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Abstract. Following our investigations on particular fuzzy algebraic structures, we revisit fuzzy
subgroups and fuzzy ideals and introduce some numerical examples. As usual, we associated relations
to fuzzy subgroup and fuzzy ideal. Consequently, right and left cosets modulo a fuzzy relation were
introduced. This work and the our previous works can be considered as a continuation of investigations
initiated by Abu Osman and Antony in the 1980s. Toward our investigation, we have in mind that by
introducing these new definitions, the results that we can get should represent a real generalization
of classical and commonly known concepts of algebra.
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1. INTRODUCTION

All the work elaborated on the theory of fuzzy sets as well as the various themes that
were generated or associated began after the introduction of the foundations of this theory
by L. A. Zadeh in 1965 [1]. Fuzzy logic was the first concept that attracted a large number
of scientists. Once the foundations of this logic have been established, a number of research
directions have emerged. In particular and over the past three decades, many ideas have
been developed to transcript classical algebraic structures in the fuzzy sets theory’s frame.
Among the main issues studied and developed there are the concepts of fuzzy ideals and
fuzzy subgroups. In addition, these areas have taken an important and intensive interest in
fuzzy mathematical research activity.

More precisely and briefly, the fuzzy groups were introduced by Azriel Rosenfeld in his
paper [2]. The concept of ideals of a ring in the fuzzy frame was introduced by Liu in [3] and
in [4], he investigated some other questions related to fuzzy ideals and got important new
results. The notions of primarily, maximality and radical of fuzzy ideal have been introduced
by Malik in [5,6]. Regular and Noetherian rings were characterized in [7] by Mukherjee and
Sen. Their study gave rise to an entire characterization of all prime fuzzy ideal of the ring Z.
For their contribution to these topics, Kuroaka and Kuroki in [8] and Kumar in [9], studied
fuzzy quotient rings and the results obtained have been used by Lee in [10] to characterize
fuzzy Artenian and fuzzy Noetherian rings.

The present paper constitutes a logical follow-up to the paper [11]. We not only introduce
new definitions of fuzzy relation modulo a fuzzy subgroup (resp. modulo a fuzzy ideal) and
their application, but also we continue our investigation started in [12]. We got many results
that can be considered as a generalization of the same results obtained in crisp frame. We
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start by recalling some fuzzy basic concepts for the sake of completeness. We point out that
our introduced definitions are more realistic than the classical ones. We have illustrated our
results with various numerical examples.

2. PRELIMINARIES

2.1. The indispensable in fuzzy set theory

This section is devoted to recalling certain classical definitions related to the theory of
fuzzy sets and to certain well-known properties of these sets. All the concepts presented in
this subsection can be found in any document related to this topic (see [13-16]), however [1]
can be seen as the keystone of this theory.

Definition 1. [1] Any mapping v: X — [0, 1] is called fuzzy set on the universe X. The
mapping ~ is also called the membership function. The real number 7(z) is the grade of
membership of z to X.

For a finite set X = {x1,...,x,}, the fuzzy set (X, ) is often denoted by {y(z1),...,v(zn)}.

Definition 2. [12] Let « be a fixed real number in [0, 1], the mapping v: X — [0, 1], satisfying
~v(x) = a for all x € X is called constant fuzzy set and will be denoted in the sequel by a.
When o =0, « is the empty fuzzy set and when a = 1, ~ is the whole set X.

2.2. Fuzzy operations

Definition 3. [12] A mapping * : X x X x X — [0,1] is a fuzzy binary operation on a set
X if Va,b € X, there exists a unique element ¢ € X satisfying *(a,b,c) = 1.
Let * be a fuzzy binary operation on a set X, then

1. * is commutative if for all a,b,c € X, *(a,b,c) = (b, a,c).

2. x is associative if Vz,y,z,a,b € X, *(z,y,a) > 0, *(y,z,b) > 0 and
x(a, z,a) = x(x,b, B) imply a =  for any «, 5 € X.

3. An element e of X is an identity for x if *(x, e, x) = x(e, x,z), Vo € X.

Proposition 4. [12] If e is an identity of a set X for a fuzzy binary operation * and if
x(x,e,x) =1, Vr € X, then e is unique.

