOLOGY: ASSIST-IOT PERSPECTIVE 327

Plan Code Build Test Release Deploy Operate Monitor

Security Security Security

Figure 2: DevOps workflow

Plan Code Build Test Release Deploy Operate Monitor

Security Security Security

Security Security Security Security Security

Figure 3: DevSecOps workflow (“shifting security left”)

3.2. From DevOps to DevSecOps

DevOps has been mainly centred on harmonizing the interplay of development and oper-
ations, with the goal of institutionalizing CI/CD. However, as it can be seen in Figure 2 [24],
since security is not a priority in DevOps processes, it only involves the security team in the
latter stages of development.

Conversely, DevSecOps [25] considers and elevates security as a key element, to be con-
sidered during all stages of the workflow and is devoted to the fundamental principle of
“shift-security left”. In other words, it introduces security controls at early stages of the
development cycle (also considering security by design), while involving security as early as
the planning phase. The change is clear in the DevSecOps workflow (see Figure 3) that
injects security into the traditional DevOps operations processes. In this fashion, security is
integrated along the continuous DevOps workflow, with specific security activities involved in
the earlier development processes, moving security to the left part of the workflow (without
losing the benefits or controls of classic DevOps approach).

DevSecOps principles are broadly covered in [26], and also agreed in [16], and can be cap-
tured using the following key-phrases: “Shift-security left”, “Security by Design”, Culture,
Automation, Metrics, Security as Code, Infrastructure as Code, Compliance as Code, and
Adaptative security. In that sense, DevSecOps application in NG-IoT architectures has the
potential to contribute in reducing and mitigating threats during software delivery in IoT
deployments, while helping guarantee secure operation by applying its most relevant princi-
ples such as: shift-security left, and security-by-design. The main extensions of DevSecOps
over the DevOps principles are summarised below:

• Continuous Testing: Testing controls run in parallel with other security controls in
different stages of the workflow. While traditional DevOps tests included functional
and non-functional testing techniques, DevSecOps introduces additional security test-
ing techniques, like Software Composition Analysis (SCA), Static Application Security
Testing (SAST), Dynamic Application Security Testing (DAST), Interactive Applica-
tion Security Testing (IAST), and Runtime Application Security Protection (RASP).
These tests are applied at different stages of the DevSecOps workflow using different
tools. In this way they cover all stages of software development process.

• Continuous Feedback: Additional to DevOps, DevSecOps also extends the contin-
uous feedback to other stages of the workflow, to obtain feedback from the Build and



328 LOPEZ et al.

Test phase, in order to include relevant security reports.

The security “addons”, conceptualized within the DevSecOps, infused into the rest of the
DevOps principles cited before as Continuous Integration, Continuous Delivery, Continuous
Deployment and Continuous Operation are described in the next section, and summarized
in the implementation of concrete security controls associated to each of the stages of the
workflow.

4. DEVSECOPS STAGES FOR NG-IOT

Before analysing in-depth the proposed DevSecOps strategy for ASSIST-IoT, it is worth
mentioning how are usually those plans tackled in DevOps. The most frequently phases
adopted in DevOps culture are Plan, Code, Build, Test, Release, Deploy, Operate, and
Monitor, and they will be also applied in ASSIST-IoT.

4.1. Plan, Code and Build phases

The Plan stage covers everything that happens before the developers start writing the
code. In NG-IoT environments, security requirements’ analysis needs to be deeply considered
during the planning phase in order to avoid late mistakes (incurring in inefficiencies and ad-
ditional temporal and resource costs). Therefore, the DevSecOps perspective fits perfectly at
this point, considering the proposal of “security by design” and “shift-security left”. Software
threat modelling approaches should also be applied, as a way of understanding the risk that
the developed software will face. A software threat modelling will identify security threats
that apply to NG-IoT software components and will study how to mitigate them, during
the deployment phase. Use of threat modelling [27], Data Flow Diagrams (DFD) [28], and
well-known vulnerability frameworks like OWASP TOP 10 vulnerabilities [29], or MITRE
ATT&CK [30], can help avoid the most common vulnerability issues, when developing and
exposing APIs, or end-user applications. These considerations on studying the way that
software will be used before the coding phase commences will build a late understanding of
security use and misuse of the application2 supporting the development of abuse test use
cases. It must bear in mind that the Plan stage will not be fixed but dynamic, evolving
during the lifecycle of the application. Thus, it must be designed flexible enough to be
adaptable to the deployment/integration environment.

