
Journal of Computer Science and Cybernetics, V.38, N.4 (2022), 365–375

DOI no 10.15625/1813-9663/38/4/17226

FAST COMPUTATION OF DIRECT EXPONENTIATION TO
SPEED UP IMPLEMENTATION OF DYNAMIC BLOCK CIPHERS

LUONG TRAN THI

Academy of Cryptography Techniques, 141 Chien Thang Street, Tan Trieu Ward,
Thanh Tri District, Ha Noi, Viet Nam

Abstract. MDS (maximum distance separable) matrices are ones that come from MDS codes that

have been studied for a long time in error correcting code theory and have many applications in block

ciphers. To improve the security of block ciphers, dynamic block ciphers can be created. Using MDS

matrix transformations is a method used to make block ciphers dynamic. Direct exponentiation is

a transformation that can be used to generate dynamic MDS matrices to create a dynamic diffusion

layer of the block ciphers. However, for cryptographic algorithms that use an MDS matrix as a

component of them, the implementation of matrix multiplication is quite expensive, especially when

the matrix has a large size. In this paper, the mathematical basis for quick calculation of direct

exponentiation of an MDS matrix will be presented. On that basis, it is to suggest how to apply that

fast calculation to dynamic algorithms using the direct exponentiation. This result is very meaningful

in software implementation for MDS matrices, especially when implementing dynamic block ciphers

to increase execution speed.

Keywords. MDS matrix, direct exponentiation, dynamic algorithms.

1. INTRODUCTION

Block ciphers are an important area of modern cryptography. The application of block
ciphers to design cryptographic products for the national security field of socio-economics has
many advantages and efficiency. In cryptography, a block cipher is a symmetric key algorithm
that operates on fixed-length groups of bits, called blocks, with a stable transformation.
The most commonly used block ciphers are the Feistel and SPN (Substitution Permutation
Network) structures. The diffusion layer of SPN block ciphers is usually built on the basis
of MDS matrices which are the matrices of the maximum distance separable codes (MDS
codes).

To improve the security of block ciphers, one can generate dynamic block ciphers. In
addition to the diffusion and substitution layers of the SPN block ciphers, the authors in [1,2]
recently proposed a way to animate with new XOR tables, implemented at the key addition
layer. Besides, many ways of animating block ciphers have been studied as in [3–8]. In [3],
Al-Wattar et al. proposed a method to animate the AES block cipher at the diffusion layer.
Specifically, instead of using a static MixColumn transformation, the approach is to use a
dynamic MixColumn transformation based on key dependent DNA structures and processes.

Corresponding author.
E-mail addresses: luongtranhong@gmail.com

luongtranhong@gmail.com

366 LUONG TRAN THI

In [4], Ahmed et al. introduced a modified AES algorithm with a bank of potential sboxes
that behave like a rotating block mechanism and a dynamic MDS matrix (this algorithm is
called SDK-AES) that is, animate at both substitution and diffusion layers. In [5], Murtaza
et al. proposed to replace the Mixcolumn in AES with a dynamic Mixcolumn. The dynamic
MDS matrix is generated from AES’s MDS matrix with scalar multiplication in rows and
an additional key. In [6], Ismil et al. proposed a dynamic SPN block cipher based on
AES (DRAES), where the animated transformation is a rotation whose amount of rotating
depends on the data (plaintext and ciphertext) in AddRoundKey and on the key in the
key extension of AES. In [7], Bai et al. proposed a dynamic block cipher algorithm with
variable size, designed with unlimited size of keys, the permutation changing dynamically
based on the encryption key, and the block size changing in each round. In [8], Mohamed et
al. proposed a method to construct a dynamic diffusion layer for SPN block ciphers. This
method generates key-dependent MDS matrices from a given m×m MDS matrix, by scalar
multiplication and permutations of elements in the given matrix.