Proof. Suppose that e, e’ are two identities of X for x then 1 = (', e,€’) = f(e,€',€’) and
1 =x(e,e,e) = (e, e,e) so x(¢/,e,e') = *(¢/,e,e) = 1. But there exists a unique element x
such that *(¢,e,z) = 1 and then e = €. ]
Definition 5. [12] Let x: F x E x E — [0,1] be a fuzzy operation on a set F and e be the

unique identity of E for *. An element z € E is symmetrizable if *(x, 2, e) = *(2', x, e) for
some 2’ € E.

Definition 6. [12] Let « : E x E' x E — [0,1] be a fuzzy operation on a set E and e be the
unique identity of E for x. An element 2’ € E if it exists such that *(z,2’,e) = x(2/, z,¢) = 1
is called a symmetric element of x € F.

Definition 7. [12] Let x : E x E X E — [0,1] be a fuzzy operation on a set E. An element
a € E is left (resp. right) regular or cancelable if for any elements x,y,z € E, the equality
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x(a,x,z) = *(a,y, z) (resp. *(z,a,z) = *(y,a, z)) implies x = y. It is regular or cancelable if
it is left and right regular.

Proposition 8. [12] If a fuzzy operation x on E posses an identity e. Any left (resp. right)
reqular element has at most one symmetric element.

Proof. Suppose that an element x is left regular and has two symmetric 2’ and 2. We then

have x(z,2',e) = f(2',x,e) = x(x,2”,e) = *(2”,x2,e) = 1 and consequently *(z,z’,e) =
x(z,2”,e) = 1. The last equality implies that ' = 2”. For the right regularity the proof is
trivial. |

2.3. Revisiting fuzzy subgroups and fuzzy ideals

To make the present paper more readable, we start by recalling the results obtained for
these topics in the papers [12] and [11]. The groups are not necessary commutative but rings
considered are supposed to be commutative and unitary if no restriction is specified.

Definition 9. [11,12] Let (G,*) be a group, e be its identity. A fuzzy subset v of G is a
fuzzy subgroup of G if and only if

L v(e) =1,
2. Va,b € G, v(a*b) > min{’Y(a)aV(b)}a
3. Va € G; v(a) =~v(a™").

It is said normal if in addition y(a * b) = y(b*a), Va,b € G.
Proposition 10. [11] v is a normal fuzzy subgroup of the group G if and only if

y(a*bxa™t) =~(b), Ya,b e G.
Proof. If v(axb) =~v(bxa),Va,b € G, then
Y(axbxa™t) =@t x (axb)) =v((a" xa) xb) = y(exb) = v(b), Va,b € G.
Conversely, if Ya,b € G, y(a*bxa™*) = ~(b), then

Y(axb) =~(axbraxa ) =~(ax(bxa)xa ') =~(bxa), Ya,be G.

[
Definition 11. [11] (Classical definition) Let (R, +, X) be a ring and Op its identity for +,
a fuzzy subset v of R is called a fuzzy ideal of R if

1. A(0g) =1,
2. y(a) =~(~a),
3. y(a+b) > min{vy(a),v(b)}, Va,b € R,

4. y(a x b) > max{vy(a),y(b)}, Ya,b € R.
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By changing the last condition in the above definition we get another definition of a fuzzy
ideal of a ring. It will be as follows.

Definition 12. [11] (New definition) Let (R, +, X) be a ring and Op its identity for +, a
fuzzy subset v of R is a right (respectively left) fuzzy ideal of R if

1.

2.

3.

4.

v(0R) =
(a) =~(-a),
v(a +b) > min{~y(a),v(b)}, Ya,b € R,

v(a) >0 — v(a x b) > 0 (respectively (b x a) > 0), Va,b € R.

It is said proper if v(1) # 1.
Remark 1.

1.

It is easy to see that the second definition is less restrictive than the first one. Moreover,
if v verifies the axioms of the first definition, it verifies the axioms of the second
definition. The converse is false.

. Since if we assume that 7 is an ideal such that (1) > a € [0, 1], we have necessary

v(z) = v(x.1) > sup{y(1),7(z)} > a, Vz € X. Thus, if @ = 1 then v becomes the
constant fuzzy set 1 (the whole ring). Consequently, the terminology of proper ideal
means that (1) # 1.

