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Abstract. This paper introduces an optimal tracking controller for robot manipulators with asym-

metric saturation torques and partially unknown dynamics based on a reinforcement learning method

using a neural network. Firstly, the feedforward control inputs are designed based on the backstepping

technique to convert the tracking control problem into the optimal tracking control problem. Sec-

ondly, a cost function of the system with asymmetric saturation inputs is defined, and the constrained

Hamilton-Jacobi-Bellman equation is built, which is solved by the online reinforcement learning al-

gorithm using only a single neural network. Then, the asymmetric saturation optimal control rule

is determined. Additionally, the concurrent learning technique is used to relax the demand for the

persistence of excitation conditions. The built algorithm ensures that the tracking error and the ap-

proximation error are uniformly ultimately bounded (UUB), and the cost function converges to the

near-optimal value. Finally, the effectiveness of the proposed algorithm is shown through comparative

simulations.

Keywords. Robot manipulators, reinforcement learning, optimal tracking control, asymmetric

saturation inputs.

1. INTRODUCTION

Robot manipulators have been widely used and have played an essential role in many
fields, such as production, assembly, transportation, and mass production lines [1, 2]. Im-
proving control performance for robot manipulators has received much attention from re-
searchers [3–6], where reference position tracking control is a vital control problem for robot
manipulators [3, 6, 7]. In [5], an adaptive controller using a radial basic function (RBF)
neural network (NN) was proposed to control the robot with an uncertain model parameter,
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and a sliding controller was integrated to suppress the disturbance. In [4], an adaptive slid-
ing fuzzy controller was used, where fuzzy logic for approximating the unknown nonlinear
component and a disturbance observer was also proposed. In [8], an adaptive neural PID
controller combined with an angular velocity acceleration observer was presented for robot
manipulators with uncertain model parameters. Yilmaz et al. [9] proposed a self-tuning
fuzzy controller for robot manipulators. In [10], a robust model predictive controller was
used to control the trajectory tracking for the robot manipulators. Yang et al. [11] designed
an adaptive controller that ensures precise gravity compensation for the robot manipulators
without velocity measurement.

In addition to the problem that the robot manipulators are affected by disturbance,
the model parameter changes, and the robot manipulators are also affected by the problem
that the inputs are saturated. This problem will reduce the control performance and even
make the system unstable [12–14]. Ling et al. [15] proposed an adaptive fuzzy controller for
manipulators with symmetrically saturated inputs, where the tanh(.) function was used to
solve the saturated input problem. Yang et al. [16] proposed a control scheme for the robot
manipulators with symmetrically saturated inputs and output error constraints, in which a
backend system is designed to solve the saturation input problem, and the RBF NN is used
to approximate the uncertain components. Hwang and Chen [17] developed an adaptive
finite-time saturation tracking controller for robots with partially known dynamics. The
problem of asymmetric saturation of the robot manipulators can occur when the actuator
is partially reduced in efficiency, changes in the mechanical structure, and the faulty power
drive circuit [18]. Ma et al. [19] proposed an adaptive NN controller for a nonlinear system
with model uncertainty, asymmetric saturation inputs, and external noise. Zhou et al. [20]
designed a fast terminal sliding mode controller for robots with asymmetric saturation inputs.
In [18], an adaptive neural controller was developed based on NN and the backstepping
technique to control robot manipulators with asymmetric saturation inputs, where NN is used
to approximate unknown dynamics. In [15–18,20], the proposed algorithms have effectively
solved the trajectory tracking problem for robot manipulators with saturated inputs, but
they have not considered the optimal control problem.

The adaptive dynamic programming (ADP) algorithm is an effective tool for solving
the optimal control problem, where solving the Hamilton-Jacobi-Bellman (HJB) equation
is based on the function approximators [21]. Recently, reinforcement learning (RL) has
become an effective tool for online approximation of solutions of HJB equations [22–24] and
has been applied to the optimal tracking control problem for robot manipulators [25–28].
Kamalapurkar et al. [25] used RL to solve the optimal tracking control problem for robot
manipulators, but the algorithm uses an approximator with 2 NNs. Long et al. [27] proposed
an optimal tracking control algorithm using only a single NN. Kong et al. [26] proposed a
robust optimal control algorithm, but the algorithm needs to know the dynamics. Zhao et
al. [28] used RL for the problem of saturated optimal tracking control for robot manipulators
in discrete time. In our previous works [29, 30], we designed optimal tracking controllers
using RL for nonlinear systems with disturbances. However, the algorithms therein are
only applied to large-scale robot systems with symmetrically saturated inputs. In contrast,
although Bu [31] proposed an optimal algorithm with asymmetric saturation input and Xia
et al. [32] proposed a data-driven off-policy RL algorithm to approximate the solution to
the constrained HJB equation without requiring complete knowledge of the dynamics, the
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algorithms are only applied to a class of affine nonlinear systems. To our best knowledge,
traditional RL control rarely considers the optimal tracking problem for robot manipulators
with asymmetric saturation torques.

