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Abstract. This study presented an improved adaptive nonlinear terminal sliding mode control

technique for the manipulator robot to achieve better adaptability and faster finite-time convergence.

First, an adaptive self-updating algorithm will be developed to relax the problems of fixed control gain

for the main proposed controller. Next, an adaptive neural network estimator is applied by estimating

the robot dynamics to increase the tracking control performance. In addition, a compensator-typed

robust controller also is designed to guarantee the robustness, continuity, and smoothing properties of

the control system. To verify the effectiveness of the proposed method, besides applying the Lyapunov

theorem, the comparative numerical simulation results will be provided in more detail.

Keywords. Nonsingular terminal sliding mode control, manipulator robot, adaptive control, neural

networks.

1. INTRODUCTION

Nonlinear terminal sliding mode (NTSM) control techniques have been explored and widely ap-

plied the manipulation robot (MR) control systems, recently [1–8]. The advantages of NTSM control

schemes [1] can be reflected in improving the tracking control performances with higher precision

and better finite-time convergence of the state on the sliding surface. For more details, the NTSM

control methods can achieve higher performances, better-chattering phenomena reduction, and more

efficiency in singularity elimination when compared with the linear function-based sliding mode con-

trol or terminal sliding mode control methods. The authors in [3], by applying the NTSM techniques,

used a nonlinear sliding manifold with the proportional derivative (PD)- typed sign function to obtain

better fixed-time control effectiveness. In addition, this controller also had an even greater advantage

that it did not require the uncertainty of acceleration and the dynamics of the MR control system.

However, this method exists some disadvantages, such as the requirements of the nominal MR dy-

namic parameters and fixed control gains [3]. As published in [5], M. Van et al. provided a modified

sliding surface in the type of the self-turning proportional-derivative-integral (PID) to gain faster

finite-time convergence and better tracking control performances, as well as suppress chattering phe-

nomena more effectively. This study also provided a good approach for increasing the adaptability

of the NTSM methods. However, the problems of fixed proportional gains and the stability of the
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fuzzy system still have not been addressed clearly [5]. It noted that this proportional gain [5] played

an important role in reinforcing the tracking errors to the steady states, which had not been tuned

adaptively [7, 8].

In this study, a fast NSTMmethod will be proposed to address the drawbacks of traditional NSTM

controllers. The improvements focus on the enforcement of adaptability, robustness, and tracking

control performances in consideration of finite-time convergence. First, the PD gains of the proposed

NTSM controller are adaptively adjusted online [9, 10] by a self-tuning adaptive algorithm. This will

enhance the adaptability and solve the problems of fixed control gain of the NTSM controller [1 – 8].

Second, the uncertain unknown RM dynamics will be estimated by applying a neural networks (NN)

estimator [7] without requiring knowledge of the nominal RM parameters. Third, an adaptive robust

controller, as a compensator, will also be developed to deal with the other uncertainties of the MR

control system, such as estimating errors and unknown disturbances. Moreover, the proposed robust

controller is also capable of smoothing the control signals and reducing the chattering phenomena.

Finally, in the design process, all adaptive estimating/updating rules are designed by applying the

Lyapunov theorem to ensure the stability of the proposed fast NTSM control system.

The paper organization is arranged as follows. The design procedures are provided according to

the stability analysis in Section 2. The simulation work is performed in Section 3. Section 4 presents

the conclusions.

2. CONTROL ALGORITHMS

2.1. Design procedure

By applying the model of n-links MR dynamics as provided in [10], it yields

M(q)q̈ + C(q, q̇)q̇ +G(q) + F (q̇) + τd = τ. (1)

In this research, our goal is to enhance the adaptability of the RM control system to achieve better

tracking control performances besides improving the finite-time convergence rate of the tracking

errors. Therefore, first, as a basis for accelerating the finite-time convergence, the fast NSTM surface

can be applied in the following form [1, 2, 5]

S = e+Kξe
ξ +K−1

α ėa/b, (2)

where, e(t) = qd(t) − q(t) ∈ Rn×1 is the tracking position errors, qd(t) ∈ Rn×1 is the desired

positions, Kξ = diag(Kξ1, . . . ,Kξn) ∈ Rn×n and Kα = diag(Kα1, . . . ,Kαn) ∈ Rn×n are the

positive constin orderant matrices, a, and b(1 < a/b < 2) are positive odd numbers, ξ is chosen as