The membership function « indicates the behavior of the elements of the ring with
respect to the ideal, it is trivial that in the definition of fuzzy ideal commonly used,
the product a.b is closer to the ideal than each of the elements a and b. In counter
part in our introduced definition the element a.b is close to the ideal (i.e. vy(a.b) > 0)
if one of the elements a or b is close to the ideal. As one can notice that this definition
is more realistic and coincides with the definition of crisp ideal when ~ takes its values
in {0,1}.

3. MAIN RESULTS

Axioms 2 and 3 in the above definition can be combined in only one axiom and we get.

Proposition 13. A fuzzy ideal is a fuzzy subset vy of a ring (R, +,.) that verifies

1.

7(0r) =1,

2. v(a —b) > min{~(a),v(b)}, Ya,b € R,

3. y(a) >0—y(axb)=v0bxa) >0, VYa,b € R.

Proof. Tt is clear that Definition 17 implies the 3 axioms of the proposition. Conversely, from
second axiom of the proposition, we have

1.

For any a € R, ~(a) = 7(0 — (=a)) =2 min{y(0),7(=a)} = v(-a).
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2. For any a € R, v(—a) = v(0 — a) > min{~v(0),v(a)} = v(a).

So (a) = ().
On the other hand y(a + b) = y(a — (—=b)) > min{vy(a),y(—b)} = min{~vy(a),v(d)}. [

Remark 2. If (R,+,.) is a commutative ring, any right (resp. left) fuzzy ideal is a fuzzy
ideal. As we will be only concerned in the sequel by such rings, the meaning of fuzzy ideal
is according to the previous definition.

Proposition 14. If v is a proper fuzzy ideal of a ring R, then vy(a) = 0 for any invertible
element a € R.

Proof. The proof is straightforward.

Definition 15. A fuzzy ideal is said prime if v # 1, v(a x b) > 0 — ~y(a) > 0 or v(b) >
0, Ya,b € R.
It is clear, since v # 1 that (1) = 0.

The following proposition characterizes some type of fuzzy prime ideals.

Proposition 16. Let « € |0,1[. If v is a fuzzy ideal of an integral domain R satisfying,

1 ifta=0
v(a) =< 0 if a is invertible
«a  otherwise,

then v is fuzzy prime ideal.

Proof. Suppose that a,b € R are such vy(ab) > 0 so ab is not invertible.

1. If ab = 0 then, since R is an integral domain, a = 0 or b = 0 and consequently v(a) > 0
or y(b) > 0.

2. Assume now that ab # 0. We have to distinguish three cases:

(a) If a # 1 and a is not invertible, then ~(a) > 0.
(b) If a =1, then v(b) = v(1b) = v(ab) > 0 and the result follows.

(c) If @ is invertible, then there exists ¢ € R such that ca = 1. On the other hand
since 7y is an ideal, y(ab) > 0 — ~(c(ab)) > 0. But 0 < v(c(ab)) = v((ca)b) =
~v(1b) = v(b) and the result follows.

Let us consider the following example.

Example 17. Consider the fuzzy ideal v on the ring (Z/8Z,+,.) given by

a |0]1] 2 [3[4]5]6]7
@) [ 1[0][05][0[05|0]05]0

From the above proposition, ~ is fuzzy prime ideal. Moreover, one can check that v is
not maximal. We can also prove that v is prime directly. Indeed, let us draw the tables
corresponding to y(a + b) and «y(ab) for different values of a and b in Z/8Z.
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Table 1. Values of v(a+b), a,b € Z/8Z

aNb | 0 1 2 3 4 ) 6 7
0 1 0 |05 0 |05] 0 |05] O
1 0 |05 0 |05 0 |05] O 1
2 05| 0 |05 0 |05] O 1 0
3 0 |05 0 |05] O 1 0 |05
4 05| 0 05| O 1 0 05| O
) 0 |05 O 1 0 |05 0 |05
6 05| 0 1 0 |05 0 |05] O
7 0 1 0 |05 0 |05| 0 |05

Table 2. Values of vy(a.b), a,b € Z/8Z

aNb | 0 2 3 4 ) 6 7
0 111 1 1 1 1 1 1
1 110 (05 0 05| 0 05| 0
2 1105(05]05| 1 |05]05]|0.5
3 110 (05 0 05| 0 |05 O
4 1105 1 (05| 1 |05 1 |05
) 110 (05] 0 05| 0 |05 O
6 1105(05]05| 1 |05]05]|0.5
7 110 (05 0 |05 0 05| 0