During the Code phase (see Table 1), the coding guidelines are checked and enforced
through the available plug-ins, for the Integrated Development Environment (IDE) used by
the developers. Software inventory management is something that will allow quality results,
while security will have to be implemented on the Source Code version control system.

Additionally, peer reviews of code are also considered as best practices to reduce software
vulnerabilities. Functional testing should be expected to focus on the functional requirements
of the software. Unit, Integration, and other functional testing processes should be done also
during the code phase. Finally, test driven development considers performing tests during
the Plan and Code phase. More concretely, unit testing will examine individual methods and

2Note that when using the term “application”, authors aim at expressing any software artifact within an
IoT system worthwhile to be controlled under a DevSecOps methodology (a piece of software, SDN rules,
specifications, program configuration, etc.). This comment applies to the whole manuscript.



DEVSECOPS METHODOLOGY: ASSIST-IOT PERSPECTIVE 329

Table 1: DevSecOps security controls for Plan, Code and Build phases adapted from [16]

Security Controls for Plan, Code and Build phases

Security requirement analysis
Threat modelling
Adaptative security architecture and design
Security use, misuse, and abuse test cases
Code review and security guidelines check
Software inventory management
Source code version control security
Unit and integration security testing
Static application security testing (SAST)
Unit and integration security testing

functions, components and modules used by the software. Unit tests are produced by the
software developers who will write different test cases to test the code. Integration testing
verifies that different modules or services are working well together and are more expensive
due to require multiple parts of the application up and running. The different type of tests
mentioned will need to be integrated and automated into the continuous integration process.

The Build phase starts with compiling the changed source code, while resolving all
the dependencies. Under the DevSecOps perspective, it is recommended to apply Static
Composition Analysis (SCA) as a process for identifying the use of third party and open-
source software components. Additionally, Static Application Security Testing (SAST) will
analyse source code to find security related vulnerabilities.

4.2. Test, and Release phases

The Test stage consists of the integration of application software components and hard-
ware infrastructure into a single system. In the case of edge devices, which is a key aspect
in the NG-IoT scenarios, integration should be carefully tested, considering associated tech-
nologies, e.g. a container scanning analysis if the application is packaged in a container,
and the IaC analysis used for the integration and automation. Besides, system integration
security tests need to be conducted (see Table 2) at this stage, such as Fuzzy testing, which
has a similar approach to Dynamic Application Security Testing (DAST), and it is black
box oriented with no access to the software code. Furthermore, penetration testing needs
to be considered, along with security smoke testing, and security patching. Going beyond,
Interactive Application Security Testing (IAST), which will also be performed at this stage,
follows the same line as the previous by introducing an instrumented app environment. Once
the software is ready to be deployed to production, the final system should be tested to check
that it is valid. This should include a wide range of tests, such as load tests, stress tests and
usability tests. In terms of security, monkey testing deals with applying a series of random
interactions with the application, and finally providing new validation status.