Thus, it is possible to see a variety of methods for animating SPN block ciphers to
improve the security of these block ciphers against many strong attacks. To animate the
SPN block cipher, in some cases it is common to use MDS matrix transformations such as:
direct exponentiation, scalar multiplication, and permutations of rows or columns of an MDS
matrix.

The direct exponentiation was first introduced by Ghulam Murtaza and Nassar Ikram
in [9] but the authors have not shown the ability to preserve good cryptographic properties
of this transformation. In [9], the authors did not show how to compute direct exponen-
tiation effectively. In [10–12], we showed the ability to preserve many good cryptographic
properties of the direct exponentiation. In [13], we proposed two dynamic diffusion algo-
rithms to generate dynamic SPN block ciphers based on direct exponentiation and scalar
multiplication. This preservation ability is very important to ensure that dynamic block
ciphers are still much more secure than static block ciphers. However, in [13], we did not
show the computational and practical performance of the direct exponentiation.

For SPN block ciphers, implementing MDS matrix multiplication at the diffusion layer
is quite expensive, especially when the matrix has a large size. In this paper, we will present
a quick calculation method of direct exponentiation to apply to dynamic block cipher al-
gorithms. This result is very meaningful in software implementation when implementing
dynamic block ciphers to increase execution speed.

The paper is organized as follows. In Section 2, preliminaries about MDS matrices and
the direct exponentiation are introduced. Section 3 presents the mathematical basis for the
quick calculation of direct exponentiation and the ability to apply this fast calculation to
dynamic algorithms using direct exponentiation. The conclusions of the paper are presented
in Section 4.

2. PRELIMINARIES AND RELATED WORKS

2.1. MDS matrix

MDS matrices are ones that come from MDS codes in error correction code theory. A
code [n, k, d] is one from error correcting code theory of length n, number of dimensions k,
and a minimum distance of d.

FAST COMPUTATION OF DIRECT EXPONENTIATION 367

In [14] there is an important theorem about the MDS matrix as follows.

Theorem 1 ([14], page 321). A code [n, k, d] with a generator matrix G = [I|A] where A is
a k×(n− k) matrix and I is an identity matrix of order, k is MDS if and only if every square
submatrix (generated from any i rows and any i columns, for any i = 1, 2, . . . , min {k, n− k}
of A is nonsingular.

From Theorem 1, an MDS matrix can be defined that is a matrix whose all square
sub-matrices is nonsingular.

2.2. Direct exponentiation of an MDS matrix

Ghulam Murtaza and Nassar Ikram were the first authors that introduced the definition
of the direct exponentiation of an MDS matrix [9]. The concept of direct exponential matrix
is also given by the authors as follows.

Definition 1 [9]. Let F be a Galois field. Let matrix A = [ai,j]m×m , ai,j ∈ F , then

Ade =
[
aei,j

]
m×m

, (e = 1, 2, 3 . . .) is called the direct e exponent matrix of A. And Ad2

is called direct square matrix of A.

In [10–12], we showed that direct exponentiation is able to preserve many good crypto-
graphic properties of MDS matrices such as MDS property, recursive, involutory, circulant
and circulant-like, number of fixed points and coefficient of fixed points, etc. This conserva-
tion of the direct exponential transformation is very useful for application to dynamic block
ciphers.

3. SOME RESULTS

In this section, we will show how to quickly calculate direct exponentiation over the field
GF (pr), p is prime. Galois fields with pr elements GF (pr) can be built as an extension of
the field GF (p), being r any integer greater than 1. The Galois field GF (pr) can be defined
using polynomials with coefficients belonging to GF (p) and degrees smaller than r, and the
number of elements of this field is pr. From there, this fast calculation can be applied to
dynamic algorithms to increase the execution speed in the software. That is, in the software
implementation of dynamic block cipher algorithms that are performed at the diffusion layer,
instead of directly calculating the dynamic MDS matrix from an original matrix by direct
exponentiation of each element in the matrix, we can use the lookup table suggested in this
section to compute the dynamic MDS matrix that is much faster than calculating for each
element.

