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REVISITING SOME FUZZY ALGEBRAIC STRUCTURES
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Abstract. Following our investigations on particular fuzzy algebraic structures, we revisit fuzzy

subgroups and fuzzy ideals and introduce some numerical examples. As usual, we associated relations

to fuzzy subgroup and fuzzy ideal. Consequently, right and left cosets modulo a fuzzy relation were

introduced. This work and the our previous works can be considered as a continuation of investigations

initiated by Abu Osman and Antony in the 1980s. Toward our investigation, we have in mind that by

introducing these new definitions, the results that we can get should represent a real generalization

of classical and commonly known concepts of algebra.
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1. INTRODUCTION

All the work elaborated on the theory of fuzzy sets as well as the various themes that
were generated or associated began after the introduction of the foundations of this theory
by L. A. Zadeh in 1965 [1]. Fuzzy logic was the first concept that attracted a large number
of scientists. Once the foundations of this logic have been established, a number of research
directions have emerged. In particular and over the past three decades, many ideas have
been developed to transcript classical algebraic structures in the fuzzy sets theory’s frame.
Among the main issues studied and developed there are the concepts of fuzzy ideals and
fuzzy subgroups. In addition, these areas have taken an important and intensive interest in
fuzzy mathematical research activity.

More precisely and briefly, the fuzzy groups were introduced by Azriel Rosenfeld in his
paper [2]. The concept of ideals of a ring in the fuzzy frame was introduced by Liu in [3] and
in [4], he investigated some other questions related to fuzzy ideals and got important new
results. The notions of primarily, maximality and radical of fuzzy ideal have been introduced
by Malik in [5,6]. Regular and Noetherian rings were characterized in [7] by Mukherjee and
Sen. Their study gave rise to an entire characterization of all prime fuzzy ideal of the ring Z.
For their contribution to these topics, Kuroaka and Kuroki in [8] and Kumar in [9], studied
fuzzy quotient rings and the results obtained have been used by Lee in [10] to characterize
fuzzy Artenian and fuzzy Noetherian rings.

The present paper constitutes a logical follow-up to the paper [11]. We not only introduce
new definitions of fuzzy relation modulo a fuzzy subgroup (resp. modulo a fuzzy ideal) and
their application, but also we continue our investigation started in [12]. We got many results
that can be considered as a generalization of the same results obtained in crisp frame. We

Corresponding author.
E-mail addresses: kellilrabah@yahoo.fr.

kellilrabah@yahoo.fr


214 RABAH KELLIL

start by recalling some fuzzy basic concepts for the sake of completeness. We point out that
our introduced definitions are more realistic than the classical ones. We have illustrated our
results with various numerical examples.

2. PRELIMINARIES

2.1. The indispensable in fuzzy set theory

This section is devoted to recalling certain classical definitions related to the theory of
fuzzy sets and to certain well-known properties of these sets. All the concepts presented in
this subsection can be found in any document related to this topic (see [13–16]), however [1]
can be seen as the keystone of this theory.

Definition 1. [1] Any mapping γ : X → [0, 1] is called fuzzy set on the universe X. The
mapping γ is also called the membership function. The real number γ(x) is the grade of
membership of x to X.

For a finite setX = {x1, . . . , xn}, the fuzzy set (X, γ) is often denoted by {γ(x1), . . . , γ(xn)}.
Definition 2. [12] Let α be a fixed real number in [0, 1], the mapping γ : X → [0, 1], satisfying
γ(x) = α for all x ∈ X is called constant fuzzy set and will be denoted in the sequel by α.
When α = 0, γ is the empty fuzzy set and when α = 1, γ is the whole set X.

2.2. Fuzzy operations

Definition 3. [12] A mapping ∗ : X ×X ×X → [0, 1] is a fuzzy binary operation on a set
X if ∀a, b ∈ X, there exists a unique element c ∈ X satisfying ∗(a, b, c) = 1.

Let ∗ be a fuzzy binary operation on a set X, then

1. ∗ is commutative if for all a, b, c ∈ X, ∗(a, b, c) = ∗(b, a, c).

2. ∗ is associative if ∀x, y, z, a, b ∈ X, ∗(x, y, a) > 0, ∗(y, z, b) > 0 and
∗(a, z, α) = ∗(x, b, β) imply α = β for any α, β ∈ X.

3. An element e of X is an identity for ∗ if ∗(x, e, x) = ∗(e, x, x), ∀x ∈ X.

Proposition 4. [12] If e is an identity of a set X for a fuzzy binary operation ∗ and if
∗(x, e, x) = 1, ∀x ∈ X, then e is unique.