Afterwards, the application is packaged and stored in an artifact repository, in order to
be delivered and accepted later at the Release stage. Therefore, in DevSecOps methodol-
ogy, an artifact repository security management should be also considered. In this sense, the
introduction of Runtime Application Self-Protection (RASP) technologies can be also placed
to improve security whenever the used framework supports it. This technology, combined



330 LOPEZ et al.

Table 2: DevSecOps security controls for Test and Release phases adapted from [16]

Security Controls for Test and Release phases
Source code version control security
Unit and integration security testing
Container and Infrastructure as Code (IaC) analysis
Artifact Repository Security Management
Software composition analysis (SCA)
Static application security testing (SAST)
Dynamic application security testing (DAST)
Fuzzy testing
Interactive application security testing (IAST)
Run-time application self-protection
Continuous vulnerability scanning
Security patch application
Security smoke testing

with traditional perimetral protection, will enhance the application protection by: (i) moni-
toring the inputs received, (ii) considering the contextual environment, and (iii) protecting
them from those that may result in a threat to the application and the environment.

Finally, as code is progressing from different environments, and credentials, or keys, vary
from one to another, a proper “secrets management” strategy and tool should be included
to guarantee the software code does not reveal credentials or secrets.

4.3. Deployment, and Configure phases

DevSecOps methodologies will use different environments when implementing the pipeline.
Typical environments examples could be development, staging, preproduction, and produc-
tion. The most important reason to have different environments is the performance of dif-
ferent tests and the validation acceptance. The Deployment and, later, Configure phase
(see Table 3) should be done in the staging environment, which is a replica of the produc-
tion environment, where the application is configured with necessary configuration data, for
acceptance testing. At Configure stage, each code change has passed a series of manual and
automated tests, and the operations team can be confident that breaking issues and regres-
sions are unlikely. All builds arriving at this point would have passed a SAST, DAST and
usual controls and tests, and the artifacts will be preferably signed and ready in the shared
repository of the project/organisation, but still at the “staged repository”, waiting for final
validation and release to a production-close environment/repository.

4.4. Operation, and Monitoring phases

During the Operation phase, the developed software will be deployed in a production
environment. To provide a reliable environment, the infrastructure, being host-based or
container-based, should go through a hardening process and one more round of security
operation. Therefore, in order to ensure a proper Operation execution, it is required to
follow a formal DevSecOps methodology to be security compliant.

At the Monitor phase, different practices for continuous monitoring with logging, anal-
ysis, visualization, and notification tools need to be considered. Continuous Monitoring and



DEVSECOPS METHODOLOGY: ASSIST-IOT PERSPECTIVE 331

Table 3: DevSecOps security controls for Deployment and Configure phases adapted from [16]

Security Controls for Deployment and Configure phases

User acceptance and security testing
Artifact repository security management
Penetration testing
Software composition analysis (SCA)
Static application security testing (SAST)
Dynamic application security testing (DAST)
Fuzzy testing
Interactive application security testing (IAST)
Run-time application self-protection
Continuous vulnerability scanning
Security patch application
Security smoke testing
Secrets management
Infrastructure provisioning and orchestration
Infrastructure hardening and security testing
Container and infrastructure security testing

Security Information and Event Management along with penetration testing, DAST, IAST,
fuzzy testing, continuous vulnerability scanning already introduced before. Later and ad-
vanced DevSecOps activities include external security Red Team and internal security Blue
Team activities, as an effective way to test that the system implemented, presents detection
and response capabilities in production. Adequate monitoring concludes with incident man-
agement, main objective of which is to give a proper treatment to every detected abnormality.
This should include a detection and response process as well as metric analysis.

5. ASSIST-IOT DEVSECOPS APPROACH AND ESSENTIAL TOOLS

Collaborative work is a centrepiece of NG-IoT architectures design and deployment. The
short concept-to-market and development-to-production times, altogether with strong soft-
ware dependencies between different components of the architecture, force NG-IoT teams to
work in distributed environments. The ASSIST-IoT project proposes a DevSecOps method-
ology for NG-IoT, which is based on two fundamental pillars [16]:

• Applying practices and principles embedded with security controls;

• Selection of open-source tools that will perform target activities for each of the De-
vSecOps practices.

In the following paragraphs, an overview of the selected DevSecOps practices specified for
the ASSIST-IoT’s strategy is outlined:

1. During the implementation of DevSecOps methodology in any scenario, and partic-
ularly in the case of NG-IoT- the actual “staging” environments are as follows: 1)
Integration and test environment, 2) Preproduction environment, and 3) Production
environment.