ξ > a/b. From here, the derivative of S(t) can be obtained as

Ṡ = ė+Kξξdiag(e
ξ−1)ė+ a

bK
−1
α diag(ė

a
b
−1)ë

= ė+Kξξdiag(e
ξ−1)ė+ a

bK
−1
α diag(ė

a
b
−1)(f + τ − τd),

(3)

where f = q̈d − (I + M)q̈ − Cq̇ − G − F . Based on the defined sliding surface, the fast NSTM

control rule can be considered in the following form

τ = τd − f − b

a
Kα(ė

2−a
b )− b

a
ξKξdiag(e

ξ−1)Kα(ė
2−a

b )−Ksign(S)−KS (4)

where K = diag(K1, . . . ,Kn) ∈ Rn×n is also a positive constant matrix. The ideal control rule

in (4) may ensure that the tracking errors can converge to steady states in a finite-time and the
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stability of the RM control system. Unfortunately, with the existence of uncertainties (τd, f ) and

the chattering problems (by applying the sign(.) function), this ideal control rule is not easy to

implement, especially in realistic applications, without prior knowledge of the RM control system.

Therefore, the improved fast NSTM control rule can be designed in the following form

τ = τr − f̂ − b

a
Kα(ė

2−a
b )− b

a
ξKξdiag(e

ξ−1)Kα(ė
2−a

b )− K̂S, (5)

where K̂ is self-updated to provide an adaptive value for the K control gain, to enhance the adapt-

ability of the NTSM controller. The τr is considered the compensator-typed robust controller (as the

Ksign(S) term in (4)) that will be developed to eliminate the RM control system’s disturbances and

other uncertainties. The f̂ is the NN estimator for the unknown function f [10, 11]. The inevitable

NN errors in estimating process may be considered in the following form [10]

f̃ = f − f̂ = (W∗T − ŴT )ϕ+ ε = W̃Tϕ+ ε, (6)

where, W∗T = [w∗
1,w

∗
2, . . . ,w

∗
h] ∈ Rn×h is considered as the optimal weight matrix of the NN

estimator and h ∈ N is the number of NN hidden nodes, ŴT ∈ Rn×h is the approximation value

of W∗T , the ϕ(x) = [ϕ1, ϕ2, . . . , ϕh]
T ∈ Rh×1 is Gaussian function, x = [q̈d, q̈, q̇, q]

T
is the NN

inputs, ε ∈ Rn×1 is the NN approximator error. By applying the results in (5) and (6), we can

obtain the derivative of S(t) in the following form

Ṡ = −a

b
K−1

α diag(ė
a
b
−1)KS +

a

b
K−1

α diag(ė
a
b
−1)(W̃Tϕ+ K̃S + ε− τd + τr), (7)

where K̃ = K − K̂, K can be considered as the optimal control gain. Therefore, the ε and τd are

assumed to be bounded, and they will satisfy the following constraint

∥ε− τd∥ ≤ R, (8)

where R is an uncertain positive parameter. Based on the above analysis, the control performance of

the RM control system can be ensured if the robust controller can relax the mentioned uncertainties.

Therefore, the robust controller can be designed as the following rule

τr = −R̂

(
K−1

α

)
diag(ė

a
b
−1)S

∥S∥
∥∥∥(K−1

α

)
diag(ė

a
b
−1)

∥∥∥ − c tanh(S), (9)

where R̂ will be adaptively updated to relax the requirement of the uncertain R. The tanh(.) is

the hyperbolic tangent sigmoid function, tanh(S) = eS−e−S

eS+e−S [10], and c is a designed positive

constant. The strategy of the designed fast NTSM control system is shown in Figure 1. With the

designed control rules, the adaptive estimating/updating algorithms need to be developed to achieve

the aim of the study, such as the improvement of adaptability, robustness, and finite-time convergence.

Therefore, based on the Lyapunov theorem, the adaptive online updating/estimating algorithms for

the proposed fast NTSM control system are designed as the following rules

˙̂
W = δw

a
bK

−1
α diag(ė

a
b
−1)ϕST ,

˙̂
K = δk

a
bK

−1
α diag(ė

a
b
−1)SST ,

˙̂
R = δr

a
b ∥S∥

∥∥∥(K−1
α

)
diag(ė

a
b
−1)

∥∥∥ , (10)

where δw, δk are positive diagonal constant matrices, and δr is a positive constant parameter.
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Figure 1: The proposed fast NTSM control strategy

2.2. Stability analysis

Theorem 1. By considering the RM dynamic system in (1), if the proposed control rules and
updating algorithms in (5), (9), and (10) are applied, all assumptions hold, the S(t), W̃, K̃,
and R̃ are bounded.