3.1. Mathematical basis for quick calculation of the direct exponentiation

One more point to note about the usefulness of direct exponentiation is that the power
of 2k of each element in a matrix is performed very quickly in software for elements over
GF (2r). Indeed, suppose A is a matrix over GF (2r) with the generator polynomial of this
field denoted by p (x) of degree r, and consider any element a in A. Note that, the generator
polynomial of the is an irreducible polynomial that the results of every polynomial addition
and multiplication in the field must be modulo for this polynomial.

368 LUONG TRAN THI

Then, the element a ∈ GF (2r) will have the polynomial representation as follows

a = a0 + a1x+ a2x
2 + . . .+ ar−1x

r−1,

where, ai ∈ GF (2), 0 ≤ i ≤ r − 1.

When performing direct 2k exponent of the matrix A, each element in the matrix will be
increased to an exponent of 2k.

It is to have a2
k

=
(
a0 + a1x+ a2x

2 + . . .+ ar−1x
r−1

)2k
. We already know that, if

elements ai ∈ GF (2r) , (i = 1, 2, . . . n)

(a1 + a2 + . . .+ an)
2 = (a21 + a22 + . . .+ a2n). (1)

Applying (1), it is to have

a2
k
= a2

k

0 + a2
k

1 x2
k
+ a2

k

2 x2
k+1

+ . . .+ a2
k

r−1x
(r−1)2k .

Since ai ∈ GF (2), it should always be a2
k

i = ai, (0 ≤ i ≤ r−1) so no further multiplication
is required to calculate these coefficients. Hence, it is to get

a2
k
= a0 + a1x

2k + a2x
2k+1

+ . . .+ ar−1x
(r−1)2k .

Then get modulo this polynomial by p (x), it is to get an element a2
k ∈ GF (2r).

In the following, we will consider how to quickly calculate direct exponent over GF (2r) .

First, consider division modulo a2 = a0 + a1x
2 + a2x

4 + . . .+ ar−1x
2(r−1) by p (x).

Let m = r
2 , it is to get

a2 = a0 + a1x
2 + a2x

4 + . . .+ amx2m + . . .+ ar−1x
2(r−1). (2)

The items x2i (0 ≤ i < m) do not need to consider because their degrees is less than r,
so no need to get division modulo by p (x) .

Considering the items x2i (m ≤ i ≤ 2 (r − 1)), these are items having degree greater than
r and therefore they are needed to be divided modulo by p (x). The results of these divisions
are prepared and included in Table 1.

Table 1: Result of division modulo a2 by p (x)

i x2i x2i mod p (x)

m x2m cm (x) = cm0 + cm1x+ cm2x
2 + . . .+ cmr−1x

r−1

m+ 1 x2(m+1) cm+1 (x) = c(m+1)0 + c(m+1)1x+ c(m+1)2x
2 + . . .+ c(m+1)(r−1)

xr−1

.

r − 1 x2(r−1) cr−1 (x) = c(r−1)0
+ c(r−1)1

x+ c(r−1)2
x2 + . . .+ c(r−1)(r−1)

xr−1

From (2) and the results of the Table 1, it is to have

FAST COMPUTATION OF DIRECT EXPONENTIATION 369

a2 mod p (x)

=
(
a0 + a1x

2 + a2x
4 + . . .+ am−1x

2(m−1)
)
+
(
amx2m + . . .+ ar−1x

2(r−1)
)

mod p (x)

=
(
a0 + a1x

2 + a2x
4 + . . .+ am−1x

2(m−1)
)
+
(
amx2m + . . .+ ar−1x

2(r−1)
)
+

r−1∑
i=m

ci(x)