Proof. Suppose that e, e′ are two identities of X for ∗ then 1 = ∗(e′, e, e′) = f(e, e′, e′) and
1 = ∗(e, e′, e) = ∗(e′, e, e) so ∗(e′, e, e′) = ∗(e′, e, e) = 1. But there exists a unique element x
such that ∗(e′, e, x) = 1 and then e = e′. ■

Definition 5. [12] Let ∗ : E × E × E → [0, 1] be a fuzzy operation on a set E and e be the
unique identity of E for ∗. An element x ∈ E is symmetrizable if ∗(x, x′, e) = ∗(x′, x, e) for
some x′ ∈ E.

Definition 6. [12] Let ∗ : E × E × E → [0, 1] be a fuzzy operation on a set E and e be the
unique identity of E for ∗. An element x′ ∈ E if it exists such that ∗(x, x′, e) = ∗(x′, x, e) = 1
is called a symmetric element of x ∈ E.

Definition 7. [12] Let ∗ : E × E × E → [0, 1] be a fuzzy operation on a set E. An element
a ∈ E is left (resp. right) regular or cancelable if for any elements x, y, z ∈ E, the equality



REVISITING SOME FUZZY ALGEBRAIC STRUCTURES 215

∗(a, x, z) = ∗(a, y, z) (resp. ∗(x, a, z) = ∗(y, a, z)) implies x = y. It is regular or cancelable if
it is left and right regular.

Proposition 8. [12] If a fuzzy operation ∗ on E posses an identity e. Any left (resp. right)
regular element has at most one symmetric element.

Proof. Suppose that an element x is left regular and has two symmetric x′ and x′′. We then
have ∗(x, x′, e) = f(x′, x, e) = ∗(x, x′′, e) = ∗(x′′, x, e) = 1 and consequently ∗(x, x′, e) =
∗(x, x′′, e) = 1. The last equality implies that x′ = x′′. For the right regularity the proof is
trivial. ■

2.3. Revisiting fuzzy subgroups and fuzzy ideals

To make the present paper more readable, we start by recalling the results obtained for
these topics in the papers [12] and [11]. The groups are not necessary commutative but rings
considered are supposed to be commutative and unitary if no restriction is specified.

Definition 9. [11, 12] Let (G, ⋆) be a group, e be its identity. A fuzzy subset γ of G is a
fuzzy subgroup of G if and only if

1. γ(e) = 1,

2. ∀a, b ∈ G, γ(a ⋆ b) ≥ min{γ(a), γ(b)},

3. ∀a ∈ G; γ(a) = γ(a−1).

It is said normal if in addition γ(a ⋆ b) = γ(b ⋆ a), ∀a, b ∈ G.

Proposition 10. [11] γ is a normal fuzzy subgroup of the group G if and only if

γ(a ⋆ b ⋆ a−1) = γ(b), ∀a, b ∈ G.

Proof. If γ(a ⋆ b) = γ(b ⋆ a),∀a, b ∈ G, then

γ(a ⋆ b ⋆ a−1) = γ(a−1 ⋆ (a ⋆ b)) = γ((a−1 ⋆ a) ⋆ b) = γ(e ⋆ b) = γ(b), ∀a, b ∈ G.

Conversely, if ∀a, b ∈ G, γ(a ⋆ b ⋆ a−1) = γ(b), then

γ(a ⋆ b) = γ(a ⋆ b ⋆ a ⋆ a−1) = γ(a ⋆ (b ⋆ a) ⋆ a−1) = γ(b ⋆ a), ∀a, b ∈ G.

■
Definition 11. [11] (Classical definition) Let (R,+,×) be a ring and 0R its identity for +,
a fuzzy subset γ of R is called a fuzzy ideal of R if

1. γ(0R) = 1,

2. γ(a) = γ(−a),

3. γ(a+ b) ≥ min{γ(a), γ(b)}, ∀a, b ∈ R,

4. γ(a× b) ≥ max{γ(a), γ(b)}, ∀a, b ∈ R.
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By changing the last condition in the above definition we get another definition of a fuzzy
ideal of a ring. It will be as follows.

Definition 12. [11] (New definition) Let (R,+,×) be a ring and 0R its identity for +, a
fuzzy subset γ of R is a right (respectively left) fuzzy ideal of R if

1. γ(0R) = 1,

2. γ(a) = γ(−a),

3. γ(a+ b) ≥ min{γ(a), γ(b)}, ∀a, b ∈ R,

4. γ(a) > 0 → γ(a× b) > 0 (respectively γ(b× a) > 0), ∀a, b ∈ R.

It is said proper if γ(1) ̸= 1.

Remark 1.

1. It is easy to see that the second definition is less restrictive than the first one. Moreover,
if γ verifies the axioms of the first definition, it verifies the axioms of the second
definition. The converse is false.

2. Since if we assume that γ is an ideal such that γ(1) ≥ a ∈ [0, 1], we have necessary
γ(x) = γ(x.1) ≥ sup{γ(1), γ(x)} ≥ a, ∀x ∈ X. Thus, if a = 1 then γ becomes the
constant fuzzy set 1 (the whole ring). Consequently, the terminology of proper ideal
means that γ(1) ̸= 1.