It is clear that 7 is a fuzzy ideal. Moreover ~y(a.b) > 0 implies y(a) > 0 or v(b) > 0. So
v is a fuzzy prime ideal.
Now if define 8 to be the following fuzzy ideal of Z/8Z

a (0|1 2 [3]4[5]6 |7
Blay|1]0]07][0][07][0][07]0

we have v < 8 and  # 1. So 7 is not maximal according to Definition 21 [17].
Example 18. [Counter example| Let 3 be the following fuzzy set of Z/8Z.

a |0|1] 2 [3[4[5]6 |7
v@) [1]0]02]0[04[0]07]0

Since 0.4 = (2 x 6) < 0.7 = max{/(2), 5(6)}, then [ is not a fuzzy ideal of Z/8Z.

Next, we recall again some results obtained in [12], improve some others, and introduce
new results and examples.
Proposition 19. [12] If v is a proper fuzzy ideal of R then for all 0 € [0,1] the set I =
{z € R | v(x) > 0} is an ideal of the ring (R, +, X).

If in addition, if Ya,b € R, a x b € I implies y(a x b) = vy(a).y(b) then I is a prime ideal
of the ring R.

Proposition 20. [12] Let (R,+, x) be a ring and O be its identity for +, the intersection
a N of two fuzzy ideals a and v of R is a fuzzy ideal of R.



REVISITING SOME FUZZY ALGEBRAIC STRUCTURES 219

In the sequel, if « is a fuzzy set of R, we define for any n € N, o™ by Vz € R, o"(x) =

(afx))".
With a view to improving the definition of fuzzy radical introduced in [11,12], we give
the following proposition.

Proposition 21. Let v be a fuzzy ideal (in classical sense) of a ring R and let §: R — [0, 1]
defined by f(x) = sup{vy(z")} such that 5(a,b) > min{SB(a),3(b)}. Then,
neN

1. B is an ideal,
2. If v is prime then [ is also prime,

3. If v is maximal, then B = ~.
Proof
1. (a) B(0) = sup{y(0")} =~(0) = 1.
neN

(b) (=) = sup{3((~=)")} = sup{3((-1)"")} sup{(x")}) = H(z) since
A~ = ("), Vn e N,

(c) Assume that 5(z) > 0 and let y € R, then

Blzy) = Sup{'y((:vy) )} = Sup{v( y")} > SUP(maX{’Y( "), v(y™)}) > 0, other-

wise (z ) =0, Vn e N and then sup(max{’y( ™)} = 0. This is a contradiction.
neN

2. We first notice that (1) = Sup{’y(ln)} =v(1)=0,s0 B8 # 1.
neN
Let z,y € R such that S(zy) > 0, so sup{y((zy)")} = sup{y(z"y")} > 0 and then
eN neN

n
there exists mg such that y(z™°y™°) > 0 and since + is prime, we obtain, y(z"°) > 0
or v(y™°) > 0 and consequently sup{’y( ™)} or sup{'y( ™)} > 0 and finally 5(z) > 0 or

neN neN
B(y) > 0 and g is prime.

3. Notice that Vx € R, vy(z) < f(x). Since ~ is maximal § = v or 8 = 1, but we have

proved that 5 # 1 and the conclusion follows. .

Example 22. Let v be the fuzzy ideal given by Example 17, if 8 is the fuzzy set given by

B(x) = sup(y(z™)), then we have 5(a.b) > min{S(a), 3(b)}. By Proposition 21, /3 is not only
neN
a fuzzy ideal but also prime one. Moreover it is simple to check that § = v but as we have

said previously, v is not maximal and then the converse of the third assertion in Proposition
21 is not true.

In Proposition 36 of [12] , we supposed that a must be in the center Z(R) of the ring R.
Next, we show that this condition is not necessary.

Proposition 23. Let v be a fuzzy ideal on a ring R and a be an element of R.

1. The fuzzy set v, : R — [0,1] defined by vo(z) = v(a.z) is a fuzzy ideal of R.
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2. If v is prime, then v, is prime.