=
(
a0 + a1x

2 + a2x
4 + . . .+ am−1x

2(m−1)
)
+ (

r−1∑
i=m

ci0 +
r−1∑
i=m

ci1x+ . . .+
r−1∑
i=m

ci(r−1)
x(r−1))

= (a0 +

r−1∑
i=m

ci0) +

r−1∑
i=m

ci1x+ (a1 +

r−1∑
i=m

ci2)x
2 + . . .+ (am−1 +

r−1∑
i=m

ci(m−1)
)xm−1 +

r−1∑
i=m

cimx
m

+ . . .+
r−1∑
i=m

ci(r−1)
x(r−1). (3)

Let a2 = a10 + a11x+ a12x
2 + . . .+ a1(r−1)

xr−1. (4)

From (3) and (4), deduce 

a10 = a0 +
r−1∑
i=m

ci0

a11 =
r−1∑
i=m

ci1

a12 = a1 +
r−1∑
i=m

ci2

...

ar1 =
r−1∑
i=m

cir−1 .

(5)

Thus, for any element a ∈ GF (2r), we can calculate division a2 mod p (x) very quickly
by using the built-in table (Table 1), and the result of this division is calculated by the
formulas (3) and (5).

Next, consider division modulo a2
2

mod p (x)

It is to have a2
2

mod p (x) =
(
a2
)2

mod p (x).
Then, the role of a2 in this formula is the same as that of a in (3).
From Table 1, formulas (3) and (4), it is to have

a2
2

mod p (x) = (a10 +

r−1∑
i=m

ci0) +

r−1∑
i=m

ci1x+ (a11 +

r−1∑
i=m

ci2)x
2 + . . .+

(a1(m−1)
+

r−1∑
i=m

ci(m−1)
)xm−1 +

r−1∑
i=m

cimx
m + . . .+

r−1∑
i=m

ci(r−1)
x(r−1). (6)

Let
a2

2
= a20 + a21x+ a22x

2 + . . .+ a2(r−1)
xr−1. (7)

370 LUONG TRAN THI

From (6), deduce 

a20 = a10 +
r−1∑
i=m

ci0

a21 =
r−1∑
i=m

ci1

a22 = a11 +
r−1∑
i=m

ci2

...

a2(r−1)
=

r−1∑
i=m

cir−1 .

(8)

By induction, it is to get

a2
k
= ak0 + ak1x+ ak2x

2 + . . .+ ak(r−1)
xr−1, (9)

where 

ak0 = a(k−1)0 +
r−1∑
i=m

ci0

ak1 =
r−1∑
i=m

ci1

ak2 = a11 +
r−1∑
i=m

ci2

...

ak(r−1)
=

r−1∑
i=m

cir−1 ,

(10)

for (1 ≤ k ≤ r − 1) .

3.2. Applying fast calculation to dynamic algorithms that use direct exponen-
tiation

Later, in some dynamic algorithm that is made dynamic in the diffusion layer, it is
necessary to perform direct exponentiation of a given MDS matrix A over GF (2r). We will
apply the above fast calculation to achieve speed efficiency when creating dynamic MDS
matrices.

Suppose the matrix A = [ai,j]m×m , ai,j ∈ GF (2r) has c distinct elements that are all
other than 1, denoted as a1, a2, . . . , ac. (Since the element 1 does not change by the direct
exponentiation, we consider only the elements other than 1 of A.)

Suppose in a dynamic algorithm that requires calculating the direct 2t0 exponent of
matrix A to generate a new MDS matrix A

d2
t0 , where t0 is a selected number satisfying

1 ≤ t0 ≤ r − 1.

Using the quick calculation of direct exponentiation presented in the previous section,

we can make Table 2 to obtain the elements (ai)
2t0 (1 ≤ i ≤ c).

In Table 2, aij (for 1 ≤ i ≤ t0, 1 ≤ j ≤ c) are elements over GF (2r), which can be
presented in the Hexa form.