3. The membership function γ indicates the behavior of the elements of the ring with
respect to the ideal, it is trivial that in the definition of fuzzy ideal commonly used,
the product a.b is closer to the ideal than each of the elements a and b. In counter
part in our introduced definition the element a.b is close to the ideal (i.e. γ(a.b) > 0)
if one of the elements a or b is close to the ideal. As one can notice that this definition
is more realistic and coincides with the definition of crisp ideal when γ takes its values
in {0, 1}.

3. MAIN RESULTS

Axioms 2 and 3 in the above definition can be combined in only one axiom and we get.

Proposition 13. A fuzzy ideal is a fuzzy subset γ of a ring (R,+, .) that verifies

1. γ(0R) = 1,

2. γ(a− b) ≥ min{γ(a), γ(b)}, ∀a, b ∈ R,

3. γ(a) > 0 → γ(a× b) = γ(b× a) > 0, ∀a, b ∈ R.

Proof. It is clear that Definition 17 implies the 3 axioms of the proposition. Conversely, from
second axiom of the proposition, we have

1. For any a ∈ R, γ(a) = γ(0− (−a)) ≥ min{γ(0), γ(−a)} = γ(−a).
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2. For any a ∈ R, γ(−a) = γ(0− a) ≥ min{γ(0), γ(a)} = γ(a).

So γ(a) = γ(−a).

On the other hand γ(a+ b) = γ(a− (−b)) ≥ min{γ(a), γ(−b)} = min{γ(a), γ(b)}. ■

Remark 2. If (R,+, .) is a commutative ring, any right (resp. left) fuzzy ideal is a fuzzy
ideal. As we will be only concerned in the sequel by such rings, the meaning of fuzzy ideal
is according to the previous definition.

Proposition 14. If γ is a proper fuzzy ideal of a ring R, then γ(a) = 0 for any invertible
element a ∈ R.

Proof. The proof is straightforward. ■

Definition 15. A fuzzy ideal is said prime if γ ̸= 1, γ(a × b) > 0 → γ(a) > 0 or γ(b) >
0, ∀a, b ∈ R.

It is clear, since γ ̸= 1 that γ(1) = 0.

The following proposition characterizes some type of fuzzy prime ideals.

Proposition 16. Let α ∈ ]0, 1[. If γ is a fuzzy ideal of an integral domain R satisfying,

γ(a) =


1 if a = 0
0 if a is invertible
α otherwise,

then γ is fuzzy prime ideal.

Proof. Suppose that a, b ∈ R are such γ(ab) > 0 so ab is not invertible.

1. If ab = 0 then, since R is an integral domain, a = 0 or b = 0 and consequently γ(a) > 0
or γ(b) > 0.

2. Assume now that ab ̸= 0. We have to distinguish three cases:

(a) If a ̸= 1 and a is not invertible, then γ(a) > 0.

(b) If a = 1, then γ(b) = γ(1b) = γ(ab) > 0 and the result follows.

(c) If a is invertible, then there exists c ∈ R such that ca = 1. On the other hand
since γ is an ideal, γ(ab) > 0 → γ(c(ab)) > 0. But 0 < γ(c(ab)) = γ((ca)b) =
γ(1b) = γ(b) and the result follows.

■

Let us consider the following example.

Example 17. Consider the fuzzy ideal γ on the ring (Z/8Z,+, .) given by

a 0 1 2 3 4 5 6 7

γ(a) 1 0 0.5 0 0.5 0 0.5 0

From the above proposition, γ is fuzzy prime ideal. Moreover, one can check that γ is
not maximal. We can also prove that γ is prime directly. Indeed, let us draw the tables
corresponding to γ(a+ b) and γ(ab) for different values of a and b in Z/8Z.
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Table 1. Values of γ(a+ b), a, b ∈ Z/8Z
a⧹b 0 1 2 3 4 5 6 7
0 1 0 0.5 0 0.5 0 0.5 0
1 0 0.5 0 0.5 0 0.5 0 1
2 0.5 0 0.5 0 0.5 0 1 0
3 0 0.5 0 0.5 0 1 0 0.5
4 0.5 0 0.5 0 1 0 0.5 0
5 0 0.5 0 1 0 0.5 0 0.5
6 0.5 0 1 0 0.5 0 0.5 0
7 0 1 0 0.5 0 0.5 0 0.5

Table 2. Values of γ(a.b), a, b ∈ Z/8Z

a⧹b 0 1 2 3 4 5 6 7
0 1 1 1 1 1 1 1 1
1 1 0 0.5 0 0.5 0 0.5 0
2 1 0.5 0.5 0.5 1 0.5 0.5 0.5
3 1 0 0.5 0 0.5 0 0.5 0
4 1 0.5 1 0.5 1 0.5 1 0.5
5 1 0 0.5 0 0.5 0 0.5 0
6 1 0.5 0.5 0.5 1 0.5 0.5 0.5
7 1 0 0.5 0 0.5 0 0.5 0

It is clear that γ is a fuzzy ideal. Moreover γ(a.b) > 0 implies γ(a) > 0 or γ(b) > 0. So
γ is a fuzzy prime ideal.

