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Abstract. Attribute reduction is one important part researched in rough set theory. A reduct from
a decision table is a minimal subset of the conditional attributes which provide the same information
for classification purposes as the entire set of available attributes. The classification task for the
high dimensional decision table could be solved faster if a reduct, instead of the original whole set of
attributes, is used. In this paper, we propose a reduct computing algorithm using attribute clustering.
The proposed algorithm works in three main stages. In the first stage, irrelevant attributes are
eliminated. In the second stage relevant attributes are divided into appropriately selected number of
clusters by Partitioning Around Medoids (PAM) clustering method integrated with a special metric in
attribute space which is the normalized variation of information. In the third stage, the representative
attribute from each cluster is selected that is the most class-related. The selected attributes form the
approximate reduct. The proposed algorithm is implemented and experimented. The experimental
results show that the proposed algorithm is capable of computing approximate reduct with small
size and high classification accuracy, when the number of clusters used to group the attributes is
appropriately selected.

Keywords. Feature selection, attribute reduction, attribute clustering, partitioning around medoids
clustering, normalized variation of information, rough set.

1. INTRODUCTION

Due to the rapid development in today’s technology, the dimensionality of dataset be-
comes larger and larger. In most of applications such as gene data, text categorization,
image retrieval and information retrieval, we often confront with the datasets involving huge
numbers of features (or attributes). This may lead to the fact that the traditional mining or
learning algorithms become slow and cannot process information effectively. One of the most
feasible technique to cope with this problem is feature selection. Generally, feature selection
can be viewed as the process of selecting a subset from the original set of features, removing
as many irrelevant and redundant features as possible to improve the quality of data and
reduce time and space complexity for analysis [1,2]. This is because firstly irrelevant features
do not contribute to predictive accuracy. Secondly redundant features do not redound to
getting a better predictor because they provide the most information which is already present
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in other feature [1-3]. Feature selection is considered as NP-hard problem, since the number
of all subsets 2V grows exponentially with the number of features N. Several approximation
algorithms have been proposed to find the near best feature subset in a reasonable time.
Comprehensive surveys of feature selection algorithms are presented in [1, 3].

When dealing with high dimensional data (datasets with hundreds or thousands of fea-
tures), many feature selection algorithms can successfully remove irrelevant features but
fail to pull redundant ones out [4,5]. To overcome this problem, in the last decades some
feature selection algorithms using feature clustering were proposed in both supervised and
unsupervised context [5—10]. Note that feature clustering is different from object clustering,
here we are doing clustering for features rather than for objects. Feature clustering groups
features into clusters so that the features within the same cluster are expected to possess
high similarity, but within different clusters possess low similarity.

Clustering based feature selection algorithm follows the straightforward idea. It divides
the initial feature space into a set of groups called clusters. Generally, correlation measures
are used as clustering algorithm metrics which make features of the same group considered as
redundant. This leads to the selection of one feature to represent each cluster. The resulting
feature subset is considered to be relevant and non redundant [10]. However, for this type of
approach, there are two core issues that need to be carefully considered, namely the choice of
a similarity measurement function and a clustering method to use. The similarity function
measures the similarity between two features in the feature space; clustering method collects
features into groups using the selected similarity function.

Recent studies have demonstrated that the algorithms of selecting features through clus-
tering have very important advantages. They can outperform the traditional feature selection
algorithms by reducing the redundancy, reaching a high accuracy and, in some cases, reduc-
ing the calculation time. Besides, they also help users better understand the structure of the
dataset to be analyzed and the relative importance between features [5-7,9, 10].

Rough set theory proposed by [11], is a powerful mathematical tool for dealing with
vague, imprecise, incomplete, and uncertain data. This theory has been successfully applied
in different research fields such as machine learning, expert system, pattern recognition, and
knowledge discovery in databases [11,12]. Feature selection is one important part researched
in rough set theory. In rough set theory, the process of feature subset selection in a decision
table is viewed as reduct computation process. A reduct is a minimal subset of the conditional
attribute set which provide the same information for classification purposes as the entire set
of available attributes. The classification task for the high dimensional dataset could be
solved faster if a minimal reduct, instead of the original whole set of attributes, is used.
However, computing a minimal reducts is an NP-hard problem [13]. Therefore, several
studies on computing approximate reducts have been carried out. An approximate reduct
is a minimal reduct with acceptable errors, but can be found in much shorter time relative
to an exact minimal reduct. Many approaches for computing approximate reducts were
proposed [14-17].

As mentioned above, clustering based feature selection algorithms have many important
advantages. In recent years, some approximate reduct computing algorithms using attribute
clustering have also been proposed by researchers such as Hong et al. [18-22] , Janusz and
Slezak [23,24], Pacheco et al. [25]. In [18,21], the authors built a similarity measure for a pair
of attributes based on the relative dependency. Using this similarity measure, an algorithm
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called Most Neighbors First (MNF) was also proposed to cluster the attributes into a fixed
number of groups. The process starts with randomly selecting k representative attributes as
cluster centers, then the dissimilarity measure is computed between the non-representative
attributes. The non-representative attributes are allocated to their nearest centers and in
the end of the process, the center is updated with the attribute with more neighbours in its
surroundings. One of the big MNF deficiencies is that the convergence of the algorithm is
not assured, in consequence it has to be executed several times to find tendencies or patterns
in the results. Inspired by the MNF algorithm, in [25], the authors presented an approximate
reduct computing technique for fault diagnosis in spur gears.