FAST COMPUTATION OF DIRECT EXPONENTIATION 371

Table 2: Lookup table of direct 2k exponent for 1 ≤ k ≤ t0

Element ai ∈ A
(ai)

2k

k = 1 k = 2 . . . k = t0
a1 a11 a21 . . . at01
a2 a12 a22 . . . at02
.

ac. a1c a2c . . . at0c

Based on the Table 2, it is easy to calculate the direct exponentiation matrix A
d2

t0 of
the matrix A.

More general, we consider the two following cases.

Consider the finite field is GF (2r)GF (2r)GF (2r)

In order to be able to compute easily the direct 2k exponentiation matrices of any MDS
matrix A with the elements over GF (2r), we can prepare a table of size (2r − 1) × (r − 1)
(if necessary) includes all elements that are direct 2k exponentiation (for 1 ≤ k ≤ r − 1)
of all elements other than 0 and 1 of the field GF (2r). Note that direct exponentiation is
still calculated fastly as showed in Section 3.1. This table has the following form, where the
elements are represented in the Hexa form.

Table 3: Lookup table of direct 2k exponent (for 1 ≤ k ≤ t0) over GF (2r)

Elements αi ∈ GF (2r)
(ai)

2k

k = 1 k = 2 . . . k = r − 1

α1 a11 a21 . . . a(r−1)1
α2 a12 a22 . . . a(r−1)2
...

α2r−2 a12r−2 a22r−2 . . . a(r−1)2r−2

where aij (with 1 ≤ i ≤ r − 1, 1 ≤ j ≤ 2r−2) are elements over GF (2r) that can be
represented in the Hexa form.

Thus, direct exponentiation of MDS matrices over GF (2r) will be performed very quickly
in software. We know that most of the cryptographic algorithms today use the base field
is GF (2r), so the direct exponentiation will be very convenient in software implementation
when the cryptographic algorithms use it.

Consider the general field is GF (pr)GF (pr)GF (pr), for ppp is a prime number

The fast calculation in this section is considered when looking up the table (not counting
the time to create the lookup table) during the encryption and decryption process.

Denote the non-zero elements of the field GF (pr) by {b1, b2, . . . , bpr−1} .
Denote |bi| is the corresponding decimal value of bi (1 ≤ i ≤ pr − 1). For example, if bi

has a vector representation as bi = (t0, t1, . . . , tr−1) then |bi| =
r−1∑
i=0

tip
i.

LetX be a one-dimensional array consisting of pr−1 elementsX [1] , X [2] , . . . , X [pr − 1] .
The elements in the array X receive values that are powers of p of pr − 1 non-zero elements
in the field GF (pr). For simplicity, denote that the field element bi has its corresponding
decimal value equal to i for 1 ≤ i ≤ pr − 1, then we have X [i] = (bi)

p.

372 LUONG TRAN THI

Assuming we need calculate (bi)
pk , we perform the above array lookup as follows.

Since X [i] = bpi then X [|bpi |] = (bpi)
p
= bp

2

i , and X
[∣∣∣bp2i ∣∣∣] = (

bp
2

i

)p
= bp

3

i , and so on.

Continuing like this we have X
[∣∣∣bpk−1

i

∣∣∣] = (
bp

k−1

i

)p
= bp

k

i .

Look-up table creation. For the field GF (pr), construct a table of size (pr − 1) × r, con-
sisting of pr − 1 rows and r columns. The table entries will store the values of the powers
pk (1 ≤ k ≤ r) of all the elements in GF (pr). The i-th row corresponds to the field element
bi, 1 ≤ i ≤ pr − 1. The entry in row i, column k of the table is the power pk (1 ≤ k ≤ r) of

the field element bi, that is: (bi)
pk .

To create this table, first we only need to calculate column 1 (corresponding to k = 1),
the remaining columns are calculated by looking up the table once, for example, column 2
(corresponding to k = 2) only needs to look up the table once. times through column 1,
column 3 looks up the table through column 2, and so on.