2. Some of the expected tasks, for each of the software components developed and inte-
grated into the CI/CD pipeline, are likely to be the following:



332 LOPEZ et al.

Table 4: DevSecOps security controls for Operation and Monitoring phases adapted from [16]

Security Controls for Operation and Monitoring phases

Application and system logging
Continuous monitoring and alerting
Intrusion prevention detection and response
Security incident management
Security metric measurement and analysis
Security audit and compliance
Penetration testing
Dynamic application security testing (DAST)
Fuzzy testing
Interactive application security testing (IAST)
Run-time application self-protection
Continuous vulnerability scanning
Security smoke testing
Infrastructure hardening and security testing
Container and infrastructure security testing
Red, Blue and Purple Team testing
Monkey testing

(a) Using and refining use cases in the CI/CD pipeline, using a sequence of steps or
jobs normally described in a YAML file for describing the pipeline in GitLab or
CircleCI or in a Jenkins file that will describe pipeline steps;

(b) Provisioning of a test environment;

(c) Performing a check out of the code using SAST scan;

(d) Configuring dependencies needed to test the environment;

(e) Executing test cases created by the code developers;

(f) Creating an environment to provide continuous delivery/continuous deployment
using appropriate automation tools for testing with DAST; and, finally

(g) Building artifacts in different forms (i.e., as containers or other software packages)
containing the software or application developed to further deploy to staging,
preproduction and production.

3. Associated and related to the described pipeline steps, and considering the DevSec-
Ops methodology, there are some essential features that need to be covered with the
appropriate tools (to address the following needs):

• IDE tools that facilitate the first building and debugging of the code and the
integration with SAST tools. As already mentioned, and crucial for the paradigm
of “shift-security left”, it is very important that developers could detect security
errors in the code they are developing in the Code phase and even previous to
their first commit to the repository. This test could be performed by integrating
security tools like SAST into the IDE environment. As a reference tool for IDE,
it is worth mentioning, among others, Visual Studio Code [31] as the code editor
for writing, building, and debugging web and cloud applications. It has the
advantage of tight integration with a broad range of cloud service providers (e.g.,
AWS, MS Azure, etc.), and works with a vast ecosystem of extensions, with the



DEVSECOPS METHODOLOGY: ASSIST-IOT PERSPECTIVE 333

choice to include SAST scan tools like Shift-Left SAST [32] that includes features
such as an integrated multi-scanner based design, to scan and detect various kinds
of security flaws.

• Version control is a crucial method of tracking and managing changes to code
that must be followed in all cases. Version control allows developers to see the
complete revision history of a project and revert to a former version or file if
needed. Git [33], the most utilised technology, is a free distributed Version Con-
trol System (VCS) that utilizes branching and merging. Moreover, as already
mentioned, one of the DevSecOps principles is the development in a collaborative
environment, where developers make daily/regular updates on the main branch,
including changes completed by the rest of the team. Branching and merging
code are the main Git features that stand out from other software code manage-
ment tools. Their availability means that Git supports the branching model. Git
is a widely used tool as it is admittedly used by almost 85% of respondents in the
Gitlab’s report. There are also different Git implementation alternatives, but all
of them require a hosting service for the software repositories, that can be done on
premises, using internal servers, or using external cloud deployments, depending
on the strategy that better suits the deployment requirements. GitHub [34] is a
software code management tool platform where hundreds of millions of private,
public, and open-source repositories are posted and reviewed. GitLab is another
alternative broadly extended as the most-used hosting service.