Now if define β to be the following fuzzy ideal of Z/8Z

a 0 1 2 3 4 5 6 7

β(a) 1 0 0.7 0 0.7 0 0.7 0

we have γ < β and β ̸= 1. So γ is not maximal according to Definition 21 [17].

Example 18. [Counter example] Let β be the following fuzzy set of Z/8Z.

a 0 1 2 3 4 5 6 7

γ(a) 1 0 0.2 0 0.4 0 0.7 0

Since 0.4 = β(2× 6) < 0.7 = max{β(2), β(6)}, then β is not a fuzzy ideal of Z/8Z.
Next, we recall again some results obtained in [12], improve some others, and introduce

new results and examples.

Proposition 19. [12] If γ is a proper fuzzy ideal of R then for all θ ∈ [0, 1] the set I =
{x ∈ R | γ(x) ≥ θ} is an ideal of the ring (R,+,×).

If in addition, if ∀a, b ∈ R, a× b ∈ I implies γ(a× b) = γ(a).γ(b) then I is a prime ideal
of the ring R.

Proposition 20. [12] Let (R,+,×) be a ring and 0R be its identity for +, the intersection
α ∧ γ of two fuzzy ideals α and γ of R is a fuzzy ideal of R.
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In the sequel, if α is a fuzzy set of R, we define for any n ∈ N, αn by ∀x ∈ R, αn(x) =
(α(x))n.

With a view to improving the definition of fuzzy radical introduced in [11, 12], we give
the following proposition.

Proposition 21. Let γ be a fuzzy ideal (in classical sense) of a ring R and let β : R −→ [0, 1]
defined by β(x) = sup

n∈N
{γ(xn)} such that β(a, b) ≥ min{β(a), β(b)}. Then,

1. β is an ideal,

2. If γ is prime then β is also prime,

3. If γ is maximal, then β = γ.

Proof

1. (a) β(0) = sup
n∈N

{γ(0n)} = γ(0) = 1.

(b) β(−x) = sup
n∈N

{γ((−x)n)} = sup
n∈N

{γ((−1)nxn)} sup
n∈N

{γ(xn)} = β(x) since

γ((−1)nxn) = γ(xn), ∀n ∈ N.

(c) Assume that β(x) > 0 and let y ∈ R, then

β(xy) = sup
n∈N

{γ((xy)n)} = sup
n∈N

{γ(xnyn)} ≥ sup
n∈N

(max{γ(xn), γ(yn)}) > 0, other-

wise γ(xn) = 0, ∀n ∈ N and then sup
n∈N

(max{γ(xn)} = 0. This is a contradiction.

2. We first notice that β(1) = sup
n∈N

{γ(1n)} = γ(1) = 0, so β ̸= 1.

Let x, y ∈ R such that β(xy) > 0, so sup
n∈N

{γ((xy)n)} = sup
n∈N

{γ(xnyn)} > 0 and then

there exists m0 such that γ(xm0ym0) > 0 and since γ is prime, we obtain, γ(xm0) > 0
or γ(ym0) > 0 and consequently sup

n∈N
{γ(xn)} or sup

n∈N
{γ(yn)} > 0 and finally β(x) > 0 or

β(y) > 0 and β is prime.

3. Notice that ∀x ∈ R, γ(x) ≤ β(x). Since γ is maximal β = γ or β = 1, but we have
proved that β ̸= 1 and the conclusion follows.

■

Example 22. Let γ be the fuzzy ideal given by Example 17, if β is the fuzzy set given by
β(x) = sup

n∈N
(γ(xn)), then we have β(a.b) ≥ min{β(a), β(b)}. By Proposition 21, β is not only

a fuzzy ideal but also prime one. Moreover it is simple to check that β = γ but as we have
said previously, γ is not maximal and then the converse of the third assertion in Proposition
21 is not true.

In Proposition 36 of [12] , we supposed that a must be in the center Z(R) of the ring R.
Next, we show that this condition is not necessary.

Proposition 23. Let γ be a fuzzy ideal on a ring R and a be an element of R.

1. The fuzzy set γa : R → [0, 1] defined by γa(x) = γ(a.x) is a fuzzy ideal of R.
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2. If γ is prime, then γa is prime.

3. If γ is maximal, the ideal γa is equal to γ or to 1. Indeed if there exists x ∈ R such that
γa(x) = 1 then ∀x ∈ R, γa(x) = γ(x).