Motivated by the above challenges, in this paper, we design an optimal tracking con-
troller for robot manipulators with asymmetric saturation torques and partially unknown
dynamics based on an RL method using a single NN. The main contributions of this paper
are summarized as follows: 1) Different from [28–30], for the first time, we propose a feedfor-
ward control design to transform a position-tracking control problem into an optimal control
problem for robot manipulators with asymmetric saturation torques and partially unknown
dynamics.
2) Different from [25], the cost function of the asymmetrical saturation system is proposed,
which both satisfies the asymmetric torques and the solution to the HJB equation is positive.
The constrained solution is solved by the online RL algorithm using only a single NN instead
of two to reduce the computational cost.
3) The algorithm for updating the weights of the NN is determined with partially unknown
dynamics. Therefore, the proposed algorithm is more efficient than the algorithm in [31]
because it does not require known dynamics. Furthermore, the concurrent learning (CL)
technique is used to relax the demand for the persistence of excitation (PE) condition and
ensures convergence of NN weights.

The structure of the paper is organized as follows. Section 2 describes the robot manipu-
lator’s dynamics and feedforward control inputs’ design problem. Section 3 offers a design of
the optimal control rule with asymmetric saturation torques and partially unknown dynam-
ics. Section 4 presents the simulation results, and Section 5 gives the paper’s conclusion.

2. ROBOT MODEL AND FEEDFORWARD CONTROL

This section presents two problems: A dynamic model of the robot manipulators as a
strict-feedback nonlinear system and the feedforward control inputs to convert the tracking
problem into the optimal control problem.

2.1. Robot model

Consider a model of a robot manipulator in the form of an Euler – Lagrange system with
full actuators. The method based on the Lagrange equation is used to build the dynamic
equation for the robot manipulators, which has the following general form [3,6, 33,34]

M(q)q̈ + C(q, q̇)q̇ +G(q) + F (q̇) = τ − τ0, (1)

where q ∈ ℜn×1, q̇ ∈ ℜn×1, and q̈ ∈ ℜn×1 are the joint variables’ position, angular velocity,
and angular acceleration vectors. The inertia matrix M(q) ∈ ℜn×n is symmetric positive
definite, C(q, q̇) ∈ ℜn×n is the Coriolis-centripetal matrices, G(q) ∈ ℜn×1 is the dynamic
friction, F (q̇) ∈ ℜn×1 is the static friction, τ0 ∈ ℜn×1 is the vector of external disturbances,
and τ ∈ ℜn×1 is the control input vector of joints torques and satisfies

λ1 ≤ τi ≤ λ2, i = 1, 2, · · · , n, (2)

where τi the element of τ , λ1 and λ2 are the lower and upper bounds of τi, respectively.
The dynamic equation 1 is characterized by the following properties [3, 33].
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Property 1. The matrix M(q) is bounded. It means mmin ≤ ∥M(q)∥ ≤ mmax, where mmin

and mmax is positive constant.

Property 2. The matrix C(q, q̇) is bounded, i.e. ∥C(q, q̇)∥ ≤ cmax, where cmax are positive
constants.

Property 3. ˙M(q)− 2C(q, q̇) is skew-symmetric.

Property 4 . The matrix G(q) is bounded, which means ∥G(q)∥ ≤ gmax, where gmax is the
upper bound of ∥G(q)∥.

Remark 1. Properties 1, 2, 3, and 4 are satisfied in the practical robot manipulators and
are mentioned when designing the controller for them [3,33,35]. In addition, these properties
are used when proving the system’s stability; therefore, one does not necessarily define the
upper and lower bounds of the M(q), C(q, q̇), and G(q) matrices.