• As a general guideline for NG-IoT software deployments, which follow the De-
vSecOps methodology, they will consequently need to implement CI/CD pro-
cesses, with their associated CI/CD tools. In particular, to implement pipelines
to Build, Test and Deploy facilitating continuous integration and continuous de-
livery. GitHub or GitLab include different alternatives to implement CI/CD
pipelines. More in detail, GitHub is increasingly expanding its offerings to align
with more and more processes in the DevOps workflow implementing CI/CD
features using GitHub actions [34]. GitLab was one of the first hosting services
to fully embrace DevOps and has since been on a mission to create a complete
DevOps platform. GitLab provides everything to manage, plan, create, verify,
package, release, configure, monitor, and secure your applications. Neverthe-
less, there are more alternatives that can make use of other specific tools like
CircleCI [35], or Jenkins [36], which will cover the automation feature to imple-
menting CI and CDel pipelines.

• Adequate tools for packaging, taking into consideration the business needs for
each environment and using a package registry to facilitate the software deploy-
ment. GitLab and GitHub also offers several package registry solutions that will
enable the uses for a variety of packet registries for Docker and other package
distributions and common package managers, enabling publishing and sharing
packages. Further work will also concentrate on ways to continuously deliver
and automate deployments based on solutions to orchestrate container environ-
ments (i.e., approach for packaging applications inside containers) deployed on
the edge. As the most predominant technology in the field of container orchestra-
tion is Kubernetes (K8s) [37], a paramount step that must be taken in ASSIST-



334 LOPEZ et al.

IoT is to align the overall DevSecOps approach with the different K8s variants
and flavours. This will be specially considered when aiming at generalizing the
methodology for a “generic” edge-cloud deployment as NG-IoT architectures re-
quire (as is the case of ASSIST-IoT).

• SAST tools for analysing known vulnerabilities on the managed code. They are
preferable to be integrated into the source code version management repository,
as already mentioned, and built and designed for DevSecOps workflow integration
shifting security to the left and to be able to detect security code vulnerabilities at
every stage of the process. SAST scan [32] can be integrated into GitLab CI/CD
pipeline, implementing security policies that will break the Build phase when
developer commit the code into the Git repository if parameters configured in the
security policy are not fulfilled. The results are presented with a score on critical,
high, medium and low level, associated to each test performed, inside a GitLab
job. Apart from source code analysis to find security and code style issues, SAST
analysis can include the following characteristics: credential scanning to detect
accidental secret leaks, audit of open-source dependencies for known common
vulnerability and exposures (CVEs), checking for license violation, and container
image scanning for application CVE. SAST tools have also good performance in
finding keys and certificates uploaded to git repositories. It is also able to detect
the use of versions of libraries with security issues, and security threats related
with the source code (e.g., with the taint checking). Finally it can detect data
used in the software application that is exported directly to log files.

• DAST tools for analysing the software, looking for security vulnerabilities on
runtime will be also used in ASSIST-IoT DevSecOps processes, so that the soft-
ware can be tested from the outside. DAST analysis evolves checking not only
Application server security configuration, but also testing the web Application
Programming Interface (API), or endpoints to ensure that the security of the ap-
plication cannot be compromised by a malicious use of the API, using parameters
out of the API specification. DAST tools, can detect failures with the SSL con-
nection, due to issues with certificates or HTTP server configuration, and also
miss configuration of the HTTP server, for example containing multiple index
files.

6. CONCLUSIONS AND FUTURE WORK

This work has explored the possibilities to manage Next Generation IoT CI/CD op-
erations, development, and security, and has outlined some approaches towards increasing
process control, while using DevSecOps, without losing the agility and benefits that DevOps
offers. It has also reflected on how DevSecOps practices can be exploited in managing inde-
pendently addressed verticals. Traditionally, DevOps and DevSecOps strategies have been
applied to the development of different services, while this work provides strategies on how
to apply them across forthcoming NG-IoT architectures.

Applying DevSecOps methodology (and selection of controls) along with use case imple-
mentation guidelines should enable reducing and mitigating threats to software delivery and
operation of NG-IoT environments. The analysis has provided a comprehensive overview of



DEVSECOPS METHODOLOGY: ASSIST-IOT PERSPECTIVE 335

steps that can be applied in DevSecOps, in the context of NG-IoT. In the discussion, the
approach championed by the ASSIST-IoT project provides the real-world anchor. Validation
of the proposals presented in this contribution will take place during the ASSIST-IoT project
implementation and is expected to identify the most relevant DevSecOps practices in this
area, resulting in a conceptual model for NG-IoT components’ development and deployment,
following DevSecOps practices.