Proof

1. (a) γa(0) = γ(a.0) = γ(0) = 1,

(b) γa(−x) = γ(a(−x)) = γ(−(ax)) = γ(ax) = γa(x),

(c) γa(x+ y) = γ(a(x+ y)) = γ(ax+ ay) ≥ min{γ(ax), γ(ay)} = min{γa(x), γa(y)},

(d) Assume that γa(x) > 0, then for y ∈ R we have γa(xy) = γ(a(xy)) = γ((ax)y)) ≥
max{γ(ax), γ(y)} ≥ γ(ax) = γa(x) > 0, so the result follows.

2. Suppose that x, y ∈ R are such that γa(xy) > 0, then γ((ax)y) = γ(a(xy)) > 0 and
since γ is prime, we get γ(ax) > 0 or γ(y) > 0. If γ(ax) = 0, as γ(y) > 0 and
γ(ay) ≥ max{γ(a), γ(y)} > 0 and then γa is prime.

3. Notice that for all x ∈ R, γa(x) ≥ max{γ(a), γ(x)} ≥ γ(x). Since γ is maximal, we
have either γa = 1 or γa = γ. Now suppose that γa ̸= 1, then γa = γ.

■

Example 24. Let γ be the fuzzy ideal given by Example 17. Define the fuzzy sets γi∈{2,3,4},
by

γi : Z/8Z → [0, 1], x 7→ γi(x) = γ(i× x).

The corresponding tables of the fuzzy sets are

a 0 1 2 3 4 5 6 7

γ2(a) 1 0.5 0.5 0.5 1 0.5 0.5 0.5

γ3(a) 1 0 0.5 0 0.5 0 0.5 0

γ4(a) 1 0.5 1 0.5 1 0.5 0 0.5

By Proposition 23, for i ∈ {2, 3, 4}, γi is a prime ideal. As for i ∈ {2, 3, 4}, γi is neither
equal to γ nor to 1, γ is not maximal, which confirms the non-maximality of γ as proved in
Example 17. Moreover, it is simple to check that γ3 ≤ γ2. The prime ideals γ4 and γ2 or the
prime ideals γ4 and γ3 are incomparable.

Definition 25. Let a be an element of the commutative ring (R,+, .) and γ be a fuzzy ideal
of R.

1. γ is invariant by the homothecy ha if ha(γ) = γ, where ha(γ) = γa.

2. γ is invariant by the translation τa if τa(γ) = γ, where τa(γ)(x) = γ(a+ x).

Proposition 26. Let a be an element of the commutative ring (R,+, .) and γ be a fuzzy ideal
of R.

1. If γ is invariant by the translation τa then γa = 1.
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2. If γ is invariant by the homethecy ha then γ(a) = 0.

Proof

1. If γ is invariant by the translation τa, then γ(a+ x) = γ(x) for all x ∈ R so

γ(a) = γ(a+ 0) = γ(0) = 1.

On the other hand, 1 ≥ γa(x) = γ(ax) ≥ max{γ(a), γ(x)} = γ(a) = 1 and then γa = 1.

2. If γ is invariant by the homethecy ha then γ(ax) = γ(x), ∀x ∈ R, so γ(a) ≤
max{γ(a), γ(x)} ≤ γ(ax) = γ(x), ∀x ∈ R. Consequently, for x = 1, we get γ(a) ≤
γ(1) = 0. The result follows. ■

Example 27. Let rx ∈ {0, 1, 2} be the remainder of the euclidian division (long division)
of x by 3 in Z. If for any element x ∈ Z, we set

γ(x) =

{
1 if rx = 0
1/4 if rx ̸= 0,

γ is then a fuzzy ideal of Z in the sense of Definition 16.
First, let us give explicitly the values taken by γ(x+ y) and γ(xy) for different values of

rx and ry.

Table 3. Values of γ(x+ y), rx, ry ∈ {0, 1, 2}

rx⧹ry 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

−→γ

γ(rx)⧹γ(ry) 1 1/4 1/4
1 1 1/4 1/4
1/4 1/4 1/4 1
1/4 1/4 1 1/4

Table 4. Values of γ(xy), rx, ry ∈ {0, 1, 2}

rx⧹ry 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

−→γ

γ(rx)⧹γ(ry) 1 1/4 1/4
1 1 1 1
1/4 1 1/4 1/4
1/4 1 1/4 1/4

We can prove directly that γ is a proper fuzzy ideal of (Z,+, .).

1. By definition and since 0 ≡ 0[3], then γ(0) = 1.

2. From the equivalence x ≡ 0[3] ⇐⇒ −x ≡ 0[3], we deduce that γ(x) = γ(−x).

3. From Table 3, it is easy to see that γ(x+ y) ≥ min{γ(x), γ(y)}, ∀x, y ∈ Z.

4. The inequality γ(xy) ≥ max{γ(x), γ(y)}, ∀x, y ∈ Z can be deduced from Table 4.

The proof of Proposition 47 of [12] contains a mistake. Next, we recall the proposition
and give the adequate proof.