3. If v is mazimal, the ideal vy, is equal to v or to 1. Indeed if there exists x € R such that
Ya(x) =1 then Vx € R, ~v.(x) = v(z).

Proof

max{y(azx),v(y)} > v(azx) = v4(z) > 0, so the result follows.

2. Suppose that x,y € R are such that v,(zy) > 0, then y((ax)y) = vy(a(zy)) > 0 and
since 7y is prime, we get y(ax) > 0 or y(y) > 0. If y(ax) = 0, as y(y) > 0 and
v(ay) > max{vy(a),v(y)} > 0 and then 7, is prime.

3. Notice that for all x € R, ~,(z) > max{vy(a),v(z)} > ~v(z). Since ~ is maximal, we

have either v, = 1 or v, = . Now suppose that v, # 1, then ~, = v.
|

Example 24. Let « be the fuzzy ideal given by Example 17. Define the fuzzy sets v;c(23 43
by
i ZJ8Z — [0,1], x — vi(z) =v(i x z).

The corresponding tables of the fuzzy sets are

a |0] 1 ]2 ][3]4]5]6]7
v2(a) [1]05[05]05| 1 |05]05]05
v3@) 1] 0 [05] 0 |05] 0 |05 0
(@ [1]05] 1 |05 1 |05 0 |05

By Proposition 23, for i € {2,3,4}, ~; is a prime ideal. As for i € {2,3,4}, 7; is neither
equal to v nor to 1, v is not maximal, which confirms the non-maximality of « as proved in
Example 17. Moreover, it is simple to check that v3 < 5. The prime ideals v4 and 72 or the
prime ideals 4 and 73 are incomparable.

Definition 25. Let a be an element of the commutative ring (R, +,.) and « be a fuzzy ideal
of R.

1. ~y is invariant by the homothecy b, if by () = 7, where ho(7) = 7.

2. v is invariant by the translation 7, if 7,(y) = 7, where 7,(7)(z) = vy(a + ).

Proposition 26. Let a be an element of the commutative ring (R, +,.) and 7y be a fuzzy ideal
of R.

1. If v is invariant by the translation 7, then v, = 1.
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2. If v is invariant by the homethecy b, then vy(a) = 0.
Proof
1. If ~ is invariant by the translation 7, then y(a + ) = v(x) for all z € R so
V(@) =~(a+0) =~(0) = L.
On the other hand, 1 > ~,(z) = v(axz) > max{vy(a),v(z)} = vy(a) = 1 and then ~, = 1.

2. If ~ is invariant by the homethecy b, then v(ax) = ~v(x), Vx € R, so y(a) <
max{vy(a),v(x)} < ~v(ax) = y(z), Vx € R. Consequently, for z = 1, we get y(a) <
v(1) = 0. The result follows. -

Example 27. Let r, € {0,1,2} be the remainder of the euclidian division (long division
of x by 3 in Z. If for any element = € Z, we set

(z) = 1 ifr, =0
M= 1/4 iy #£0,
v is then a fuzzy ideal of Z in the sense of Definition 16.

First, let us give explicitly the values taken by v(z + y) and v(xy) for different values of
rz and 7.

Table 3. Values of y(x +y), ry, 7y € {0,1,2}

raNry [0 [1]2 Yra)\(ry) | 1 [ 1/4 ] 1/4
0 [o0|1]2]_ 1 1 | 1/4|1/4
1 |1]2]0|"” 1/4 1a1/a| 1
2 |2[0]1 1/4 14 1 |1/4

Table 4. Values of y(zy), ry, 1y € {0,1,2}

ra\ry | 0| 1] 2 Y(ra)\y(ry) | 1| 1/4 | 1/4
0 [0/0]0]|— 1 1] 1 | 1
1 |o|1]2|"” 1/4 1 1/4 | 1/4
2 0|21 1/4 1] 1/4[1/4

We can prove directly that - is a proper fuzzy ideal of (Z, +,.).

1. By definition and since 0 = 0[3], then v(0) = 1.

2. From the equivalence x = 0[3] <= —z = 0[3], we deduce that y(z) = y(—z).
3. From Table 3, it is easy to see that y(z + y) > min{y(z),v(y)}, Vx,y € Z.