Attribute clustering is also considered NP-hard procedure, as the majority of feature
selection algorithms, due to the similarity degree must be computed for all the pairs of
attributes in order to arrange the clusters. Furthermore, genetic algorithms have become
increasingly important for researchers in solving difficult problems since they could provide
feasible solutions in a limited amount of time [26]. In [19,20], the authors thus proposed
a GA-based clustering method for attribute clustering and approximate reduct computing.
Hong et al. [22] continued to improve the performance of the GA-based attribute clustering
process based on the grouping genetic algorithm (GGA). In [23], the authors investigated
methods for attribute clustering and their possible applications to a task of computation of
optimal reducts from decision tables with a large number of attributes. They also proposed
a discernibility-based attribute similarity measure, which is useful for identifying groups of
attributes. In [24], the authors continued the research described in [23], and extended this
work by an in depth investigation of the selected gene-clustering results.

Although clustering-based attribute reduction algorithms have received much attention
in recent times, the number of publications is still relatively limited. In this paper, we
propose a clustering based attribute reduction algorithm for high dimensional decision table.
The proposed algorithm works in three main stages. In the first stage, irrelevant attributes
are eliminated. In the second stage, relevant attributes are divided into a desired number of
clusters by using Partitioning Around Medoids (PAM) clustering method integrated with a
special metric in attribute space which is the normalized variation of information. In the third
stage, the most representative attribute that is the most class-related is selected from each
cluster to form a reduct. The proposed algorithm is implemented and experimented. The
experimental results show that the proposed algorithm is capable of computing approximate
reduct with small size and high classification accuracy when the number of clusters used to
group the attributes is appropriately selected.

The rest of the paper is organized as follows. Section 2 reviews the theory used by our
proposal. Section 3 presents the proposed attribute reduction algorithm. Section 4 describes
and discusses the experimental results. Finally, Section 5 holds the conclusions and directions
for further research.

2. PRELIMINARIES

In this section, we briefly review the theoretical guidelines that support our proposal.
The concept of reducts in information system is first introduced, followed by the concept of
Normalized Variation of Information (NVI), which is a special distance measure on feature
space. Next, the famous clustering algorithm, k-medoids, is described. The contents are
based on [11,27], and [28].
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2.1. Reducts in decision table

In many information processing systems, a set of objects are typically represented by their
values on a finite set of attributes (features). Such information may be conveniently described
in a tabular form. Each column corresponds to an attribute and each row corresponds to an
object. In rough set theory, such a table is often called an information system.

Formally, an information system is a pair IS = (U, A), where U is a non-empty finite set
of objects, A is a nonempty finite set of attributes, and for every a € A there is a mapping
a:U — V,, where V, denotes the domain of a.

In the rest of this article, unless otherwise stated, we assume that all features in a given
information system are categorical, i.e., that they have a finite and unordered domain.

In an information system IS = (U, A), if some of the attributes are interpreted as out-
comes of classification, then this information system can also be defined as a decision table
by DT = (U,CU{d}), where CU{d} = A, d ¢ C, C is called the condition attribute set,
while d is called the decision attribute [11].

Given an information system IS = (U, A), with any subset of attributes B C A, there is
a binary indiscernibility relation IN D (B) as follows

IND(B) ={(z,y) e U xUNa € B, a(x)=al(y)}. (2.1)

Obviously, IND(B) is an equivalence relation, it partitions U into disjoint blocks (or
equivalence classes), where two objects belong to the same block if they share the same
value for B. Let U/IND (B) or just U/B denote the family of all equivalence classes of
IND (B). For every object x € U, let [z]5 denote the equivalence class of relation IND (B)
that contains element x, called the equivalence class of x under relation IND (B).

In a given information system I.S = (U, A), let X C U, B C A. One can characterize X
by a pair of lower and upper approximation sets which are defined as follows.

B(X)={zeUlz]p CX = U  x (2:2)
X, €U/BNX; CX

B(X)={zcUl|z]pgNX #0} = U X;. (2.3)
X, €U/BAX;NX#)

The lower approximation set B(X) contains those objects in U that certainly belong to
X, whereas the upper approximation set B(X) contains those objects in U that possibly
belong to X. Obviously, there is B(X) C X C B(X). A set X is said to be definable if
B(X) = B(X), otherwise, X is said to be rough. The difference between B(X) and B(X)
is called the B-boundary region of X, which is denoted as BNg (X) = B(X) — B(X).

For a decision table, the most important task is attribute reduction, which means selecting
or reserving those condition attributes that provide the same information for classification
purposes as the entire set of available attributes. Such subsets are called reducts.

Let DT = (U,CU{d}) be a decision table, B C A. The positive region of the d with
respect to B, denoted by POSg (d), is defined as follows

roSp(d)= |J BX). (2.4)
XeU/{d}

The positive region POSp (d) contains those objects that can be certainly classified to some



AN EFFECTIVE ALGORITHM FOR COMPUTING REDUCTS 281

decision classes by checking all attributes in B. If POS¢ (d) = U, then the decision table
DT is consistent, otherwise it is inconsistent.

Let DT = (U,CU{d}) be a decision table. A subset R C C'is called a (relative) reduct
of DT if B is a minimal subset of condition attributes such that POSg (d) = POS¢ (d).