Proposition 28. [12] Let θ ∈]0, 1] be fixed, a be an element of a commutative ring (R,+, .)
and γ : R → [0, 1] be a mapping satisfying the following conditions.
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1. θ ≥ γ(a) ≥ θ

2
,

2. γ(0) = 1,

3. γ(x) =

{
γ(a) if x = a.y for some y ∈ R \ {0}
θ − γ(a) otherwise.

Then γ is an ideal.
■

Proof. Notice that since γ(a) ≥ θ

2
, we have γ(a) ≥ θ − γ(a). Let us draw the tables giving

γ(x + y) and γ(xy) for different values of x and y. Next, x /∈ ⟨a⟩ means that x cannot be
written as a product of a and an element of R.

Table 5. Different values of x+ y and γ(x+ y), for x, y ∈ R

x⧹y 0 ay′ /∈ ⟨a⟩
0 0 ay′ /∈ ⟨a⟩
ax′ ax′ az /∈ ⟨a⟩
/∈ ⟨a⟩ /∈ ⟨a⟩ /∈ ⟨a⟩ ?

−→γ

γ(x)⧹γ(y) 1 γ(a) θ − γ(a)
1 1 γ(a) θ − γ(a)

γ(a) γ(a) γ(a) θ − γ(a)
θ − γ(a) θ − γ(a) θ − γ(a) α

Table 6. Different values of xy and γ(xy), for x, y ∈ R

x⧹y 0 ay′ /∈ ⟨a⟩
0 0 0 0
ax′ 0 az az
/∈ ⟨a⟩ 0 az ?

−→γ

γ(x)⧹γ(y) 1 γ(a) θ − γ(a)
1 1 1 1

γ(a) 1 γ(a) γ(a)
θ − γ(a) 1 γ(a) α′

Since max{θ−γ(a), θ−γ(a)} = min{θ−γ(a), θ−γ(a)}, then α ≥ min{θ−γ(a), θ−γ(a)}
and α′ ≥ max{θ − γ(a), θ − γ(a)}, so the axioms γ(x + y) ≥ min{γ(x), γ(y)} and γ(xy) ≥
max{γ(x), γ(y)} are verified for all the possible values taken by γ(x + y) and γ(xy) in the
last case in the tables. On the other hand, it is easy to show that γ(−x) = γ(x). ■

Remark 3. If γ(a) = θ = 1, the fuzzy ideal γ coincides with the principal ideal generated
by a in the ring R.

As an illustration of the above proposition, let us investigate an example on the ring Z.

Example 29. Let γ2, γ3, γ6, θ ∈ [0, 1] such that γ6 ≥ γ2 ∨ γ3, 2γ6 ≤ θ. We define for
n ∈ {2, 3}

γn(x) =


1 if x = 0
γn if x ∈ nZ \ {0}
θ − γn otherwise,

γ6(x) =


1 if x = 0
γ6 if x ∈ 6Z \ {0}
θ − γ6 if x either in 2Z \ 3Z or in 3Z \ 2Z
β otherwise.

If β ≥ max{θ − γ2, θ − γ3}, then γ6 ⊂ γ2 ∧ γ3.
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1. If x ∈ 6Z, then γ6(x) = γ6. But in this case, we also have x ∈ 2Z and x ∈ 3Z, so
γ2(x) = γ2 and γ3(x) = γ3 and from our conditions, we get

γ6(x) = γ6 ≥ max{γ2, γ3} = max{γ2(x), γ3(x)} ≥ min{γ2(x), γ3(x)}.

2. If x /∈ 6Z and x ∈ 3Z, then γ6(x) = θ − γ6, γ2(x) = θ − γ2, γ3(x) = γ3. From 2γ6 ≤ θ,
we deduce that γ3 ≤ γ6 ≤ θ − γ6.

On the other hand, γ2 ≤ γ6 → θ − γ6 ≤ θ − γ2 and then min{γ3, θ − γ2} = γ3.
Consequently,

γ6(x) = θ − γ6 ≥ γ3 = min{γ3(x), γ2(x)}.

3. The case where x /∈ 6Z and x ∈ 2Z can be proved by the same arguments as in 2).

4. Let x /∈ (2Z ∪ 3Z). This case is trivial since

γ6(x) = θ − γ6 = β ≥ min{θ − γ2, θ − γ2} = min{γ2(x), γ3(x)}.

3.1. Relation associated to a fuzzy subgroup

Definition 30. [12] A fuzzy relation R on a set X is a mapping R : X ×X −→ [0, 1].

Definition 31. [12] A fuzzy relation R on a set X is:

1. Reflexive if ∀x ∈ X,R(x, x) = 1.

2. Symmetric if ∀x, y ∈ X, R(x, y) = R(y, x),

3. Transitive if ∀x, y, z ∈ X,R(x, y) > 0 and R(y, z) > 0 imply R(x, z) > 0 or equiva-
lently R(x, z) ≥ max{R(x, y), R(y, z)}.