To facilitate the design of the controller, we transform dynamics 1 into a strict-feedback
nonlinear system with asymmetry saturation torques as follows{

q̇ = fq(q) + gq(q)v

v̇ = fv(q, v) + gv(q, v)τ,
(3)

where v is the angular velocity vector of the joint variables, fq(q) = 0n×1, gq(q) = In,
fv(q, v) = −M−1(q) (C(q, q̇)v +G(q) + F (q̇)) ∈ ℜn×1 and is considered unknown, gv(q, v) =
M−1(q) ∈ ℜn×n.

Remark 2. By Properties 1, 2, and 4, fv(q, v) is bounded, i.e., ∥fv(q, v)∥ ≤ −m−1
min (cmax+

gmax)∥v∥. By Properties 1, gv(q, v) is bounded such that ∥gv(q, v)∥ ≤ m−1
min. In addition,

gv(q, v) is known because the matrix M(q) is well-defined.

Assumptions 1. The reference position trajectory qd(t) is smooth and bounded.

Problem formulation: The main objective for the optimal tracking control problem for
robot manipulators with asymmetric saturation torques and partially unknown dynamics is
to design feedback control rules for the system 3, such that lim

t→∞
(q(t)− qd(t)) → 0 with qd(t)

as the reference position trajectory. Furthermore, a defined tracking cost function related to
tracking errors and control inputs is minimized.

2.2. Feedforward control

In this section, we design the feedforward control inputs by applying the backstepping
method and then transform 3 into an optimal control problem.

The virtual control inputs and the control inputs are determined as follows{
vd = v∗d + vda

τ = τ∗ + τa,
(4)

where v∗d is the virtual optimal control input vector, vda is the feedforward virtual control
input vector, τ∗ is the optimal control input vector, and τa is the feedforward control input
vector.
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First, we define the tracking error as{
eq = q − qd

ev = q̇ − vd.
(5)

Then, we design the feedforward control inputs through the backstepping technique by fol-
lowing the steps.
Step 1: Calculate the derivative of the position tracking error and combine it with 4, we
obtain

ėq = −q̇d + gq(q)v
∗
d + gq(q)vda + gq(q)ev. (6)

We design vda as follows
vda = g−1

q (q)(Λ1ev − Λ2eq + q̇d). (7)

By substituting 7 into 6, one has

ėq = gg(q)v
∗
d + Λ1ev − Λ2eq + gq(q)ev = f̄q(eq, ev) + gq(q)v

∗
d + gq(q)ev, (8)

where f̄q(eq, ev) = Λ1ev − Λ2eq.

Step 2: Taking the derivative ev and noting 4, we get

ėv = −v̇d + fv(q, v) + gv(q, v)τ
∗ + gv(q, v)τa. (9)

We design τa as follows

τa = g−1
v (q, v)[v̇d − gTq (q)eq − Λ3ev − Λ4eq], (10)

where τa is constrained by

λ1 − ρ1 tanh(1) ≤ τai ≤ λ2 − ρ2 tanh(1), i = 1, 2, · · · , n, (11)

where τai is the element of τa, |ρ1| < |λ1|, |ρ2| < |λ2|. Noting 4 and 11, we see that if the
element τ∗i of τ∗ is designed to satisfy the constraint ρ1 ≤ τ∗i ≤ ρ2, then τi will be constrained
λ1 ≤ τi ≤ λ2. By substituting 10 into 9, dynamics 9 becomes

ėv = f̄v(eq, ev) + gv(q, v)τ
∗ − gTq (q)eq, (12)

where f̄v(eq, ev) = fv(q, v)− Λ3ev − Λ4eq.

Lemma 1. Consider the dynamics 3, the virtual control inputs and the control inputs are
determined in 4, with the feedforward control inputs designed in 7 and 10. Then the control
problem of the system 3 is transformed into the control problem of the following system

ż = f̄qv(eq, ev) + gqv(q, v)u
∗, (13)

with asymmetric saturation optimal control inputs vector u∗, where z = [eTq , e
T
v ]

T ∈ ℜ2n×1,

f̄qv(eq, ev) = [f̄Tq (eq, ev), f̄
T
v (eq, ev)]

T ∈ ℜ2n×1, gqv(q, v) = diag [gq(q), gv(q, v)] ∈ ℜ2n×2n,

u∗ = [v∗Td , τ∗T ]T ∈ ℜ2n×1, ua = [vTda, τ
T
a ]T ∈ ℜ2n×1, and uτ = [vTd , τ

T ]T = u∗ + ua ∈ ℜ2n×1.
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Proof. Choose a Lyapunov function for system 3 as follows

J1 =
1

2
eTq eq +

1

2
eTv ev. (14)

Taking derivative 14 along trajectories of 8 and 12, one obtains

J̇1 = eTq f̄q(eq, ev) + eTq gq(q)v
∗
d + eTq gq(q)ev + eTv f̄v(eq, ev) + eTv gv(q, v)τ

∗ − eTv g
T
q (q)eq

= eTq
(
f̄q(eq, ev) + gq(q)v

∗
d

)
+ eTv

(
f̄v(eq, ev) + gv(q, v)τ

∗)
= zT (f̄qv(eq, ev) + gqv(q, v)u

∗).