In general, there are plural reducts in a decision table. Over the years, many methods for
computing reducts have been proposed and researched in the rough set community [13,29,30].
Unfortunately, it has been proved that computing all reducts or computing an optimal reduct
(a reduct with the least number of attributes) is an NP-hard problem [13]. In practice, most
of the time only one reduct is required as typically only one subset of features is used to
reduce a decision table. For this reason, many approaches in the literature [6,15-17] adopt
a forward greedy algorithm to find a approximate reduct on the basis of various significance
measures of attributes. Two most widely applied attribute significance measures are defined
based on the degree of Pawlak’s dependency defined below and on Shannon conditional
entropy defined in Subsection 2.3.

Given a decision table DT = (U, C U{d}), for any B C C, Pawlak defines the dependency
degree of D on B in DT as follows

POSE(d)

(2.5)

Oh ly, th 0< ) < 1.Ifyp (d) =1, th that D d ds_totall B
andvllfous Y er% is tggn we say thau‘lc3 ()iepends ((3)1111\%3 181:? }gl deagree ,y%pf IB SI O’y% dOn

then we say that d does not depend on B.
Given a decision table DT = (U,C U{d}), let B C C. For any a € B, the significance of
attribute a with respect to B and d in DT is defined as follows

SIG’Y(C% B, {d}) = ’YB(d) - ’YB—{a}(d>' (2'6)

SIG" (a, B,{d}) is the change of the coeficicient vp (d) when removing the attribute a
from B.

The QuickReduct algorithm [31] listed below is a typical algorithm that uses a greedy
search strategy and the above attribute significance measure to find a approximate reduct.
QuickReduct works as follows.

Algorithm 1. QuickReduct algorithm for computing the relative reduct.

inputs: Decision table DT = (U,CU{d},V, f).
Output: One relative reduct of DT
Begin
red < {};
do
T + red;
foreach a € C — red
if Yred u{a} (d) > T (d) )
T < redu{a};
red < T
until y,.¢q (d) =7 (d)a
return red;
End;
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Wang et al. [32] developed the conditional entropy-based algorithm CEBARKNC for at-
tributes reduction. The structure of the CEBARKNC algorithm is similar to the QuickReduct
algorithm except that the conditional entropy based attribute significance measure is used,
(see Subsection 2.3 for conditional entropy).

2.2. Normalized variation of information

The central idea of our work is to introduce an algorithm for attribute reduction that uses
attribute clustering. So we need a special metric to measure the distance between attributes.
Such a metric would be the normalized variation of information presented below.

Let IS = (U, A) be an information system, attribute X € A. The information system
1S can be viewed as a statistical population and X is a discrete random variable. Suppose
Vx ={x1,29,...,2m}, U/IND (X) = {X1, Xs,..., X, }. Then the probability distribution
of X can be determined by

P(X =z;) = P(z;) = |X:|/|U|, i =1, ..,m. (2.7)

where | . | denotes the cardinality of a set.

Other related probability distributions can be similarly defined. In particular, P (X,Y)
is the joint probability distribution of X and Y, and P(X|Y) is the conditional probabil-
ity distribution of X given Y. Let U/IND (X) = {X1, X3, ..., Xm}, and U/IND (V) =
{Y1,Ya,...,Y,}, then

P(X =u;,Y =y;) = P(x,y;) = | XinY;| /U],

P(X =xi|Y = y;) = P (xily;) = |XanYj| /Y]],
withi=1,...,m, 7=1,...,n.
For a given attribute X, (Shannon) entropy of X is an expression [27]:

H(X)=-> P(X =u;)log, P(X = x;), (2.8)
=1

and by the convention Olog,0 = 0.

For an attribute X, its entropy H (X) is related to the deviation of the probability dis-
tribution of X from the uniform distribution. A lower entropy suggests that the distribution
is uneven and consequently one may have a better prediction using the value of X. The
attribute entropy H (X) serves as a measure of uncertainty or un-structuredness. An at-
tribute with a larger domain normally divides the database into more smaller classes than
an attribute with a smaller domain, and hence may have a higher entropy value. In fact, the
maximum value of attribute entropy is log|Vx| , which depends on the size of Vx. On the
other hand, an attribute with smaller domain, i.e., a lower entropy value, usually divides the
database into a few larger classes.

The notion of entropy may be generalized over two and more attributes, for instance [27]

m n
H(X,)Y)==Y Y P(X=u,Y =y;)log,P (X =2;,Y =y;). (2.9)
i=1 j=1
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The conditional entropy H (X|Y') of X given Y is defined as [27]

m

H(X|Y) = ZP i) > P (X =Y =y;)logy P (X =iV =vy;). (2.10)
=1

Conditional entropy H(X|Y') quantifies the remaining entropy (i.e., uncertainty) of an
attribute X given that the value of another attribute Y is known. Applying formulas (2.8),
(2.9), and (2.10) we have

H(X|Y)=H(X,Y)-H(Y). (2.11)
The mutual information between the two attributes X and Y is defined as [27]

[(X;Y)=H(X)-H(X[Y)=H(Y) - H(Y|X). (2.12)

Mutual information I (X;Y’) is non-negative and symmetric, ie., I (X;Y) > 0 and
I(X;Y) = 1(Y;X). It measures the information that X and Y share, and it tells us
how much the knowledge on one of the two attributes reduces uncertainty about the other
one.