4. The inequality v(zy) > max{vy(z),v(y)}, Vx,y € Z can be deduced from Table 4.
The proof of Proposition 47 of [12] contains a mistake. Next, we recall the proposition
and give the adequate proof.

Proposition 28. [12] Let 6 €]0,1] be fized, a be an element of a commutative ring (R, +,.)
and v : R — [0, 1] be a mapping satisfying the following conditions.



222 RABAH KELLIL

@) i e=ay forsome yeR\{0}
3. () —{ 0 —~v(a) otherwise.

Then ~ s an ideal. -

0
Proof. Notice that since vy(a) > 50 We have vy(a) > 6 — v(a). Let us draw the tables giving

v(z 4+ y) and y(zy) for different values of x and y. Next, = ¢ (a) means that x cannot be
written as a product of ¢ and an element of R.

Table 5. Different values of x +y and ~(x +y), for z,y € R

Ny | 0 | ay | ¢{a) V(@) N\ (y) 1 v(a) | 0—~(a)
0 0 ay’ | ¢ (a) = 1 1 Y(a) | 6—9(a)
az’ | az’ | az | ¢(a) V(a) V(a) Y(a) | 0—~(a)
¢(a) | ¢(a) | ¢fa)| 7 0—~(a) | 0—~(a) | 0—(a) o
Table 6. Different values of zy and ~(zy), for z,y € R
a\y | 0] ay | ¢(a) Y@ N\v) | 1] v(a) | 0—5(a)
0 [0l 0] 0 |_ 1 1] 1 1
ar’ | 0| az | az | v(a) 1| v(a) v(a)
¢{a) | 0| az ? 0—~(a) |1/ ~(a) o

Since max{f# —~(a),0 —~y(a)} = min{d —~(a),0 —v(a)}, then @ > min{fd —~(a),0 —y(a)}
and o/ > max{f — v(a),0 — v(a)}, so the axioms v(z + y) > min{y(z),y(y)} and v(zy) >
max{vy(x),v(y)} are verified for all the possible values taken by ~v(x + y) and ~(xy) in the
last case in the tables. On the other hand, it is easy to show that v(—z) = v(z). [

Remark 3. If v(a) = 6 = 1, the fuzzy ideal v coincides with the principal ideal generated
by a in the ring R.
As an illustration of the above proposition, let us investigate an example on the ring Z.

Example 29. Let 72, 73, 76, 6 € [0,1] such that 76 > 72 V v3, 296 < 0. We define for
n € {2,3}

1 ifx=0
Yo(x) =< T if x € nZ\ {0}
0 — v, otherwise,
1 ife=0

0 — s if x either in 2Z \ 3Z or in 3Z \ 2Z
I} otherwise.

Y6(z) =

If 8 > max{0 — 72,6 — 3}, then 76 C 72 A 73.
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1. If z € 6Z, then ~4(x) = 6. But in this case, we also have x € 2Z and = € 3Z, so
v2(z) = 72 and y3(x) = 3 and from our conditions, we get

Y6(z) = v6 > max{ys,y3} = max{y2(z),y3(x)} > min{y2(x),v3(z)}.

2. If x ¢ 6Z and x € 3Z, then v5(x) = 0 — 76, y2(x) = 0 — ¥2, v3(x) = ¥3. From 25 < 0,
we deduce that v3 < v < 0 — .

On the other hand, 72 < 7% — 6 — 9% < 6 — 72 and then min{ys,0 — 2} = 7s.
Consequently, .
Y6(z) = 0 — v6 > 73 = min{y3(x),y2(z)}

3. The case where = ¢ 6Z and = € 27 can be proved by the same arguments as in 2).

4. Let x ¢ (2Z U 3Z). This case is trivial since
Y6(x) =0 =6 = f = min{d — 42,0 — 72} = min{rya(z),73(2)}.

3.1. Relation associated to a fuzzy subgroup

Definition 30. [12] A fuzzy relation R on a set X is a mapping R: X x X — [0, 1].
Definition 31. [12] A fuzzy relation R on a set X is:

1. Reflexive if Vz € X, R(x,z) = 1.
2. Symmetric if Vz, y € X, R(z,y) = R(y,x),

3. Transitive if Vz, y, z € X, R(z,y) > 0 and R(y,z) > 0 imply R(z,z) > 0 or equiva-
lently R(x,z) > max{R(x,y), R(y,=z)}.