As future work, further steps in applying DevSecOps practices to NG-IoT environments
in general, and to ASSIST-IoT in particular, will include the coordination and definition of
the continuous delivery and automated deployments, and later implementing, monitoring,
and observability methods and tools over the NG-IoT deployments. Finally, the validation of
the methodology and strategy in verticals related to the automotive industry, transportation
and logistics and safety at work is planned.

ACKNOWLEDGMENT

This work has been partially funded by H2020 project ASSIST-IoT with EC contract
number 957258.

REFERENCES

[1] European Commission. (2017) Digitising Eureopean Industry. Accessed on 03.08.2021 .
[Online]. Available: https://ec.europa.eu/futurium/en/system/files/ged/15 11 2017
digitising european industry brochure ec final web3.pdf

[2] Alliance of Internet of Things Innovation (AIOTI). (2020) Strategic Foresight
through Digital Leadership. Accessed on 03.08.2021 . [Online]. Available: https:
//aioti.eu/wp-content/uploads/2020/10/IoT-and-Edge-Computing-Published.pdf

[3] Z. Zhou et al., “Edge intelligence: Paving the last mile of artificial intelligence with edge
computing,” Proceedings of the IEEE, vol. 107, no. 8, pp. 1738–1762, 2019.

[4] “ASSIST-IoT EU H2020 project,” 2021, Accessed on 03.08.2021 . [Online]. Available:
https://assist-iot.eu

[5] Gitlab. (2021) Gitlab DevSecOps 2021 Global Survey results - A Maturing
DevSecOps Landscape. Accessed on 03.08.2021 . [Online]. Available: https:
//learn.gitlab.com/c/2021-devsecops-report?x=u5RjB

[6] W. W. Royce, “Managing the development of large software systems: Concepts and
techniques,” in Proceedings of the 9th International Conference on Software Engineering.
IEEE Computer Society Press, 1987, p. 328–338.

[7] K. Petersen, C. Wohlin, and D. Baca, “The waterfall model in large-scale development,”
in Product-Focused Software Process Improvement, F. Bomarius, M. Oivo, P. Jaring,
and P. Abrahamsson, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp.
386–400.

https://ec.europa.eu/futurium/en/system/files/ged/15_11_2017_digitising_european_industry_brochure_ec_final_web3.pdf
https://ec.europa.eu/futurium/en/system/files/ged/15_11_2017_digitising_european_industry_brochure_ec_final_web3.pdf
https://aioti.eu/wp-content/uploads/2020/10/IoT-and-Edge-Computing-Published.pdf
https://aioti.eu/wp-content/uploads/2020/10/IoT-and-Edge-Computing-Published.pdf
https://assist-iot.eu
https://learn.gitlab.com/c/2021-devsecops-report?x=u5RjB_
https://learn.gitlab.com/c/2021-devsecops-report?x=u5RjB_


336 LOPEZ et al.

[8] M. Ahmad, J. Markkula, and M. Oivo, “Kanban in software development: A systematic
literature review,” in 2013 39th Euromicro Conference on Software Engineering and
Advanced Applications, 2013, pp. 9–16.

[9] N. Kirovska, and S. Koceski,, “Usage of Kanban methodology at software development
teams,” Journal of Applied Economics and Business, vol. 3, no. 3, pp. 25–34, 2015.

[10] M. Poppendieck, “Lean software development,” in 29th International Conference on
Software Engineering (ICSE’07 Companion), 2007, pp. 165–166.

[11] K. Beck and others. (2001) Manifesto for Agile Software Development. Accessed on
03.08.2021 . [Online]. Available: https://agilemanifesto.org/

[12] L. Williams and A. Cockburn, “Agile software development: it’s about feedback and
change,” Computer, vol. 36, no. 6, pp. 39–43, 2003.