Symmetric uncertainty of attributes X and Y is defined as [27]

I(X;Y)

SUCLY) =2 e i

(2.13)

Symmetric uncertainty is a measure that allows to quantify the mutual dependence of two
attributes. The numerator is mutual information. This uncertainty has been normalized by
the total uncertainty on the attributes, given by the sum of the entropies H (X) and H (V).
Therefore, its values are in the range [0,1]. A value of 1 indicates that knowledge of the value
of either one completely predicts the value of the other and the value 0 reveals that X and
Y are independent.

The normalized variation of information between X and Y is defined by [27]

I(X;Y) HX|)Y)+H(Y|X)
H(X,)Y) H(X,Y) ‘

NVI(X,Y)=1-— (2.14)

NVI(X,Y) is a metric on the space of attributes, that is, for any attributes X,Y, and Z it
satisfies

(i) NVI(X,Y)> 0 and the equality holds iff X =Y,

(i) NVI(X,Y)=NVI(Y,X),

(iii) NVI(X,Y)+ NVI(Y,Z) > NVI(X, Z).

Values of NVI(X,Y) are in the range [0,1]. NVI(X,Y) is also a universal metric in
that if any other distance measure places X and Y close-by, then the NV I will also judge
them close.

Although the entropy-based measure handles categorical or discrete attributes, they can
deal with continuous features as well if the values are discretized properly in advance [27].
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2.3. k-medoids clustering algorithm

The k-medoids algorithm [28] is a clustering approach related to k-means clustering for
partitioning a dataset into k groups or clusters. In k-medoids clustering, each cluster is
represented by one of the data point in the cluster. These points are named cluster medoids.
The term medoid refers to an object within a cluster for which average distance between it
and all other members of the cluster is minimal. It corresponds to the most centrally located
point in the cluster. These objects (one per cluster) can be considered as a representative
example of the members of that cluster which may be useful in some situations. Recall that,
in k-means clustering, the center of a given cluster is calculated as the mean value of all data
points in the cluster. The k-medoids algorithm can work with any distance matriz and is
less affected by outliers than k-means because it uses medoids as cluster centers instead of
means [28].

The most common k-medoids clustering methods is the PAM algorithm (Partitioning
Around Medoids) [28]. In summary, PAM algorithm proceeds in two phases as follows.

Build phase

1. Randomly select k£ objects to become the medoids;

2. Assign every object to its closest medoid, then calculate the total cost E for the
resulting cluster configuration by using formula

k
E=) "> |o—mi. (2.15)

=1 xECi

where z is an object in cluster C;, m; is the current medoid of Cj, the absolute value |z — m;]|
means the distance between xz and m;

Swap phase
3. For each medoid m
For each non-medoid data point x
swap m and x; compute the total cost E’ of the resulting cluster configuration;
4. if ' < E, m is replaced by x;
5. Repeat Steps 3-4 until there is no change in the medoids.

The complexity of PAM for each iteration (step 3-4) is O (k‘ (n— k:)2> where n is the

number of objects in dataset, k is number of clusters. Moreover, the PAM algorithm com-
plexity to recalculate the entire cost function is O (n2k2) [28]. Therefore, the complexity of
the k-medoids approach is in general higher than the k-means approach, but the former can
guarantee that all centers of obtained clusters are objects themselves. This feature is impor-
tant to us, since the attributes are not only clustered but also the representative attribute
of each cluster has to be found. Note that, the goal of this paper is to select attributes using
clustering. An attribute clustering method based on k-medoids, thus, can help us achieve
this purpose.

PAM clustering algorithm is implemented in R programming language. To compute
PAM, we can use the pam() function in the “cluster” package [33]. For PAM algorithm, a
user has to specify k, the number of clusters to find. There is also an enhanced version of
pam(), function pamk() in R package “fpc”. pamk() does not require a user to choose k.
Instead, it performs a partitioning around medoids clustering with the number of clusters
estimated by optimum average silhouette width method, described in [34].
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Briefly, the average silhouette approach measures the quality of a clustering. That is,
it determines how well each object lies within its cluster. A high average silhouette width
indicates a good clustering. Average silhouette method computes the average silhouette of
observations for different values of k. The optimal number of clusters k£ is the one that
maximize the average silhouette over a range of possible.

3. PROPOSED METHOD

This section introduces our proposed algorithm for computing an approximate reduct in
a decision table. It is called ACBRC (attribute clustering based reduct computing).

In a decision table, irrelevant attributes that do not contribute to predicting accuracy and
redundant attributes do not redound to better prediction because most of the information
they provide is already in the other attribute. Irrelevant attributes, along with redundant
attributes, severely affect the accuracy of the learning machines [35]. Therefore, attribute
reduction algorithm should be able to identify and remove as much of the irrelevant and
redundant information as possible. Furthermore, good attribute subsets must contain at-
tributes that are close to the decision attribute, but not close to each other. Keeping these in
mind, we propose ACBRC, an attribute clustering based reduct computing algorithm which
can efficiently and effectively deal with both irrelevant and redundant attributes in a decision
table, and give a good approximate reduct.

In order to more precisely introduce the algorithm, we firstly present our definitions.

Definition 3.1. Let DT = (U,CU{d}) be a decision table. Attribute clustering in DT
can be defined as the partitioning of the set C' of conditional attributes into a collection
Cx = {C1,Cy,...,Ck} of mutually disjoint subsets C; of C', such that C; UCsU ... UCy = C,
C; # 0, and C;nNC; = (), for i # j.