4. A fuzzy relation R on a setX is an equivalence relation onX if it is reflexive, symmetric
and transitive.

Proposition 32. Let γ be a fuzzy subgroup of a group G. The fuzzy relation R : G×G −→
[0, 1] denoted by Rγ and defined by

∀x, y ∈ G, Rγ(x, y) = γ(xy−1)

is an equivalence relation on G called the right fuzzy relation modulo the fuzzy subgroup γ.

Proof

1. Reflexivity: if ∀x ∈ X,Rγ(x, x) = γ(xx−1) = γ(e) = 1.

2. Symmetry: assume that x, y ∈ X, then

Rγ(x, y) = γ(xy−1) = γ((xy−1)−1) = γ(yx−1) = Rγ(y, x).

3. Transitivity: let x, y, z be elements of X, such that Rγ(x, y) > 0 and Rγ(y, z) > 0.
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Rγ(x, z) = γ(xz−1)

= γ((xy−1)(yz−1)) ≥ max{γ(xy−1), γ(yz−1)) = max{Rγ(x, y), Rγ(y, z)} > 0

so Rγ(x, z) > 0. ■

Example 33. Let G be the Klein four-group Z/2Z× Z/2Z, the fuzzy set γ given by

γ(0, 0) = 1, γ(0, 1) = 0.7, γ(1, 0) = 0.5, γ(1, 1) = 0.5

is a fuzzy subgroup ofG. If we set ∀x, y ∈ G, Rγ(x, y) = γ(x−y), we have Rγ(x, y) = γ(x+y)
and the table of its values will be given by Table 7.

Table 7. Values of Rγ(a, b) = γ(a− b), a, b ∈ Z/2Z× Z/2Z
a⧹b (0,0) (0,1) (1,0) (1,1)
(0,0) 1 0.7 0.5 0.5
(0,1) 0.7 1 0.5 0.5
(1,0) 0.5 0.5 1 0.7
(1,1) 0.5 0.5 0.7 1

Definition 34. Let γ be a fuzzy subgroup of a group G and Rγ be the relation associated
to γ by the previous proposition. For any x ∈ G, the fuzzy set

γx : G −→ [0, 1], γx(y) = Rγ(x, y) = γ(xy−1)

is called the right coset modulo Rγ of x.
Notice that γe = γ.

Proposition 35. Let γ be a fuzzy subgroup of a group G and Rγ be the relation associated to
γ. The set of right cosets G/Rγ = {γx, x ∈ X}, modulo Rγ forms a partition of G, that is,
it satisfies:

1. For any x ∈ G, γx ̸= 0,

2. If for x, y ∈ G, γx(y) = 0 then γx ∩ γy = 0,

3. If for x, y ∈ G, γx(y) > 0 then Supp(γx) = Supp(γy),

4.
⋃
x∈G

γx = 1.

Proof

1. For any x ∈ G we have γx(x) = γ(xx−1) = γ(e) = 1 and the result follows.

2. Let x, y ∈ G such that γx(y) = 0 and let z ∈ G,

(γx ∩ γy)(z) = inf{γx(z), γy(z)} = inf{γ(xz−1), γ(yz−1}.

On the other hand,

0 = γx(y)

= γ(xy−1) = γ((xz−1)(zy−1)) ≥ inf{γ(xz−1), γ(zy−1)} = inf{γ(xz−1), γ(yz−1)},
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since γ(zy−1) = γ((zy−1)−1) = γ(yz−1). We then deduce that

inf{γx(z), γy(z)} = inf{γ(xz−1), γ(zy−1)} = 0

and the intersection is reduced to the null fuzzy set 0.

3. Let x, y ∈ G such that γx(y) > 0 and z ∈ G.

Assume that z ∈ Supp(γx) then γ(xz−1) = γx(z) > 0, but

γy(z) = γ(xz−1) = γ(yx−1xz−1) ≥ inf{γ(yx−1), γ(xz−1)} = inf{γ(xy−1), γ(xz−1)} > 0

since both γ(xy−1) and γ(xz−1) are strictly positive. Consequently, γy(z) > 0 and
z ∈ Supp(γy). The same argument can be used to prove that

z ∈ Supp(γy) → z ∈ Supp(γx) > 0.

4. For any y ∈ G, we have 1 = γy(y) ≤ (
⋃
x∈G

γx)(y), so the result follows. ■

Example 36. G will be the Klein four-group Z/2Z × Z/2Z, γ the fuzzy subgroup given
by γ(0, 0) = 1, γ(0, 1) = 0.5, γ(1, 0) = 0, γ(1, 1) = 0 and the relation R is defined by
∀x, y ∈ G, Rγ(x, y) = γ(x+ y).

Table 8. Values of γa for a ∈ Z/2Z× Z/2Z
(0,0) (0,1) (1,0) (1,1)

γ(0,0) 1 0.5 0 0
γ(0,1) 0.5 1 0 0
γ(1,0) 0 0 1 0.5
γ(1,1) 0 0.5 0 1⋃
x∈G

γx 1 1 1 1

We remark that

1. γ(0,0) = γ.