(15)

On the other hand, choose a Lyapunov function for system 13 as follows

J2 =
1

2
zT z. (16)

Taking derivative 16, one obtains

J̇2 =
1

2
zT (f̄qv(eq, ev) + gqv(q, v)u

∗). (17)

We see that if we design a control rule u∗ that stabilizes the closed system 13, then J̇2 < 0.
Comparing 17 with 15, J̇2 < 0 results in J̇1 < 0, therefore, the closed system 3 is also stable.
In other words, the optimal tracking control problem of 3 is equivalent to the optimal tracking
controller design for 13.

The proof is completed. ■

3. OPTIMAL TRACKING CONTROL

In this section, we design the optimal tracking controller for system 13 with asymmetric
saturation inputs and partially unknown dynamics.

To design the optimal control algorithm, we define the cost function for the system 13 as
follows

V (z) =

∞∫
t

r (z(τ), u(τ))dτ, (18)

where r(z, u) = zTQz+Υ(u), Q is a positive definite matrix, Υ(u) is non-negative, and u is
an approximation of u∗ at each given time.

Inspired by [31,36,37], the energy cost function is defined as

Υ (u) = (ρ2 − ρ1)

∫ u

ρ2+ρ1
2

tanh−T

(
2s− ρ2 − ρ1
ρ2 − ρ1

)
Rds, (19)

where R is a positive definite diagonal matrix. Using integral by parts, 19 becomes

Υ (u) = (ρ2 − ρ1)tanh
−T

(
2u− ρ2 − ρ1
ρ2 − ρ1

)
Ru+Υ1(u), (20)

where

Υ1(u) = −(ρ2 − ρ1)R̄

∫ u

ρ2+ρ1
2

s∇ℓds, (21)
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where R̄ is a column vector of the diagonal elements of R, ℓ = tanh−T
(
2s−ρ2−ρ1
ρ2−ρ1

)
, ∇ℓ =

∂ℓ/∂s.

We have ℓ = tanh−T
(
2s−ρ2−ρ1
ρ2−ρ1

)
→ s =

1

2
(tanh(ℓ) (ρ2 − ρ1) + (ρ2 + ρ1)), 21 becomes

Υ1(u) = −ρ2 − ρ1
2

R̄

tanh−T
(

2u−ρ2−ρ1
ρ2−ρ1

)∫
0

(tanh(ℓ) (ρ2 − ρ1) + (ρ2 + ρ1)) dℓ. (22)

Defining j = tanh(ℓ), 1̄ = [1, 1, · · · , 1]T ∈ ℜ2n, we have

dℓ =
dj

1̄− tanh2(ℓ)
=

dj

1̄− j2
. (23)

Substituting 23 into 22, one obtains

Υ1(u) = −(ρ2 − ρ1)
2

2
R̄

2u−ρ2−ρ1
ρ2−ρ1∫
0

j

1̄− j2
dj −R (ρ2 + ρ1)

ρ2 − ρ1
2

tanh−T

(
2u− ρ2 − ρ1
ρ2 − ρ1

)

=
(ρ2 − ρ1)

2

4
R̄ ln

(
1̄−

(
2u− ρ2 − ρ1
ρ2 − ρ1

)2
)

−R(ρ2 + ρ1)
ρ2 − ρ1

2
tanh−T

(
2u− ρ2 − ρ1
ρ2 − ρ1

)
.

(24)

Combining 24 and 20, Υ (u) is written as

Υ (u) = (ρ2 − ρ1)Rtanh
−T

(
2u− ρ2 − ρ1
ρ2 − ρ1

)(
u− ρ2 + ρ1

2

)
+ R̄

(ρ2 − ρ1)
2

4
ln

(
1̄−

(
2u− ρ2 − ρ1
ρ2 − ρ1

)2
)
.