Definition 3.2. Let DT = (U,CU{d}) be a decision table, C'U{d} is the full set of
attributes. The distance between any pair of attributes X; and X; (X;, X; € CU{d},i # j)
is measured by NV (X;, X;), defined as in (2.14).

Note that for any X; € C' we have 0 < NVI (X;,d) < 1.

Definition 3.3. The irrelevance between the condition attribute X; € C and the decision
attribute d is measured by the distance value NV I (X;, d). The greater the value NV I (X;, d)
is, the lower the relevance between them. If NV I (X;,d) is greater than a threshold 6 = 0.98,
we say that X; is an irrelevant attribute; otherwise X; is relevant one.

Definition 3.4. Let G be a cluster of attributes. A feature X% € G is a representative
attribute of the cluster if and only if

XB = argmin NVI (X,d).
XeG

This means X is the strongest relevant attribute and can act as a relevant attribute for
all attributes in the cluster G.

Using the above definitions, ACBRC algorithm is the process consisting of the two con-
nected parts: irrelevant attribute elimination and redundant attribute removal. The former
obtains relevant attributes by eliminating irrelevant ones, the latter removes redundant
attributes from relevant ones via choosing representatives from different attribute clusters,
and thus produces the final subset of attributes. Framework of ACBRC isshown in Figure 1.
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Figure 1. Framework of the proposed Reduct Computing algorithm ACBRC

ACBRC algorithm consists of three stages.

(1)

(3)

First, irrelevant attributes are eliminated. For this purpose, the distance NVI (X, d)
is measured between each attribute X and the decision attribute d. We assume that
the greater an attribute has irrelevance value is, the lower its ability to distinguish
between classes. Here, the attribute with irrelevance greater than 0.98 will be removed
from the initial attribute set.

Clustering the relevant attributes using function pamk() in R package “fpc”, integrated
with metric NVI

pamk() is an enhanced version of pam(), which can work with any distance matrix and
does not require a user to choose the number of clusters k. Instead, it performs a PAM
clustering with the number of clusters estimated by optimum average silhouette width
method, described in [34].

Finally, selecting from each cluster the attribute which has the strongest decision-
relevance. This attribute can act as a representative attribute for all attributes in
the cluster. Once a attribute is selected, attributes belonging to the same cluster are
removed. The selected attributes form the approximate reduce.

The main steps of the ACBRC algorithm are as follows.

Algorithm 2 The ACBRC algorithm
inputs: The given decision table DT = (U, CU{d}), 6 = 0.98 - the irrelevance threshold.
output: Red — approximate attribute reduct.
step 1. Irrelevant attributes elimination.

For each X € C compute irrelevance = NVI (X,d). If irrelevance > § then
CR=C\{X}.

step 2. calculate the distance matrix NV I for all attribute pairs.

For each attribute pair X; and X in CT compute
NVIi,jl = NVI(X;, X;) (equation (2.14).

step 3. Using pamk() fuction in R package “fpc” to cluster the attributes in CF.
step 4. for each cluster G do X' = argminyNVI (X,d). Red = RedU X%



AN EFFECTIVE ALGORITHM FOR COMPUTING REDUCTS 287
4. EXPERIMENTAL RESULTS

The proposed ACBRC attribute reduction algorithm was implemented in R program-
ming language and on a personal computer with Pentium dual core 2.70 GHz CPU and 2.00
GB RAM.

Experimental computations were carried out on 5 benchmark datasets obtained from
UCI repository [36]. The characteristics of these datasets are shown in Table 1. The first
two columns show the names and abbreviations of datasets, the next two columns show the
number of samples and attributes, and the last column shows the number of class labels. All
attributes of the selected datasets are categorical. Thus, discretization is not necessary.

Table 1. Descriptions of datasets in the experiment

Datasets Abbreviations Nr. of Nr. of Nr. of

instances condition classes
attributes

Chess Chess 3196 36 2

Mushroom Mushroom 8124 22 7

Soybean (small) Soybean 47 35 4

Lung-cancer Lung 32 56 3

Votes Votes 435 16 2

To evaluate the performance of our proposed ACBRC algorithm, we compare it with
QuickReduct and CEBARKNC algorithms, in terms of the number of selected attributes,
and the classification performance.

For comparing the classification performance of ACBRC, QuickReduct and CEBARKNC,
we used C5.0 and Native Bayes, which are two popular classification algorithms and widely
applied in various research fields.

In order to make the best use of the data and obtain stable results, a 3-trials 10-fold cross-
validation strategy is used. That is, for each dataset, each attribute reduction algorithm
and each classification algorithm, the 10-fold cross-validation is repeated 3 times, with each
time, the order of the instances of the dataset is randomized. Randomizing the order of the
instances can help diminish the order effects. For each classification algorithm, we obtain 3-
trials 10-fold classification accuracy for each attribute reduction algorithm and each dataset.
Averaging these accuracies, we obtain mean accuracy of each classification algorithm under
each attribute reduction algorithm and each dataset.

A. Comparison of number of selected attributes for three attribute reduction algorithms

Table 2 shows the attributes selected by three attribute reduction algorithms - ACBRC,
QuickReduct and CEBARKNC when they are applied for each dataset in Table 1.

From Table 2, we can see that all three algorithms achieve significant reduction of di-
mensionality by selecting only a small portion of the original attributes. ACBRC generally
obtains the best proportion of selected attributes.