[13] J. Erickson and K. Lyytinen and K. Siau, “Agile modeling, agile software development,
and extreme programming: The state of research,” J. Database Manag., vol. 16, pp.
88–99, 2005.

[14] S. M. Mohammad, “DevOps automation and agile methodology,” International Journal
of Creative Research Thoughts (IJCRT), vol. 5, no. 3, pp. 946–949, 2017.

[15] L. Leite, and C. Rocha, and F. Kon, and D. Milojicic, and P. Meirelles,, “A survey of
devops concepts and challenges,” ACM Comput. Surv., vol. 52, no. 6, 2019.

[16] R. Kumar and R. Goyal, “Modeling continuous security: A conceptual model for au-
tomated DevSecOps using open-source software over cloud (ADOC),” Computers and
Security, vol. 97, p. 101967, 2020.

[17] V. Mohan, and L.B. Othmane, , “SecDevOps: Is it a marketing Buzzword? - mapping
research on security in DevOps,” in 2016 11th International Conference on Availability,
Reliability and Security (ARES), 2016, pp. 542–547.

[18] IoT Security Foundation. (2020) Iot security compliance
framework release 2.1. Accessed on 03.08.2021 . [Online].
Available: https://www.iotsecurityfoundation.org/wp-content/uploads/2020/05/
IoTSF-IoT-Security-Compliance-Framework-Questionnaire-Release-2.1.zip

[19] Enisa. (2019) Good practices for IoT and Smart In-
frastructures Tool. Accessed on 03.08.2021 . [Online]. Avail-
able: https://www.enisa.europa.eu/topics/iot-and-smart-infrastructures/iot/
good-practices-for-iot-and-smart-infrastructures-tool/results#IoT

[20] ——. (2019) How to Implement Security by Design for IoT. Accessed on
03.08.2021 . [Online]. Available: https://www.enisa.europa.eu/news/enisa-news/
how-to-implement-security-by-design-for-iot

[21] L. Banica, and P. Polychronidou, and M. Radulescu, and C. Stefan, , “When IoT Meets
DevOps: Fostering Business Opportunities,” KnE Social Sciences, vol. 3, no. 10, p.
250–264, 2018.

https://agilemanifesto.org/
https://www.iotsecurityfoundation.org/wp-content/uploads/2020/05/IoTSF-IoT-Security-Compliance-Framework-Questionnaire-Release-2.1.zip
https://www.iotsecurityfoundation.org/wp-content/uploads/2020/05/IoTSF-IoT-Security-Compliance-Framework-Questionnaire-Release-2.1.zip
https://www.enisa.europa.eu/topics/iot-and-smart-infrastructures/iot/good-practices-for-iot-and-smart-infrastructures-tool/results#IoT
https://www.enisa.europa.eu/topics/iot-and-smart-infrastructures/iot/good-practices-for-iot-and-smart-infrastructures-tool/results#IoT
https://www.enisa.europa.eu/news/enisa-news/how-to-implement-security-by-design-for-iot
https://www.enisa.europa.eu/news/enisa-news/how-to-implement-security-by-design-for-iot


DEVSECOPS METHODOLOGY: ASSIST-IOT PERSPECTIVE 337

[22] M.A. Lopez-Pena, and J. Dı́az, and J.E. Pérez, and H. Humanes, , “DevOps for IoT Sys-
tems: Fast and continuous monitoring feedback of system availability,” IEEE Internet
of Things Journal, vol. 7, no. 10, pp. 10 695–10 707, 2020.