Proof. The Lyapunov function candidate is defined as the following form

V (S(t), W̃, K̃, R̃) =
1

2
STS +

1

2
tr(W̃T δ−1

w W̃) +
1

2
tr(K̃T δ−1

k K̃) +
1

2
R̃δrR̃, (11)

where R̃ = R− R̂. By differentiating (11) with respect to time, we can obtain the following result

V̇ = −STKsS + ST a

b
K−1

α diag(ė
a
b
−1)(W̃Tϕ+ K̃S + ε− τd + τr)

− tr(W̃T δ−1
w
˙̂W)− tr(K̃T δ−1

K
˙̂K)− R̃δ−1

r
˙̂R

= −STKsS + ST a

b
K−1

α diag(ė
a
b
−1)W̃Tϕ

− tr(W̃T δ−1
w
˙̂W) + ST a

b
K−1

α diag(ė
a
b
−1)K̃S − tr(K̃T δ−1

k
˙̂K)

+ ST a

b
K−1

α diag(ė
a
b
−1)(ε− τd) + ST a

b
K−1

α diag(ė
a
b
−1)τr − R̃δ−1

r
˙̂R, (12)

where Ks = a
bK

−1
α diag(ė

a
b
−1)K ≥ 0. When the adaptive online updating algorithms in (10) are

used, the (12) can be rewritten as

V̇ = −STKsS − R̃a
b ∥S∥

∥∥∥(K−1
α

)
diag(ė

a
b
−1)

∥∥∥
+ST a

bK
−1
α diag(ė

a
b
−1)(ε− τd) + ST a

bK
−1
α diag(ė

a
b
−1)τr.

(13)
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By applying the robust control rule in (9), from (13), yields

V̇ = −STKsS − R̃a
b ∥S∥

∥∥∥(K−1
α

)
diag(ė

a
b
−1)

∥∥∥+ ST a
bK

−1
α diag(ė

a
b
−1)(ε− τd)

−R̂ ∥S∥ a
b

∥∥∥(K−1
α

)
diag(ė

a
b
−1)

∥∥∥− cabK
−1
α diag(ė

a
b
−1)ST tanh(S)

≤ −STKsS − R̃a
b ∥S∥

∥∥∥(K−1
α

)
diag(ė

a
b
−1)

∥∥∥+Ra
b ∥S∥

∥∥∥(K−1
α

)
diag(ė

a
b
−1)

∥∥∥
−R̂ ∥S∥ a

b

∥∥∥(K−1
α

)
diag(ė

a
b
−1)

∥∥∥− cabK
−1
α diag(ė

a
b
−1)ST tanh(S)

≤ −STKsS − cabK
−1
α diag(ė

a
b
−1)ST tanh(S).

(14)

■

Based on the result in (14), we have V̇ (S(t), W̃, K̃, R̃) ≤ 0, ∀t ≥ 0. Therefore, the

V̇ (S(t), W̃, K̃, R̃) is a negative semi-definite function, so that, V̇ (S(t), W̃, K̃, R̃) ≤ V̇ (S(0), W̃, K̃, R̃).
Clearly, if the S(t), W̃, K̃, and R̃ are bounded at the initial time t = 0, they will stay this bounded

state for all t ≥ 0. Thus, Ŵ, K̂, and R̂ are also bounded. By applying the Lyapunov theorem [10,

12], the stability of the proposed control system is guaranteed. Next, the finite-time convergence of

the S(t), and e(t) will be addressed by the following lemma.

Lemma 1. By assuming that
∥∥∥W̃Tϕ− K̂S

∥∥∥ ≤ c1,
∥∥∥R̃∥∥∥ ≤ c2, (c1, c2 > 0), the S(t), e(t) will

approach to zero with finite-time.

Proof. Consider the second Lyapunov candidate function as

Vs(S(t)) =
1

2
STS. (15)

By differentiating Vs(t) in (15) with respect to time, yields

V̇s = ST Ṡ = ST a

b
K−1

α diag(ė
a
b
−1)(W̃Tϕ− K̂S + ε− τd)

−a

b
∥S∥

∥∥∥(K−1
α

)
diag(ė

a
b
−1)

∥∥∥ R̂− ST a

b
K−1

α diag(ė
a
b
−1)c tanh(S)

≤ a

b
∥S∥

∥∥∥(K−1
α

)
diag(ė

a
b
−1)

∥∥∥∥∥∥W̃Tϕ− K̂S
∥∥∥+

a

b
∥S∥

∥∥∥(K−1
α

)
diag(ė

a
b
−1)