From Table 3, we see that the execution time of the three algorithms depends on the
characteristics of each dataset. In general, the execution time of the ACBRC algorithm is
slightly larger than that of the QuickReduct and CEBARKNC algorithms, but the execution
time of ACBRC is acceptable..
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Table 2. Selected attributes using three algorithms
Datasets ACBRC QuickReduct CEBARKNC
Chess 729328101833 14 | 211029142811516633 | 21103332635151347
16 21 735183411517233626 | 1623 17423052739

2030424 1227253139 | 202531 12 13 24 18 28 26
13 36

Mushroom | 132059 15622111251 5202221

Soybean 22 21 221 22 4

Lung 9 48 14274 94334

Votes 412 19144111613326 4113131629151

Table 3. Execution time of the proposed algorithms (in sec.)

Datasets ACBRC QuickReduct CEBARKNC
Chess 18.52 28.41 12.82
Mushroom | 1.14 2.29 1.11

Soybean 0.64 0.12 0.36

Lung 0.84 0.31 0.44

Votes 0.64 0.73 0.53

B. Evaluation of the classification performance of the ACBRC attribute reduction algorithm

Table 4 shows 95% confidence intervals of 3-trials 10-fold classification accuracy of two
classifiers on 5 datasets without attribute reduction.

Table 4: Classification accuracy without attribute reduction

Datasets C5.0 Bayes

Chess 0.9928 + 0.0024 0.87868 + 0.0126
Mushroom | 1 0.94088 + 0.0057
Soybean 0.975 + 0.049 1

Lung 0.7667 + 0.1701
Votes 0.9674 & 0.0139

0.56667 £ 0.2396
0.90465 + 0.0349

Table 5 shows 95% confidence intervals of 3-trials 10-fold classification accuracy of two
classifiers on 5 datasets after ACBRC attribute reduction algorithm is used.

Generally, for all five datasets, the classification accuracy of attributes selected by ACBRC
is greater than the classification accuracy of the original attributes.

C. Comparison of classification accuracy for three attribute reduction Algorithms

Table 6 and Table 7 show 95% confidence intervals of classification accuracy by 3-trials
10-fold cross-validation when C5.0 and Naive Bayes classifiers are used for the datasets with
attributes selected by ACBRC, QuickReduct, and CEBARKNC.

From Table 6, we see that for datasets “Soybean”, “Lung”, and “Votes”, C5.0 classifica-
tion accuracy with attributes selected by ACBRC is greater than the classification accuracy
with attributes selected by QuickReduct and CEBARKNC. And for two other datasets, the
classification result after attribute reduction by ACBRC is comparable with the results after
attribute reduction by QuickReduct and CEBARKNC.

From Table 7, we see that for all five datasets, the Bayes classification accuracy with
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Table 5: Classification accuracy using attributes selected by ACBRC

Datasets C5.0 Bayes

Chess 0.9928 +0.0022 0.8906 4+ 0.0129
Mushroom | 1 0.9473 + 0.0031
Soybean 1 1

Lung 0.8 + 0.1996 0.6 £ 0.2134
Votes 0.9674 £0.0217 0.9581 4+ 0.0164
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Table 6: C5.0 classification accuracy using different attribute reduction algorithms

Datasets ACBRC QuickReduct CEBARKNC
Chess 0.9928 4+0.0022 0.9931 + 0.0024 0.9937 4+ 0.0035
Mushroom | 1 1 1

Soybean 1 0.975 + 0.049 0.975 £+ 0.049
Lung 0.8 + 0.1996 0.8 +0.1445 0.7667 £+ 0.1701
Votes 0.9674 +0.0217 0.9651 + 0.014 0.9558 + 0.0126

selected attributes by ACBRC is greater than the classification accuracy with attributes
selected by QuickReduct and CEBARKNC.

5. CONCLUSION

In this paper, we have proposed a clustering based attribute reduction algorithm for high
dimensional decision table. The proposed algorithm, called ACBRC, consists of three stages:
(1) removing irrelevant attributes, (2) clustering the relevant attributes into appropriately
selected number of clusters using Partitioning Around Medoids (PAM) clustering method
integrated with Normalized Variation of Information as distance measure, and (3) selecting
from each cluster the representative attribute which has the strongest relevance. Once an
attribute is selected from a cluster, attributes belonging to the same cluster are removed and
thus the dimensionality of decision table is drastically reduced. Only the selected attributes
form the approximate reduct.

Experimental computations were carried out on five benchmark datasets obtained from
UCI repository. To evaluate the performance of the proposed attribute reduction algorithm,
we compare it with QuickReduct and CEBARKNC algorithms, in terms of the number of
selected attributes, and the classification performance. Generally, ACBRC obtained the
best proportion of selected attributes, the best classification accuracy for C5.0, and Naive
Bayes. The classification accuracy after attribute reduction by ACBRC even outperforms
the classification accuracy using whole dataset in some cases. These experimental results

Table 7: Bayes classification accuracry using different feature selection methods

Datasets ACBRC QuickReduct CEBARKNC
Chess 0.8906 + 0.0072 0.8881 +0.015 0.8947 + 0.0061
Mushroom | 0.9473 4+0.0036 0.982 +0.0027 0.9807 + 0.0031
Soybean 1 0.875 +0.1096 1

Lung 0.5334 +0.2425 0.4667 + 0.2789 0.4667 + 0.2425
Votes 0.9581 4+0.0164 0.9279 + 0.023 0.9302 + 0.0192
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show that ACBRC is a promising algorithm for attribute reduction.