Application. For any MDS matrix A = [ai,j]m×m , ai,j ∈ GF (pr), to calculate the direct

pk (1 ≤ k ≤ r) exponential matrix of the matrix A in the usual way, we have to compute pk

powers of m2 elements in the matrix A. But when using the pre-created lookup table as
above, we only need to look up the table for m2 elements in A. Table lookup operation is
very fast, just O(1) complexity. Through this table, it is possible to quickly and easily find
the direct pk exponent matrix of any MDS matrix. Moreover, this lookup table can be used
forever for many different applications that use the direct exponential matrices of an MDS
matrix, so it really has a very good application in practice to improve speed.

Example 1. Consider the field GF
(
24
)
with the primitive polynomial is x4 + x+ 1.

Denote that an element bi ̸= 0 has corresponding decimal value i for 1 ≤ i ≤ 15. So, 15
non-zero elements of the above GF

(
24
)
include

{b1 = 1, b2 = x, b3 = x+ 1, b4 = x2, b5 = x2 + 1, b6 = x2 + x, b7 = x2 + x+ 1,

b8 = x3, b9 = x3 + 1, b10 = x3 + x, b11 = x3 + x+ 1, b12 = x3 + x2, b13 = x3 + x2 + 1,

b14 = x3 + x2 + x, b15 = x3 + x2 + x+ 1}.
Construct a lookup table of size 15 × 4 (Table 4), the i-th row is the 2k powers of the

element bi for 1 ≤ k ≤ 4 and 1 ≤ i ≤ 15. The element in row i, column k of the table is:
(bi)

2k . We only need to compute the first column in the Table 4, that is, the values X [i] = b2i
(1 ≤ i ≤ 15). The values of the remaining entries do not need to be calculated, but only
need to look up the table based on the previous column.

For example, consider row number 6, it is to have (b6)
21 = X [6] = b13. Then, look up

Table 1:

+ To calculate (b6)
22 , because the first column (corresponding to k = 1) is equal to b13,

just look at row 13, column 1 infer: (b6)
22 = b7 (because (b6)

22 = (b13)
21).

+ To calculate (b6)
23 , because the second column is equal to b7, just look at row 7, column

1 to infer: (b6)
23 = b12.

+ To calculate (b6)
24 , because the third column is equal to b12, so just look at row 12,

column 1 to infer: (b6)
24 = b6.

Example 2. Consider the field GF
(
33
)
with the primitive polynomial is 2x3 + x2 + 2.

FAST COMPUTATION OF DIRECT EXPONENTIATION 373

Table 4: Direct exponential lookup table over GF
(
24
)

k = 1 k = 2 k = 3 k = 4

1 X [1] = b1 b1 b1 b1
2 X [2] = b4 b9 b14 b2
3 X [3] = b5 b8 b15 b3
4 X [4] = b9 b14 b2 b4
5 X [5] = b8 b15 b3 b5
6 X [6] = b13 b7 b12 b6
7 X [7] = b12 b6 b13 b7
8 X [8] = b15 b3 b5 b8
9 X [9] = b14 b2 b4 b9
10 X [10] = b11 b10 b11 b10
11 X [11] = b10 b11 b10 b11
12 X [12] = b6 b13 b7 b12
13 X [13] = b7 b12 b6 b13
14 X [14] = b2 b4 b9 b14
15 X [15] = b3 b5 b8 b15

Denote that an element bi ̸= 0 has corresponding decimal value i for with 1 ≤ i ≤ 26.
Then 26 non-zero elements of the above GF

(
33
)
include

{b1 = 1, b2 = 2, b3 = x, b4 = x+ 1, b5 = x+ 2, b6 = 2x, b7 = 2x+ 1,

b8 = 2x+ 2, b9 = x2, b10 = x2 + 1, b11 = x2 + 2, b12 = x2 + x,

b13 = x2 + x+ 1, b14 = x2 + x+ 2, b15 = x2 + 2x, b16 = x2 + 2x+ 1,

b17 = x2 + 2x+ 2, b18 = 2x2, b19 = 2x2 + 1, b20 = 2x2 + 2,

b21 = 2x2 + x, b22 = 2x2 + x+ 1, b23 = 2x2 + x+ 2, b24 = 2x2 + 2x,

b25 = 2x2 + 2x+ 1, b26 = 2x2 + 2x+ 2}.