∥∥∥ ∥ε− τd∥

−a

b
∥S∥

∥∥∥(K−1
α

)
diag(ė

a
b
−1)

∥∥∥ R̂− ST a

b
K−1

α diag(ė
a
b
−1)c tanh(S)

≤ a

b
∥S∥

∥∥∥(K−1
α

)
diag(ė

a
b
−1)

∥∥∥∥∥∥W̃Tϕ− K̂S
∥∥∥+

a

b
∥S∥

∥∥∥(K−1
α

)
diag(ė

a
b
−1)

∥∥∥∥∥∥R̃∥∥∥
−ST a

b
K−1

α diag(ė
a
b
−1)c tanh(S)

≤ a

b
∥S∥

∥∥∥(K−1
α

)
diag(ė

a
b
−1)

∥∥∥ (c1 + c2 − c).

(16)
From the above proof of theorem, it notes that S(t), W̃, K̃, R̂, and τr are bounded. If the designed

constant parameter is selected as c1 + c2 < c, then

V̇s ≤
a

b
∥S∥

∥∥∥(K−1
α

)
diag(ė

a
b
−1)

∥∥∥ (c1 + c2 − c) ≤ 0. (17)

From the result in (17), if ė ̸= 0, V̇s < 0, it can conclude that S(t) converges to zero within finite-

time [1, 2]. If ė = 0, e ̸= 0 then ë = W̃Tϕ − K̂S + ε − τd − c tanh(S). This shows that [1, 2] if

S ̸= 0, ė = 0 then ë ≤ −c for S > 0 and ë ≥ c for S < 0. As a result, ė = 0 is not an attractor,

and manifold S(t) will converge to zero in finite-time, as well as e(t) will also converge to zero in

finite-time [1, 2]. This completes the proof. ■
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Figure 2: The MR 3 – DOF model

Remark 1. In the proposed NTSM scheme, the NTSM sliding surface has been modified by adding

the part, Kξe
ξ, that is different from our previous study. This part causes the proposed main NTSM

controller to be changed with the added term, − b
aξKsdiag(e

ξ−1)Kα(ė
2−a

b ). Thus, this improvement

first leads to a faster time convergence of the tracking errors.

Remark 2. For the sliding mode control techniques, the part, K̂S, is usually used to reduce the

convergence time and tracking error. However, if the PD control gain, K̂, is not selected properly,

the stability of the control system will be seriously affected. This drawback has been solved in our

study by the online self-tuning algorithm for the PD control gain.

Remark 3. In the proposed robust controller in (9), the first part, R̂
(K−1

α )diag(ė
a
b
−1)S

∥S∥
∥∥∥(K−1

α )diag(ė
a
b
−1)

∥∥∥ , play a role

in compensating for the inevitable uncertainties, such as the unknown disturbances and estimating

errors, in order to ensure the robustness of the NTSM control system. However, the structure of

this part can lead to chattering phenomena or discontinuity of the control signals. This disadvantage

has been relaxed by the second part of the proposed robust controller,c tanh(S). This second part,

as a smooth function, can assist in minimizing the chattering phenomena and discontinuity for the

control signals. In general, the proposed NSTM strategy has some advantages in increasing the

finite-time convergence of tracking errors, adaptability, and robustness of the RM control system.

In addition, the proposed controller is a type of full-form model-free adaptive robust controller, in

which the uncertainties of the control system are solved thoroughly. Moreover, by applying the

online adaptive updating algorithms based on the Lyapunov stability theorem, the stability and the

finite-time convergence of the proposed NTSM are guaranteed.

3. NUMERICAL SIMULATION RESULTS

The MR 3 – DOF model, as shown in Figure 2, is used in the simulation process. All the

dynamic parameters of the MR are provided by [10]. To verify the effectiveness of the proposed

control method (AFNSM), the NTSM1, NTSM2, and the proposed NTSM controllers are applied to
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Figure 3: Tracking control simulation results

provide the compared simulation results. For more details, the control strategies of the NTSM1 and

NTSM2 controllers are considered as follows:

- The NTSM1 controller: With fixed proportional control gains and sat (.) function (1)–(8), the

control rules of the NTSM1 controller are

τ = τr − f̂ − b

a
Kα(ė

2−a
b )− b

a
ξKsdiag(e

ξ−1)Kα(ė
2−a

b )−KS,

and

[τr = −R̂
S
(
K−1

α

)
diag(ė

a
b
−1)

∥S∥
∥∥∥(K−1

α

)
diag(ė

a
b
−1)

∥∥∥ − csat(S),

its updating algorithms are the same as the proposed NTSM controller.