For the future work, we will attempt to apply the proposed attribute reduction algorithm

to some real application domains with high dimensional datasets like DNA analysis and text
categorization.

1]

[10]

REFERENCES

G. Chandrashekar and F. Sahin, “A survey on feature selection methods,” Computers
& Electrical Engineering, vol. 40, mno. 1, pp. 16-28, 2014. [Online]. Available:
https://doi.org/10.1016/j.compeleceng.2013.11.024

E. Guyon and A. Elisseeff, “An introduction to variable and feature selection,” Journal
of Machine Learning Research, vol. 3, pp. 1157-1182, 2003.

H. Liu and H. Motoda, Computational Methods of Feature Selection. Chapman and
Hall/CRC Press, 2007.

K. Kira and L. Rendell, “The feature selection problem: Traditional methods and a
new algorithm,” in Proceedings of Ninth National Conference on Artificial Intelligence,
1992, pp. 129-134. [Online]. Available: https://www.aaai.org/Papers/AAAI/1992/
AAAT92-020.pdf

Q. Song, J. Ni, and G. Wang, “A fast clustering-based feature subset selection algorithm
for high-dimensional data,” IEEE Transactions on Knowledge and Data Engineering,
vol. 25, no. 1, pp. 1-14, 2013.

M. Alimoussa, A. Porebski, N. Vandenbroucke, R. Thami, and S. E. Fkihi,
“Clustering-based sequential feature selection approach for high dimensional data
classification,” in Proceedings of the 16th International Joint Conference on
Computer Vision, Imaging and Computer Graphics Theory and Applications
(VISIGRAPP 2021) - Volume 4: VISAPP, 2021, pp. 122-132. [Online|. Available:
https://www.scitepress.org/Papers/2021/102595/102595.pdf

S. Chormunge and S. Jena, “Correlation-based feature selection with clustering for high
dimensional data,” Journal of Electrical Systems and Information Technology, vol. 5,
no. 3, pp. 542-549, 2018. [Online]. Available: https://doi.org/10.1016/j.jesit.2017.06.004

D. Harris and A. Niekerk, “Feature clustering and ranking for selecting stable
features from high dimensional remotely sensed data,” International Journal of
Remote Sensing, vol. 39, mno. 23, pp. 8934-8949, 2018. [Online]. Available:
https://doi.org/10.1080,/01431161.2018.1500730

K. Zhu and J. Yang, “A cluster-based sequential feature selection algorithm,” in 2013
Ninth International Conference on Natural Computation (ICNC), 2013, pp. 848-852.

X. Zhu, Y. Wang, Y. Li, Y. Tan, G. Wang, and Q. Song, “A new
unsupervised feature selection algorithm using similarity-based feature clustering,”
Computational Intelligence, vol. 35, no. 1, pp. 2-22, 2019. [Online]. Available:
https://doi.org/10.1111 /coin.12192


https://doi.org/10.1016/j.compeleceng.2013.11.024
https://www.aaai.org/Papers/AAAI/1992/AAAI92-020.pdf
https://www.aaai.org/Papers/AAAI/1992/AAAI92-020.pdf
https://www.scitepress.org/Papers/2021/102595/102595.pdf
https://doi.org/10.1016/j.jesit.2017.06.004
https://doi.org/10.1080/01431161.2018.1500730
https://doi.org/10.1111/coin.12192

[11]

[12]

AN EFFECTIVE ALGORITHM FOR COMPUTING REDUCTS 291

7. Pawlak, Rough Sets, Theoretical Aspects of Reasoning About Data. Kluwer Academic
Publishers, 1991.

Q. Zhang, Q. Xie, and G. Wang, “A survey on rough set theory and its applications,”
CAAI Transactions on Intelligence Technology, vol. 1, no. 4, pp. 323-333, 2016.
[Online|. Available: https://doi.org/10.1016/j.trit.2016.11.001

A. Skowron and C. Rauszer, “The discernibility matrices and functions in
information systems,” in Intelligent Decision Support. Theory and Decision Library,
R. Slowiniski, Ed. Springer, Dordrecht, 1992, wvol. 11. [Online]. Available:
https://doi.org/10.1007/978-94-015-7975-9_21

Q. Al-Radaideh, M. Sulaiman, M. Selamat, and H. Ibrahim, “Approximate reduct com-
putation by rough sets based attribute weighting,” in 2005 IEEFE International Confer-
ence on Granular Computing, vol. 2, 2005, pp. 383—-386.

K. Gao, M. Liu, K. Chen, N. Zhou, and J. Chen, “Sampling-based tasks scheduling in
dynamic grid environment,” in Proceedings of the 5th WSEAS International Conference
on Simulation, Modeling and Optimization, Corfu, Greece, 2005, pp. 25-30. [Online].
Available: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.582.5929&rep=
repl&type=pdf

H. Q. Sun and Z. Xiong, “Finding minimal reducts from incomplete information sys-
tems,” in Proceedings of the 2003 International Conference on Machine Learning and
Cybernetics (IEEE Cat. No.03SEX693), vol. 1, 2003, pp. 350-354.

J. Wroblewski, “Computing minimal reducts using genetic algorithms,” in The Second
Annual Joint Conference on Information Sciences, 1995, pp. 186-189. [Online].
Available: http://www.cs.sjsu.edu/~khuri/Aalto_2017/ge_short.pdf

T. Hong and Y. Liou, “Attribute clustering in high dimensional feature spaces,” in 2007
International Conference on Machine Learning and Cybernetics, 2007, pp. 2286—2289.