(25)

The Hamilton function for system 13 with a cost function 18 is defined as follows

H (z, u, Vz) = zTQz +Υ(u) + V T
z

(
f̄qv + gqvu

)
. (26)

where Vz = ∂V (z)/∂z. The HJB equation is presented as

min
u
H(z, u, V ∗

z ) = 0, (27)

where V ∗
z = ∂V ∗(z)/∂z. Then, the optimal control rule is defined as

u∗ = argmin
u
H(z, u, V ∗

z ). (28)

Using the stationary condition ∂H(z,u,V ∗
z )

∂u = 0, the optimal asymmetric constraint control
rule for system 13 is determined as

u∗ = −ρ2 − ρ1
2

tanh

(
1

ρ2 − ρ1
R−1gTqvV

∗
z

)
+
ρ2 + ρ1

2
. (29)
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Substituting 29 into 26, then equation HJB 27 becomes

H∗ (z, u∗, V ∗
z ) = zTQz +Υ(u∗) + V ∗T

z

(
f̄qv + gqvu

∗) = 0. (30)

If V ∗(z) is determined, one can determine the optimal control rule u∗ as 29. However,
equation 30 cannot be solved analytically. Thus, we use ADP combined with NN to approx-
imate the solution of equation 30. V ∗(z) is approximated as follows

V ∗(z) =W T θ(z) + ε(z), (31)

V ∗
z =W T ∂θ(z)

∂z
+
∂ε(z)

∂z
=W T θz + εz, (32)

where W ∈ ℜh is the NN weight vector, θ(z) : ℜn → ℜh is the NN activation function
vector with θ(0) = 0, and h is the number of neurons in the hidden layer, ε(z) is the NN
approximation error.

Assumptions 2. One can choose θ (z) to be a linearly independent basis set with quadratic,
tanh, or sigmoid elements to satisfy ∥θ (z)∥ ≤ sθ, ∥θz∥ = ∥∂θ (z) /∂z∥ ≤ s∇θ, ∥ε (z)∥ ≤ sε,
∥εz∥ = ∥∂ε (z) /∂z∥ ≤ s∇ε, where sθ, s∇θ, sε, and s∇ε are positive constants [38].

Using 32 for the control rule u∗ 29, we have

u∗ = −ρ2 − ρ1
2

tanh

(
1

ρ2 − ρ1
R−1gTqv

(
θTz W + εz

))
+
ρ2 + ρ1

2
. (33)

The weight vector W 31 is unknown, thus V ∗(z) is approximated by

V̂ (z) = Ŵ T θ(z), (34)

where Ŵ ∈ ℜh is the approximate NN weight vector. The control rule 33 is approximated
as

û = −ρ2 − ρ1
2

tanh

(
1

ρ2 − ρ1
R−1gTqvθ

T
z Ŵ

)
+
ρ2 + ρ1

2
. (35)

Substituting 35 into 30, the HJB equation 30 becomes

Ĥ(z, û, Ŵ T θz) = zTQz +Υ(û) + Ŵ T θz
(
f̄qv + gqvû

)
= eĤ . (36)

It can be seen that Ŵ needs to be tuned to minimize the error of Ĥ(z, û, Ŵ T θz). The
error function is chosen as E = 1

2ε
T
EεE , where

εE =

∫ t

t−T
eĤdτ = Ŵ T

∫ t

t−T
θz
(
f̄qv + gqvû

)
dτ+

∫ t

t−T

(
zTQz +Υ(û)

)
dτ

= Ŵ T (θ (z (t))− θ (z (t− T ))) +

∫ t

t−T

(
zTQz +Υ(û)

)
dτ

= Ŵ T∆θ (z) +

∫ t

t−T

(
zTQz +Υ(û)

)
dτ.

(37)

where T > 0 is the sampling period, ∆θ (z) = θ (z (t))− θ (z (t− T )).
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Using the algorithm gradient descent
˙̂
W = −α ∂E

∂Ŵ
= −α ∂E

∂εE
∂εE
∂Ŵ

and the CL technique,

the update rule Ŵ is proposed as

˙̂
W = −α∆θ

(
∆θT Ŵ +

∫ t

t−T

(
zTQz +Υ(û)

)
dτ

)
− α

∑P

i=1
∆θ (z (ti))

(
∆θT (z (ti)) Ŵ +

∫ ti

ti−T

(
zTQz +Υ(û)

)
dτ

)
,

(38)

where α > 0 is the learning rate.
The update rule Ŵ 38 uses the CL technique to relax a persistent citation condi-

tion PE, with ∆ϕ (z (ti)), r(ti) =
∫ ti
ti−T

(
zTQz +Υ(û)