4. A fuzzy relation R on a set X is an equivalence relation on X if it is reflexive, symmetric
and transitive.

Proposition 32. Let v be a fuzzy subgroup of a group G. The fuzzy relation R: G X G —»
[0, 1] denoted by R+ and defined by

Vm, y € G? R«,(:):,y) = V(xy_l)

1s an equivalence relation on G called the right fuzzy relation modulo the fuzzy subgroup .

Proof
1. Reflexivity: if Vo € X, Ry (z,2) = y(zz™") = y(e) = 1.
2. Symmetry: assume that x, y € X, then

Ry(z,y) =y ") =v((zy ™)) =~(yz™") = Ry (y, v).

3. Transitivity: let , y, z be elements of X, such that R,(z,y) > 0 and R,(y,z) > 0.
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=v((zy ") (yz")) = max{y(zy "), y(yz ")) = max{R,(z,y), Ry(y,2)} >0
so Ry(x,z) > 0. [
Example 33. Let G be the Klein four-group Z/27Z x 7 /27, the fuzzy set 7 given by
7(0,0) = 1, 4(0,1) = 0.7, 7(1,0) = 0.5, 7(1,1) = 0.5

is a fuzzy subgroup of G. If we set Vz, y € G, Ry(z,y) = y(x—y), we have R, (x,y) = y(z+y)
and the table of its values will be given by Table 7.

Table 7. Values of R,(a,b) =y(a—0b), a,b € Z/27 x 7./27

a~b | (0,0) [ (0,1) [ (L,o) | (L,1)
00 1 |07 [ 05 | 05

(01 [ 07 | 1T | 05 | 05
(100 05 | 05 | 1 | 07
(I, [ 05 | 05 | 07 | 1

Definition 34. Let v be a fuzzy subgroup of a group G and R, be the relation associated
to v by the previous proposition. For any = € G, the fuzzy set

Yo : G — [0,1], 12(y) = Ry(z,y) = v(zy™")

is called the right coset modulo R, of .
Notice that v, = 7.

Proposition 35. Let v be a fuzzy subgroup of a group G and R, be the relation associated to
7. The set of right cosets G/Ry = {7z, © € X}, modulo R, forms a partition of G, that is,
it satisfies:

1. For any x € G, v, # 0,
2. If for x,y € G, v2(y) =0 then v, Ny, =0,

3. If for x,y € G, vz(y) > 0 then Supp(vz) = Supp(vy),

4- U’Vx:l-

zeG
Proof

1. For any z € G we have y,(z) = y(zz~') = v(e) = 1 and the result follows.
2. Let z,y € G such that 7,(y) =0 and let z € G,
(72 N ) (2) = inf{7a(2), 7 (2)} = inf {7 (z27"), v (y=""}.
On the other hand,
0= 72(y)

=(xy™") = (@27 (zy ™)) = inf{ry(zz7),v(2y™ )} = inf{y(x2™1), v (2"},
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since y(zy™ ) = v((zy~H)™!) = y(yz~1). We then deduce that
inf {7, (2), 7 (2)} = inf{y(zz71), (257 1)} = 0
and the intersection is reduced to the null fuzzy set 0.

Let x,y € G such that v,(y) > 0 and z € G.
Assume that z € Supp(q;) then y(zz™ ') = 4,(2) > 0, but

(z) =@zt = y(yz ezt > inf{y(yz '), y(zz )} = inf{y(zy 1), v(zz)} > 0

since both y(zy~') and ~(xz!) are strictly positive. Consequently, v,(z) > 0 and
z € Supp(vy). The same argument can be used to prove that

z € Supp(vy) = z € Supp(vz) > 0.

For any y € G, we have 1 = v, (y) < ( U ~z)(y), so the result follows. [
el

Example 36. G will be the Klein four-group Z/2Z x Z/2Z, ~ the fuzzy subgroup given
by v(0,0) = 1, v(0,1) = 0.5, v(1,0) = 0, v(1,1) = 0 and the relation R is defined by
V.%', Yy € G7 R"/(may) = 7<m +y)

Table 8. Values of v, for a € Z/2Z x 7./2Z

0,0) [ (0,1) [ (1L0) | (L)
7(070) 1 0.5 0 0
7(071) 0.5 1 0 0
7(170) 0 0 1 0.5
’}/(171) 0 0.5 0 1
U | 1 1 1 1
zeG

We remark that

1.