Construct a lookup table of size 26 × 3 (Table 5), the i-th row is the 3k powers of the
element ai for 1 ≤ k ≤ 3 and 1 ≤ i ≤ 26. The element in row i, column k of the table is:
(bi)

3k . Similar to Example 1, we only need to compute the first column in the Table 5, that
is, the values X [i] = b3i (1 ≤ i ≤ 26). The values of the remaining entries do not need to be
calculated, but only need to look up the table based on the previous column.

The way to look up Table 5 is similar to Example 1.

Remark. With such lookup tables, making these tables is very simple because we only
need to calculate column 1, the remaining columns just need to look up the table as above.
After having these lookup tables that store values of powers of non-zero elements in the
field GF (pr), applications or programs that implement dynamic cryptographic algorithms
using direct exponentiation need only look up the tables to get these values directly without
having to recalculate, thus increasing execution speed. For example, with an MDS matrix
of size 8, with 64 elements, instead of having to calculate the power of these 64 elements
and then modulo by the primitive polynomial of the field GF (pr), we just need to look up
the table 64 times, the table lookup operation is very fast, equivalent to O(1) complexity. It
can be seen that this fast calculation makes more sense when the GF finite field has a large
number of elements, which can save considerable costs.

374 LUONG TRAN THI

Table 5: Direct exponential lookup table over GF
(
33
)

k = 1 k = 2 k = 3
1 X [1] = b1 b1 b1
2 X [2] = b2 b2 b2
3 X [3] = b11 b26 b3
4 X [4] = b9 b24 b4
5 X [5] = b10 b25 b5
6 X [6] = b19 b13 b6
7 X [7] = b20 b14 b7
8 X [8] = b18 b12 b8
9 X [9] = b24 b4 b9
10 X [10] = b25 b5 b10
11 X [11] = b26 b3 b11
12 X [12] = b8 b18 b12
13 X [13] = b6 b19 b13
14 X [14] = b7 b20 b14
15 X [15] = b16 b17 b15
16 X [16] = b17 b15 b16
17 X [17] = b15 b16 b17
18 X [18] = b12 b8 b18
19 X [19] = b13 b6 b19
20 X [20] = b14 b7 b20
21 X [21] = b23 b22 b21
22 X [22] = b21 b23 b22
23 X [23] = b22 b21 b23
24 X [24] = b4 b9 b24
25 X [25] = b5 b10 b25
26 X [26] = b3 b11 b26

4. CONCLUSION

MDS matrix plays an important role in improving the security of block ciphers. However,
implementing these matrices is quite expensive, especially when they are large in size. In
this paper, the mathematical basis for how to quickly calculate direct exponentiation of
MDS matrices has been presented, thereby oviding a thod to apply this fast calculation to
dynamic algorithms using direct exponentiation. When there are built-in tables for values
of direct exponentiation of non-zero elements in the field GF (pr), applications or programs
that implement cryptographic algorithms need only look up the table to get these values
directly without having to recalculate, thus increasing execution speed. It can be seen that
this fast calculation makes more sense when the GF . finite field has a large number of
elements, which can save significant costs. These results are of great practical significance
because there is a possibility to increase the performance when implementing MDS matrices,
especially when implementing dynamic block ciphers that use direct exponentiation.

REFERENCES

[1] A. I. Salih, A. Alabaichi, and A. S. Abbas, “A novel approach for enhancing security of advance

encryption standard using private xor table and 3d chaotic regarding to software quality factor,”

ICIC Express Letters Part B: Applications ICIC International, vol. 10, no. 9, pp. 823–832,
2019.