)
dτ . The past data is recorded and

stored in {∆θ (z (ti))}Pi=1, {r(ti)}
P
i=1, where {∆θ (z (ti))}Pi=1 must be linearly independent,

i.e. rank(∆θ (z (t1)) ,∆θ (z (t2)) , ...,∆θ (z (tP ))) = N , the number of selected is P ≥ N [36].
Defining W̃ =W − Ŵ , we have

˙̃W = −α∆θ
(
∆θT W̃ − εH

)
− α

∑P

i=1
∆θ (z (ti))

(
∆θT (z (ti)) W̃ − εH (ti)

)
, (39)

where ∥εH(s)∥ =
∥∥∥∫ t

s−T ε
T
z żdτ

∥∥∥ ≤ sεH , with sεH as a positive constant.

4. PROOF OF STABILITY AND CONVERGENCE

In this section, we analyze the stability and convergence of the proposed algorithm. To
prove the stability of the algorithm, the following definition is given.

Definition 1. [39] The equilibrium point z0 of system ż = f(z, u), z ∈ ℜn is said to be UUB
if there exists a compact set Ω ∈ ℜn so that for all z0 ∈ Ω, there exists a bound B and time
T (B, z0) such that ∥z − z0∥ ≤ B for all t > t0 + T .

Based on the designed algorithm, we give the following theorem.

Theorem 1. Considering the dynamics 13 with asymmetric saturation inputs, the HJB
equation is given by equation 30, and NN is given by equation 34. Let the weight update rule
of NN is defined in equation 38, and the optimal control rule is defined by equation 35. Then
the optimal control algorithm ensures that the tracking error and the approximate error of
NN are UUB stable, and the control rule 35 converges to the near-optimal value.

Proof. Choose a Lyapunov function for system 13 as follows

J3 =

∫ t

t−T
V ∗(z)dτ︸ ︷︷ ︸
J31

+
1

2

∫ t

t−T
trace

(
W̃ T W̃

)
dτ︸ ︷︷ ︸

J32

. (40)

Taking derivative J31 along trajectories of ż = f̄qv + gqvû, one obtains

J̇31 =

∫ t

t−T
V ∗T
z żdτ =

∫ t

t−T
V ∗T
z

(
f̄qv + gqvû

)
dτ

=

∫ t

t−T

(
V ∗T
z

(
f̄qv + gqvu

∗)+ V ∗T
z gqv (û− u∗)

)︸ ︷︷ ︸
J̄31

dτ,
(41)
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According to 30 and 32, J̄31 of equation 41 can be written as

J̄31 = −zTQz −Υ(u∗) + gqv
(
θ∗Tz W + εz

)
(û− u∗) . (42)

Applying Young’s inequality to 42, we get

J̄31 ≤ −zTQz −Υ(u∗) +
1

4

∥∥gqv (θ∗Tz W + εz
)∥∥2 + ∥û− u∗∥2. (43)

On the other hand, we have
zTQz ≥ λmin (Q) ∥z∥2, (44)

where λ (.) is an eigenvalue of the matrix. Substituting 44 into 43 yields

J̄31 ≤ λmin (Q) ∥z∥2 + 1

4

∥∥gqv (θ∗Tz W + εz
)∥∥2 + ∥û− u∗∥2 −Υ(u∗) . (45)

Then, using inequality (a+ b)2 ≤ 2
(
a2 + b2

)
and noting 33-35, we have

J̄31 ≤ λmin (Q) ∥z∥2 + 1

2

(∥∥gqvθ∗Tz W
∥∥2 + ∥∥gqvθ∗Tz εz

∥∥2)
+
∥∥∥(ρ2 − ρ1) tanh(Ĥ)

∥∥∥2 + ∥(ρ2 − ρ1) tanh(H
∗)∥2 −Υ(u∗) ,

(46)

where Ĥ = 1
ρ2−ρ1

R−1gTqv(θ
T
z Ŵ ), H∗ = 1

ρ2−ρ1
R−1gTqv(θ

T
z W + εz). Note Υ(u∗) ≥ 0, we have

J̄31 ≤ λmin (Q) ∥z∥2 + γ1, (47)

where γ1 =
1

2
g2qvmax(s

2
∇θs

2
w + s2∇θs

2
ε) + 2(ρ2 − ρ1)