2. Every time γa(b) = 0, one has γa ∩ γb = 0. For example, we have γ(0,1)(1, 0) = 0 and
γ(0,1) ∩ γ(1,0) = 0.

3. Supp(γx) for any x ∈ Z/2Z× Z/2Z is exactly Z/2Z× Z/2Z.

4.
⋃
x∈G

γx = 1.

Proposition 37. Let γ be a normal fuzzy subgroup of the group G. If z ∈ Supp(γx) and
t ∈ Supp(γy), then zt ∈ Supp(γxy).

Proof. Since γ is normal, we have γ(z(yt−1)z−1) = γ(yt−1)) for any y, z, t ∈ G.

On the other hand,
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γxy(zt) = γ(xyt−1z−1) = γ(xz−1zyt−1z−1) = γ((xz−1)(z(yt−1)z−1))

≥ inf{γ((xz−1), γ(z(yt−1)z−1)} = inf{γ((xz−1), γ(yt−1))} = inf{γx(z), γy(t)} > 0

since z ∈ Supp(γx) and t ∈ Supp(γy). Finally, zt ∈ Supp(γxy). ■

Definition 38. Let γ be a fuzzy subgroup of a group G. We can define a relation γR defined
on G called the left fuzzy relation modulo γ by

∀x, y ∈ G, γR(x, y) = γ(y−1x).

The left fuzzy coset of x will be denoted by xγ. Therefore,

xγ : G −→ [0, 1], xγ(y) =γ R(x, y) = Rγ(y
−1, x−1) = γ(y−1x).

Proposition 39. Let γ be a normal fuzzy subgroup of a group G. For any x ∈ G, γx =x γ
(i.e., the fuzzy left coset of x is equal to the fuzzy right coset of x).

Proof. Let y ∈ G, then

γx(y) = γ(xy−1) = γ(yx−1) = γ(x−1(yx−1))x) = γ(x−1y) = γ(y−1x) =x γ(y).

We can also conclude that G/Rγ = G/γR. ■

Definition 40. Let us denote by F(G) and F(G′) the sets of fuzzy sets on G and G′

respectively. If µ ∈ F(G) and γ ∈ F(G′), we define the mapping

µ⊗ γ : G×G′ → [0, 1], (x, y) 7→ µ(x)γ(y).

If A ⊂ F(G), B ⊂ F(G′), by extension we define A⊗B = {µ⊗ γ, µ ∈ A, γ ∈ B}.
Definition 41. Let γ be a fuzzy subgroup of a group G. We define a binary operation on
G/Rγ ×G/Rγ by

⊗γ : G/Rγ ×G/Rγ → G/Rγ ⊗G/Rγ

(γx, γy) 7→ γx ⊗γ γy : G×G → [0, 1]
(z, t) 7→ γx(z).γy(t).

The mapping γx ⊗γ γy will denotes by γx⊗γy.

Proposition 42. If x′ ∈ Supp(γx) and y′ ∈ Supp(γy) then

Supp(γx⊗γy) = Supp(γx′⊗γy′).

Proof. Let (z, t) ∈ Supp(γx⊗γy) then γx(z)γy(t) > 0, so γx(z) > 0 and γy(t) > 0. On the
other hand,

γx′(z) = γ(x′z−1) = γ(x′x−1xz−1) ≥ min{γ(x′x−1), γ(xz−1) > 0

since γ(x′x−1) = γ(xx′−1) > 0 (x′ ∈ Supp(γx)) and γ(xz−1) > 0. By the similar arguments,
we prove that γy′(t) > 0. As (γx′⊗γy′)(z, t) ≥ min{γx′(z), γy′(t)} > 0, we can conclude that
(z, t) ∈ Supp(γx′⊗γy′) and then

Supp(γx⊗γy) ⊂ Supp(γx′⊗γy′).

The other inclusion is then trivial. ■

Example 43. Coming back to Example 36, let x = (1, 1), x′ = (1, 1), y = (0, 1) and
y′ = (0, 0). It is easy to see from the tables that x′ ∈ Supp(γx), y

′ ∈ Supp(γy). On the other
hand, Supp(γx⊗γy) = {((0, 1), (0, 1))} = Supp(γx′⊗γy′).
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4. CONCLUSION

We have revisited some concepts that we investigated in our previous works. We refined
some of the results that we thought were a bit confusing or a little unclear. As a second goal,
we introduced the notion of fuzzy relation modulo a fuzzy subgroup and then fuzzy right
coset and fuzzy left coset modulo a subgroup. We proved that when the fuzzy subgroup is
normal, the fuzzy right and fuzzy left cosets are equal.

Our future interest is to investigate the fuzzy quotient set obtained from a ring and a
fuzzy relation modulo a fuzzy ideal. More exactly, we want to answer the question whether
the fuzzy quotient set can be endowed with a fuzzy ring structure.
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