[2] A. I. Salih, A. Alabaichi, and A. Y. Tuama, “Enhancing advance encryption standard security

FAST COMPUTATION OF DIRECT EXPONENTIATION 375

based on dual dynamic xor table and mixcolumns transformation,” Indonesian Journal of
Electrical Engineering and Computer Science, vol. 19, no. 3, pp. 1574–1581, September

2020.

[3] A. H. Al-Wattar, R. Mahmod, Z. A. Zukarnain, and N. Udzir, “A new dna based approach of

generating key dependent mixcolumns transformation,” International Journal of Computer
Networks & Communications (IJCNC), vol. 7, no. 2, March 2015.

[4] F. Ahmed and D. Elkamchouchi, “Strongest aes with s-boxes bank and dynamic key mds matrix

(sdk-aes),” International Journal of Computer and Communication Engineering, vol. 2,
no. 4, p. 530, 2013.

[5] G. Murtaza, A. A. Khan, S. W. Alam, and A. Farooqi, “Fortification of aes with dynamic

mix-column transformation,” IACR Cryptology ePrint Archive, 2011, cryptology ePrint

Archive, Paper 2011/184. [Online]. Available: https://eprint.iacr.org/2011/184

[6] I. A. Ismil, H. G. Galal, S. Khattab, and M. A. E. I. M. E. Bahtity, “Performance examination

of aes encryption algorithm with constant and dynamic rotation,” International Journal of
Reviews in Computing, vol. 12, 2012.

[7] K. C. S. Bai, M. V. Satyanarayana, and P. A. Vijaya, “Variable size block encryption using

dynamic-key mechanism (vbedm),” International Journal of Computer Applications, vol. 27,
no. 7, August 2011.

[8] R. W. Mohamed and M. Abdulrashid, “A method for linear transformation in substitution

permutation network symmetric-key block cipher,” International Application Published Under

the Patent Cooperation Treaty, May 2012, pp. 3–14.

[9] G. Murtaza and N. Ikram, “Direct exponent and scalar multiplication classes of an

mds matrix,” Cryptology ePrint Archive, 2011, paper 2011/151. [Online]. Available:

https://eprint.iacr.org/2011/151

[10] T. T. Luong and N. N. Cuong, “Direct exponent and scalar multiplication transformations of

mds matrices: Some good cryptographic results for dynamic diffusion,” Journal of Computer
Science and Cybernetics, vol. 32, no. 1, pp. 1–17, 2016.

[11] T. T. Luong, N. N. Cuong, and L. T. Dung, “The preservation of good cryptographic properties

of mds matrix under direct exponent transformation,” Journal of Computer Science and
Cybernetics, vol. 31, no. 4, pp. 291–303, 2015.

[12] ——, “The preservation of the coefficient of fixed points of an mds matrix under direct exponent

transformation,” in 2015 IEEE International Conference on Advanced Technologies for
Communications (ATC). IEEE, 2015, pp. 111–116.

[13] T. T. Luong, “Building the dynamic diffusion layer for spn block ciphers based on direct exponent

and scalar multiplication,” Journal of Science and Technology on Information Security of
Viet Nam Government Information Security Commission, vol. 1, no. 15, pp. 10–16, 2022.

[14] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. North-

Holland Publishing Company, 1977.
Received on June 15, 2022

Accepted on December 01, 2022

https://eprint.iacr.org/2011/184
https://eprint.iacr.org/2011/151

	INTRODUCTION
	 Preliminaries and related works
	MDS matrix
	 Direct exponentiation of an MDS matrix

	 SOME RESULTS
	 Mathematical basis for quick calculation of the direct exponentiation
	Applying fast calculation to dynamic algorithms that use direct exponentiation

	CONCLUSION