2, ∥W∥ ≤ sw, sw > 0 is a constant. Taking

derivative J32 along 39, one obtains

J̇32 =

∫ t

t−T

(
−αW̃ TψW̃ + αW̃ T

(
∆θεH +

∑P

i=1
∆θT (z (ti))εH(ti)

))
dτ, (48)

where ψ = ∆θ∆θT +
∑P

i=1∆θ (z (ti))∆θ
T (z (ti)) > 0. Using Young’s inequality 48, we have

J̇32 ≤
∫ t

t−T

(
−αλmin(ψ)

∥∥∥W̃∥∥∥2 + αW̃ T∆θεH + αW̃ T
∑P

i=1
∆θT (z (ti))εH(ti)

)
dτ

≤
∫ t

t−T

(
−αλmin(ψ)

∥∥∥W̃∥∥∥2 + ∥∥∥W̃∥∥∥2ψ +
α1

2

4
(P + 1)s2εH

)
dτ

≤ −(α− 1)λmin(ψ)

∫ t

t−T

∥∥∥W̃∥∥∥2dτ + α1
2

4
(P + 1)

∫ t

t−T
s2εHdτ.

(49)

From 47 and 49, we have

J̇3 ≤
∫ t

t−T

(
−λmin (Q) ∥z∥2 − β1

∥∥∥W̃∥∥∥2 + β2

)
dτ, (50)

where β1 = (α− 1)λmin(ψ), β2 = γ1 +
α2

4 (P + 1)s2εH , α > 1.
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J̇3 < 0, if and only if  ∥z∥ >
√

β2

λmin(Q) = sz∥∥∥W̃∥∥∥ >√β2

β1
= sW̃ .

(51)

From 51, it can be seen that if ∥z∥ or
∥∥∥W̃∥∥∥ surpasses a certain bound sz or sW̃ , then J̇3 < 0

which means that ∥z∥ or
∥∥∥W̃∥∥∥ will be pulled into the bound sz or sW̃ . In other words,

according to the extended Lyapunov technique [39], the tracking error and the approximate
error of NN are UUB stable (see Definition 1).

From 31, 33, 34, and 35, we have
∥∥∥V ∗(z)− V̂ (z)

∥∥∥ ≤ sw̃sθ + sε = sv, and ∥u∗ − û∥ ≤
λmin (R) gqvmax

(
sW̃s∇θ + s∇ε

)
= su, with sv ≥ 0, su ≥ 0. It can be seen that V̂ (z), û

converge to the near-optimal values. The desired convergence quality can be achieved by
choosing the appropriate α factor.

The proof is completed. ■

5. SIMULATIONS

To verify the performance of the proposed algorithm, in this section, we perform simula-
tions proposed algorithm for a typical robot manipulator with two degrees of freedom and
compare it with the algorithm presented in [26].

Consider a two-link robot manipulator as [40], with the inertia, Coriolis-centripetal, and
dynamic friction matrices are

M =

[
p1 + 2p3c2 p2 + p3c2
p2 + p3c2 p2

]
, C =

[
−p3s2q̇2 −p3s2(q̇1 + q̇2)
p3s2q̇1 0

]
,

G(q) = [8.45 tanh(q̇1), 2.35 tanh(q̇2)]
T ,

(52)

where c2 = cos (q2), s2 = sin(q2), p1 = 3.473kgm2, p2 = 0.196kgm2, and p3 = 0.242kgm2.
The control inputs τ = [τ1, τ2]

T are limited asymmetry, defined as τmin ≤ τi ≤ τmax, where i =
1, 2, τmin = −5N.m, and τmax = 6N.m. The desired trajectories are given as qd = [q1d, q2d]

T ,
q1d = sin (0.1t), and q2d = sin (0.1t). The initial values are chosen q(0) = [1.0,−1.5]T ,
q̇(0) = [0, 0]T .

We choose the proposed controller parameters as follows Λ1 = Λ2 = Λ3 = Λ4 = diag[5, 3],
the activation function is determined as

ϕ(e) = [e2q1, eq1eq2, eq1ev1, eq1ev2, e
2
q2, eq2ev1, eq2ev2, e

2
v1, ev1ev2, e

2
v2],

Q = I ∈ R4×4, R = 1, α = 100, ρ2 = 0.6, ρ1 = −0.5, λ2 = 6, λ1 = −5. The initial values for
the weights of NN are 0. The external disturbance τ0 is selected as τ0 = 0.5[sin(t), cos(2t)]T .
The small noise is added to