[23] Amazon Web Services. (2019) What is DevOps. Accessed on 03.08.2021 . [Online].
Available: https://aws.amazon.com/devops/what-is-devops/?nc1=h ls

[24] J. Pennington. (2019) The Eight Phases of a DevOps Pipeline. Ac-
cessed on 03.08.2021 . [Online]. Available: https://medium.com/taptuit/
the-eight-phases-of-a-devops-pipeline-fda53ec9bba

[25] J. Bird. (2016) DevOpsSec: Securing software through continuous delivery.
Accessed on 03.08.2021 . [Online]. Available: https://www.oreilly.com/content/
devopssec-securing-software-through-continuous-delivery/

[26] AppDynamics. (2015) Keep CALM and Embrace DevOps. Accessed on
03.08.2021 . [Online]. Available: https://kapost-files-prod.s3.amazonaws.com/
published/555271a4c12539dc18000118/ebook-keep-calm-and-embrace-devops.pdf

[27] OWASP. (2021) OWASP threat model cookbook. Accessed on 03.08.2021 . [Online].
Available: https://owasp.org/www-project-threat-model-cookbook/

[28] PYTM. (2021) A Pythonic framework for threat modeling. Accessed on 03.08.2021 .
[Online]. Available: https://github.com/izar/pytm

[29] OWASP. (2020) OWASP top 10 web application security risks. Accessed on 03.08.2021 .
[Online]. Available: https://owasp.org/www-project-top-ten/

[30] MITRE ATT CK. (2020) Accessed on 03.08.2021 . [Online]. Available: https:
//attack.mitre.org/

[31] Visual Studio Code. (2021) Accessed on 03.08.2021 . [Online]. Available: https:
//code.visualstudio.com/

[32] SCAN. (2021) Accessed on 03.08.2021 . [Online]. Available: https://github.com/
ShiftLeftSecurity/sast-scan

[33] S. Chacon and B. Straub, Pro Git. Apress, August 2021.

[34] GitHub. (2021) Accessed on 03.08.2021 . [Online]. Available: https://docs.github.com/
en/github

[35] CircleCI. (2021) Accessed on 03.08.2021 . [Online]. Available: https://circleci.com/

[36] Jenkins. (2021) Accessed on 03.08.2021 . [Online]. Available: https://www.jenkins.io/

[37] Kubernetes. (2021) Accessed on 03.08.2021 . [Online]. Available: https://kubernetes.
io/docs/concepts/overview/what-is-kubernetes/

Received on July 01, 2021
Accepted on August 19, 2021

https://aws.amazon.com/devops/what-is-devops/?nc1=h_ls
https://medium.com/taptuit/the-eight-phases-of-a-devops-pipeline-fda53ec9bba
https://medium.com/taptuit/the-eight-phases-of-a-devops-pipeline-fda53ec9bba
https://www.oreilly.com/content/devopssec-securing-software-through-continuous-delivery/
https://www.oreilly.com/content/devopssec-securing-software-through-continuous-delivery/
https://kapost-files-prod.s3.amazonaws.com/published/555271a4c12539dc18000118/ebook-keep-calm-and-embrace-devops.pdf
https://kapost-files-prod.s3.amazonaws.com/published/555271a4c12539dc18000118/ebook-keep-calm-and-embrace-devops.pdf
https://owasp.org/www-project-threat-model-cookbook/
https://github.com/izar/pytm
https://owasp.org/www-project-top-ten/
https://attack.mitre.org/
https://attack.mitre.org/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://github.com/ShiftLeftSecurity/sast-scan
https://github.com/ShiftLeftSecurity/sast-scan
https://docs.github.com/en/github
https://docs.github.com/en/github
https://circleci.com/
https://www.jenkins.io/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

	INTRODUCTION
	SOFTWARE DESIGN APPROACHES
	DEVOPS AND DEVSECOPS IN IOT
	DevOps in IoT
	From DevOps to DevSecOps

	DEVSECOPS STAGES FOR NG-IOT
	Plan, Code and Build phases
	Test, and Release phases
	Deployment, and Configure phases
	Operation, and Monitoring phases

	ASSIST-IOT DEVSECOPS APPROACH AND ESSENTIAL TOOLS
	CONCLUSIONS AND FUTURE WORK