- The NTSM2 controller: Similar to the proposed controller, except the NTSM sliding surface

and the control inputs do not contain the terms, Kξe
ξ and b

aξKsdiag(e
ξ−1)Kα(ė

2−a
b ), respectively.

The control parameters of considered methods in the simulation process are provided as a =
11, b = 9, ξ = 1.5, Kξ = diag(4), Kα = diag(2), K = diag(50), c = 0.3, δw = δk = δr =
diag(50). The desired trajectories are defined as qd = [0.5 cos(1.5t), 0.5 cos(2t), 0.1 cos(1.5t)], the
friction and disturbances considered as

F (q̇) = 0.1[0.5q̇1 + 0.2sign(q̇1); 0.5q̇2 + 0.2sign(q̇2); 0.5q̇3 + 0.2sign(q̇3)],

τd = [0.5 sin(2t); 0.5 sin(2t); 0.5 sin(2t)].
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Figure 4: The simulation results: Adaptive updated parameters

The Matlab/Simulink software with a sample time of 0.001 (s) is done for the simulations. The simula-

tion procedures are suggested that the simulation time is 5 (s), τd = 2.0[ sin(20t)sin(20t); sin(20t)],
the time-varying tip loads will add to links 2 and 3 of the RM control system as (2 sin(2t) kg and

1.5 cos(2t) kg on links 1 and 2), and the friction is changed to

F (q̇) = 1.0[0.5q̇1 + 0.2sign(q̇1); 0.5q̇2 + 0.2sign(q̇2); 0.5q̇3 + 0.2sign(q̇3)].

First, Figure 3 shows the compared simulation results of the tracking positions and errors with

the proposed ANTSM, NTSM1, and NTSM2 methods. For the NTSM1 method, with the fixed PD

control parameters, the tracking performance is not good as that of the ANTSM and NTSM2 methods.

Especially at the time when abrupt time-uncertainties with higher amplitude and frequency appears

(disturbances, frictions, and loads), the NTSM1 tracking positions and errors appear deviation with

large fluctuation and amplitude (in Figures. 3 (e) and (f)). Although the PD gains of the NTSM1

controller are selected based on the prior knowledge and simulation results of the proposed method

(with the adaptive self-turned PD gains), the NTSM1 controller still has not met the operating

requirements in the presence of abrupt uncertainties. For the NTSM2 method, the tracking control

performance is good except the finite-time convergence speed of tracking errors is slower than those of

the proposed ANTSM and NTSM1 methods. This can be explained that the NTSM2 controller has

no convergence speed-up part ( baξKsdiag(e
ξ−1)Kα(ė

2−a
b )) as the ANTSM and NTSM1 methods.

Based on the simulation results in Figure 4, the PD gains of the proposed method have been adaptively

updated to deal with abrupt uncertainties and achieved better tracking performances when compared

with the NTSM1 and NTSM1 methods (Figure 3). And with the simulation results of the NN

estimator (in Figure 4 (b)), these results have guaranteed the bounded properties of the adaptive

updated parameters in the theory. Next, Figure 5 shows the simulation results of the control inputs

with the proposed ANTSM, NTSM1, and NTSM2 methods. By observing in Figure 5, for the NTSM1

method, the chattering phenomenon has gradually appeared when the control conditions are impacted

by the highly time-frequency uncertainties. In addition, when compared with the proposed ANTSM

and NTSM2 methods, the robust term of the NTSM1 method does not support the control signals

well in signal smoothing and chattering phenomena suppression.
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Figure 5: The simulation results: Control inputs

4. CONCLUSIONS

This study has proposed an improved fast NSTM control strategy, which has been applied suc-

cessfully for the RM control system in theory and simulation works. The enhancement is first shown

with the proposed self-tuning mechanism to achieve the adaptive PD control gains for the main NTSM

controller. In addition, the NTSM sliding surface has been developed to achieve faster finite-time

convergence of the tracking errors. In the designed robust controller, by adding the tanh(.) func-

tion, the drawbacks of applying the sign(.) function in the traditional NSTM controllers have also

been solved. This robust controller has performed well in eliminating the chattering phenomenon

and reducing the discontinuity of the control signals. Therefore, based on the proven stability theo-

rem and comparative simulation results, the proposed fast NSTM strategy can be considered a good

alternative method to the existing NSTM controllers in the RM control applications.
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