2.

Y(0,0) = 7-

Every time 7,(b) = 0, one has v, N7, = 0. For example, we have v 1y(1,0) = 0 and
Y0,1) N Y(1,0) = 0.

Supp(v,) for any x € Z/27 x Z/27 is exactly Z/27 x 7./27.

UVJ::L

zeG

Proposition 37. Let v be a normal fuzzy subgroup of the group G. If z € Supp(vy,) and
t € Supp(ry), then zt € Supp(Vay)-
Proof. Since v is normal, we have y(z(yt 1)z71) = v(yt 1)) for any y, 2,t € G.

On the other hand,
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Yay(2t) = y(wyt ™27 = (e ayt 2T = (27 (2(yt )2 T)
> inf{y((22 ),y ()=} = inf (@21, At~} = inf{r(2), 3 (1)} > 0
since z € Supp(v;) and t € Supp(yy). Finally, 2t € Supp(vay)- [ |
Definition 38. Let 7 be a fuzzy subgroup of a group G. We can define a relation , R defined
on G called the left fuzzy relation modulo v by

Va,y € G, yR(z,y) =v(y 'z).

The left fuzzy coset of x will be denoted by ,~. Therefore,
27 G —[0,1], 27(y) = R(z,y) = Ry(y"a™h) =(y 'a).

Proposition 39. Let v be a normal fuzzy subgroup of a group G. For any x € G, vz =z 7
(i.e., the fuzzy left coset of x is equal to the fuzzy right coset of x).

Proof. Let y € G, then

Yey) =v(y™") =v(yz™") =y@ (yz))z) = v y) = vy 2) =2 ().

We can also conclude that G/R, = G/, R. [

Definition 40. Let us denote by F(G) and F(G') the sets of fuzzy sets on G and G’
respectively. If u € F(G) and v € F(G'), we define the mapping

p@y:GxG — (0,1, (z,y) — p@)(y).
If AcC F(G), B C F(G'), by extension we define A® B={u®~, u€ A, ve B}.
Definition 41. Let v be a fuzzy subgroup of a group G. We define a binary operation on
G/R, x G/R, by
®y: G/RyxG/R, — G/R,®G/R,
(V> V) — Vo Ry Yy : GxG — [0,1]
(z,t) = Ya(2) (1)
The mapping v, ®- v, will denotes by vVzq.y-
Proposition 42. If 2’ € Supp(v;) and y' € Supp(yy) then

Supp(Vaw.y) = Supp(Varc.,y')-

)
Proof. Let (z,t) € Supp(yze,y) then v.(2)yy(t) > 0, so 7.(2) > 0 and ~,(t) > 0. On the

other hand,

1 (2) = A(@'z7) = y(@e ez > minfy(@e ™), A2z > 0

since y(x'z ™) = y(z2’™!) > 0 (2 € Supp(v,)) and y(zz~') > 0. By the similar arguments,
we prove that v, () > 0. As (Vere,y)(2,t) > min{yz(2), 7, (t)} > 0, we can conclude that
(2,t) € Supp(Vr®.,) and then

Supp(Vaw.y) C Supp(Varg,y)-
The other inclusion is then trivial. ]
Example 43. Coming back to Example 36, let 2 = (1,1), 2/ = (1,1), y = (0,1) and
y' = (0,0). It is easy to see from the tables that 2’ € Supp(v.), y' € Supp(7y). On the other
hand, Supp(yze,y) = {((0,1),(0,1))} = Supp(Yarc.,y )-
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4. CONCLUSION

We have revisited some concepts that we investigated in our previous works. We refined

some of the results that we thought were a bit confusing or a little unclear. As a second goal,
we introduced the notion of fuzzy relation modulo a fuzzy subgroup and then fuzzy right
coset and fuzzy left coset modulo a subgroup. We proved that when the fuzzy subgroup is
normal, the fuzzy right and fuzzy left cosets are equal.

Our future interest is to investigate the fuzzy quotient set obtained from a ring and a

fuzzy relation modulo a fuzzy ideal. More exactly, we want to answer the question whether
the fuzzy quotient set can be endowed with a fuzzy ring structure.
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