ς = 0.5(sin2(t) cos(t) + sin2(2t) cos(0.1t) + sin2(1.2t) cos(0.5t) + sin5(t) + sin2(1.12t)

+ cos(2.4t) sin3(2.4t))

for the first 0.04s, and the data stack size for CL is P = 20.
We perform a simulation with time t = 100s, sampling period T = 0.001s. We change

the load at t = 50s, i.e., p1 = 5.473kgm2, p2 = 2.196kgm2, and p3 = 2.242kgm2. The
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Figure 1: Convergence of NN weights: at the 50th second some weights change as the load changes
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Figure 3: Comparison of the position of the sec-
ond joint with the reference position

results are shown in Figures 1 to 7. The weights of NN converge to the optimal value
W = [−0.0438, 0.0785,−0.2745, 0.1801, 0.35275, 0.326, 0.6968,−1.103, 1.063, 1.554]T after
about 5s, as shown in Figure 1. At the 50th second, when the load changes, the weights
W5,W6, andW10 fluctuate slightly and then continue to converge. The joint positions’ track-
ing quality is shown in Figures 2 and Figure 3. Figure 4 shows that the tracking error is
approximately 10−3 after learning, and at the time of load change, the tracking error quickly
reached approximately 10−3. Figures 2, 3, and 4 show that the proposed algorithm has good
tracking quality. The algorithm provides optimal control inputs, as shown in Figure 5, and
feedforward input signals, as shown in Figure 6. The result of control torques is shown in Fig-
ure 7, and it shows that the values of the control torque are within the allowable asymmetry
limit region. At the early stage, as the initial parameters of the controller have not achieved
the optimal values, the control signals can exceed the saturation limits. The algorithm is,
therefore, responsible for changing the control signals when they approach maximum and
minimum limits. When the parameters of the controller converge to the near-optimal values,
the algorithm makes the control energies as small as possible, followed by the minimization
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Figure 4: Tracking errors of positions and velocities
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Figure 5: Optimal feedback control inputs
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Figure 6: Feedforward control inputs

of the cost function. During this process, the control signals will not exceed the satura-
tion limit. It is worth emphasizing that to balance and maintain the optimal performance
between the tracking error and control energy in the cost function 18 at the time of load
change, it is only necessary to change some of the weights slightly (Figure 1) such that the
control signals in Figure 7 are just large enough to ensure the stability of the system and
bring the tracking errors back to small values (Figure 4). This balance can be adjusted by
the weight matrices Q and R.

To further illustrate the performance of the asymmetric saturation optimal tracking con-
troller (ASOTC), we simulate a comparison with an optimal tracking controller (OTC) pro-
posed in [26]. Select the parameters for the OTC as follows Q = I ∈ ℜ4×4, R = diag[20, 100],
Λ = diag[200, 50].

The comparative simulation results are shown in Figures 8, 9, and 10. Figure 8 illustrates
the tracking error of OTC (case one is OTC without torque limitation) and the ASOTC.
The results show that the tracking error of the ASOTC approaches zero faster than that of
the OTC. The OTC provides the control torques, as shown in Figure 9, which shows that
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Figure 7: Control torques of ASOTC
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Figure 10: Tracking errors of OTC in two cases

the torque values are out of the allowable limits. Thus, the ASOTC ensures fault tracking
with limited torque. The simulation results of the OTC with asymmetric saturation torques
(case two), as shown in Figure 10, show that the error tracking performance is significantly
reduced compared to case one. Therefore, through the simulation results, the effectiveness
of the proposed algorithm is verified.

Remark 3. The restriction of the proposed control method is that the controller is only
applied to the system with partially unknown dynamics. Therefore, the next direction will
be to develop an algorithm with a completely unknown system.

6. CONCLUSION

This paper proposed an optimal tracking controller for robot manipulators with asym-
metric saturation torques and partially unknown dynamics based on an RL method. The
feedforward control inputs were designed to transform the position tracking control problem
into the optimal tracking control problem. Then, the cost function with asymmetric satu-
ration input was determined and approximated based on the online RL algorithm using a
single NN, and the optimal control rule was built. Lyapunov analysis shows that the pro-
posed controller ensures that the tracking error and the approximate error of NN are UUB
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stable according to Definition 1, and the cost function converges to a near-optimal value.
Moreover, the proposed controller has eliminated using the long-term excitation condition
and system identification procedures. In future work, we will focus on applying the proposed
algorithm in an experiment with asymmetrically saturating actuators and develop a control
algorithm for a completely unknown system.
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