T. Hong, P. Wang, and Y. Lee, “An effective attribute clustering approach for feature
selection and replacement,” Cybernetics and Systems: An International Journal, vol. 40,
no. 8, pp. 657-669, 2009.

T. Hong, P. Wang, and C. Ting, “An evolutionary attribute clustering and selection
method based on feature similarity,” in IEEE Congress on Evolutionary Computation,
2010, pp- 1-5.

T. Hong, Y. Liou, S. Wang, and B. Vo, “Feature selection and replacement by
clustering attributes,” Vietnam Journal of Computer Science, vol. 1, pp. 47-55, 2014.
[Online]. Available: https://doi.org/10.1007/s40595-013-0004-3

T. Hong, C. Chen, and F. Lin, “Using group genetic algorithm to improve performance
of attribute clustering,” Applied Soft Computing, vol. 29, pp. 371-378, 2015. [Online].
Available: https://doi.org/10.1016/j.as0c¢.2015.01.001


https://doi.org/10.1016/j.trit.2016.11.001
https://doi.org/10.1007/978-94-015-7975-9_21
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.582.5929&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.582.5929&rep=rep1&type=pdf
http://www.cs.sjsu.edu/~khuri/Aalto_2017/ge_short.pdf
https://doi.org/10.1007/s40595-013-0004-3
https://doi.org/10.1016/j.asoc.2015.01.001

292

23]

[24]

[25]

[28]

[29]

[30]

[32]

[33]

[34]

DO SI TRUONG et al.

A. Janusz and D. Slezak, “Utilization of attribute clustering methods for scalable com-
putation of reducts from high-dimensional data,” in 2012 Federated Conference on Com-
puter Science and Information Systems (FedCSIS), 2012, pp. 295-302.

——, “Rough set methods for attribute clustering and selection,” Applied Artificial
Intelligence, vol. 28, no. 3, pp. 220-242, 2014.

F. Pacheco, M. Cerrada, R. Sanchez, D. Cabrera, C. Li, and J. V. de Oliveira,
“Attribute clustering using rough set theory for feature selection in fault severity
classification of rotating machinery,” Fxpert Systems With Applications, vol. 71, pp.
69-86, 2017. [Online]. Available: https://doi.org/10.1016/j.eswa.2016.11.024

D. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning.
Boston, MA, USA: Addison Wesley, 1989.

A. Jakulin, “Machine learning based on attribute interactions,” Ph.D. dissertation,
University of Ljubljana, Faculty of Computer and Information Science, 2005. [Online].
Available: http://eprints.fri.uni-1j.si/205/1/jakulin05phd.pdf

L. Kaufman and P. Rousseeuw, Computing Groups in Data: An Introduction to Cluster
Analysis. Toronto: John Wiley & Sons, 1990.

Y

R. Bello and R. Falcon, “Rough sets in machine learning: A review,” in Studies in

Computational Intelligence, 2017.

L. C. Molina, L. Belanche, and A. Nebot, “Feature selection algorithms: A survey
and experimental evaluation,” in 2002 IEEE International Conference on Data Mining,
Proceedings, 2002, pp. 306-313.

R. Jensen and Q. Shen, “A rough set-aided system for sorting www bookmarks,”
in Web Intelligence: Research and Development. WI 2001. Lecture Notes in
Computer Science. Springer, Berlin, Heidelberg, 2001, vol. 2198. [Online]. Available:
https://doi.org/10.1007/3-540-45490-X_10

G. Wang, H. Yu, and D. Yang, “Decision table reduction based on conditional informa-
tion entropy,” Chinese Journal of Computers, vol. 25, no. 7, pp. 759-766, 2002.

Y. Zhao, R and Data Mining: Examples and Case Studies. Elsevier, 2012. [Online].
Available: https://www.webpages.uidaho.edu/~stevel /517/RDataMining-book.pdf

P. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and validation of
cluster analysis,” Journal of Computational and Applied Mathematics, vol. 20, pp.
53-65, 1987. [Online]. Available: https://doi.org/10.1016/0377-0427(87)90125-7

R. Kohavi and G. John, “Wrappers for feature subset selection,” Artificial
Intelligence, vol. 97, mno. 1-2, pp. 273-324, 1997. [Online]. Available: https:
//doi.org/10.1016,/S0004-3702(97)00043-X

D. Dua and C. Graff, “Uci machine learning repositories,” 2019. [Online]. Available:

http://archive.ics.uci.edu/ml/ Received on August 22, 2022

Accepted on September 23, 2022


https://doi.org/10.1016/j.eswa.2016.11.024
http://eprints.fri.uni-lj.si/205/1/jakulin05phd.pdf
https://doi.org/10.1007/3-540-45490-X_10
https://www.webpages.uidaho.edu/~stevel/517/RDataMining-book.pdf
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1016/S0004-3702(97)00043-X
https://doi.org/10.1016/S0004-3702(97)00043-X
http://archive.ics.uci.edu/ml/

	INTRODUCTION
	 PRELIMINARIES
	 Reducts in decision table
	Normalized variation of information
	k-medoids clustering algorithm

	PROPOSED METHOD
	 EXPERIMENTAL RESULTS
	 CONCLUSION

