
Journal of Computer Science and Cybernetics, V.39, N.3 (2023), 207–221
DOI no 10.15625/1813-9663/18363

IN-ORDER TRANSITION-BASED PARSING FOR VIETNAMESE

JOHN BAUER1,∗, HUNG BUI2, VY THAI2, CHRISTOPHER D. MANNING3

1HAI, Stanford University, 353 Jane Stanford Way Stanford,
CA 94305, United States of America

2Department of Computer Science, Stanford University, 353 Jane Stanford Way Stanford,
CA 94305, United States of America

3Linguistics & Computer Science, Stanford University, 353 Jane Stanford Way Stanford,
CA 94305, United States of America

Abstract. In this paper, we implement a general neural constituency parser based on an in-order

parser. We apply this parser to the VLSP 2022 Vietnamese treebank, obtaining a test score of .8393 F1,

top of the private test leaderboard. Earlier versions of the parser for languages other than Vietnamese

have already been included in the publicly released Python package Stanza. The next Stanza release

will include the Vietnamese model, along with all of the code used in this project.

Keywords. Constituency parsing, Vietnamese constituency parsing, transition parsing, parser, dy-

namic oracle.

1. INTRODUCTION

Constituency parsing is the process of turning a sentence, either raw words or with part of
speech tags, into a tree with each subtree labeled with a phrase structure label. For example,
in English, the sentence My hip hurts because of arthritis is parsed as in Figure 1.

S

NP

my hip

VP

hurts PP

because of NP

arthritis

Figure 1: Sample English parse tree

*Corresponding author.
E-mail addresses: horatio@cs.stanford.edu (J. Bauer); hung0411@stanford.edu (H. Bui);

vythai@stanford.edu (V. Thai); manning@stanford.edu (C.D. Manning).

mailto:horatio@cs.stanford.edu
mailto:hung0411@stanford.edu
mailto:vythai@stanford.edu
mailto:manning@stanford.edu


208 JOHN BAUER et al.

There are many possible models for parsing. Broadly, they usually fall into two categories:
dynamic programming or chart parsers, which, for example, use the CKY algorithm to build
up progressively larger subtrees until they reach the top, and transition-based parsers, which
add one word at a time to a partially finished tree until the entire tree is finished.

As part of the publicly released Stanza open-source software distribution [1],∗ we have
implemented a language-agnostic neural in-order transition-based parser [2]. The model
already supports several human languages, including English [3], Chinese [4], Portuguese [5],
Turkish [6], Japanese [7], Italian [8], [9], and Danish [10].

When applied to Vietnamese, we are pleased to report that we finished first on the private
test section, with an F1 of 0.8393. In this report, we describe how the in-order transition-based
parser works and describe the work done specifically for Vietnamese.

2. IN-ORDER PARSING

2.1. Transition-based parsing

To understand in-order parsing, it is first necessary to understand the basics of transition-
based parsing. The underlying mechanism is similar to that of a shift/reduce compiler.

To implement a shift/reduce compiler without a recursive stack, the compiler maintains a
state with two data structures: a stack of components it has already built, which will have
zero or more pieces on it, and a queue of tokens remaining to be processed. The operations
allowed are to shift a new item from the queue onto the stack and to reduce some number of
items from the stack into a larger, combined item.

Whereas a compiler has deterministic rules for when these operations are applied, typically
by looking at the stack and the next one or more tokens on the queue, a transition-based
parser for dependencies and/or constituencies predicts the next transition at a given stack
and queue state. The stack will be a list of partially constructed trees, and the queue is the
unparsed words. At each time step, the predicted transition is applied, updating the stack
and queue, and the process repeats until the queue is exhausted and the stack has only one
item on it. The equivalent shift action moves a single word onto the stack of partial trees,
and the reduce action combines two or more subtrees into a larger tree. In treebanks with
unary transitions, those can be represented either by a unary transition which operates on a
single node, or by a reduce action which simultaneously combines multiple nodes and applies
multiple layers of the tree at the same time.

The transition scheme just described is a bottom-up transition scheme, and early con-
stituency parsers such as [11] used this scheme to achieve efficient and accurate results. Since
then, more advanced transition schemes have been proposed such as top-down [12], in-order
[2], or attach/juxtapose [13]. In this project, we implemented both top-down and in-order
transition schemes. Although the top-down scheme is less accurate than the in-order, it proved
useful for producing high-accuracy training data (see Subsection 4.3).

Top-down adjusts the previous bottom-up scheme by introducing a non-terminal transition.
It starts a constituent, allowing the parser to build any number of subtrees until applying the
reduce action.

In-order further extends that idea by building the left child of a tree first, then adding a

∗https://stanfordnlp.github.io/stanza/

https://stanfordnlp.github.io/stanza/


IN-ORDER TRANSITION-BASED PARSING FOR VIETNAMESE 209

When looking at a list of words such as “My hip hurts because of arthritis”
Top-down Predict S Predict NP Predict VP

S

My hip . . .

S

NP

My hip

?

...

S

NP

My hip

VP

hurts . . .
In-order Predict NP Predict S Predict VP

NP

My hip

?

...

S

NP

My hip

?

...

S

NP

My hip

VP

hurts . . .

Figure 2: Comparison between top-down and in-order. In-order parsing completes the leftmost
NP child of the S before predicting the parent S category.

non-terminal label to the stack, and then building the rest of the subtree before applying a
reduce. See Table 1 for a complete example of the (simpler) top-down transition scheme and
see Figure 2 for a small illustration of how in-order parsing differs. In early experiments, the
added in-order context improved scores from 0.8171 to 0.8206 when splitting the train set
into 0.9 train and 0.1 validation.

Depending on the exact transition scheme used, there are likely constraints on the predicted
transitions, a full list of which is available in the code for this project but is beyond the scope
of this report.

Table 1: Top-down transition example

Stack Transition Queue
∅ ∅ My, hip, hurts, because, of, arthritis

(ROOT NTROOT My, hip, hurts, because, of, arthritis
(ROOT (S NTS My, hip, hurts, because, of, arthritis

(ROOT (S (NP NTNP My, hip, hurts, because, of, arthritis
(ROOT (S (NP My Shift hip, hurts, because, of, arthritis

(ROOT (S (NP My hip Shift hurts, because, of, arthritis
(ROOT (S (NP My hip) Close hurts, because, of, arthritis

(ROOT (S (NP My hip) (VP NTVP hurts, because, of, arthritis
(ROOT (S (NP My hip) (VP hurts Shift because, of, arthritis

(ROOT (S (NP My hip) (VP hurts (PP NTPP because, of, arthritis
(ROOT (S (NP My hip) (VP hurts (PP because Shift of, arthritis

(ROOT (S (NP My hip) (VP hurts (PP because of Shift arthritis
(ROOT (S (NP My hip) (VP hurts (PP because of (NP NTNP arthritis

(ROOT (S (NP My hip) (VP hurts (PP because of (NP arthritis Shift ∅
(ROOT (S (NP My hip) (VP hurts (PP because of (NP arthritis) Close ∅
(ROOT (S (NP My hip) (VP hurts (PP because of (NP arthritis)) Close ∅
(ROOT (S (NP My hip) (VP hurts (PP because of (NP arthritis))) Close ∅
(ROOT (S (NP My hip) (VP hurts (PP because of (NP arthritis)))) Close ∅
(ROOT (S (NP My hip) (VP hurts (PP because of (NP arthritis))))) Close ∅



210 JOHN BAUER et al.

2.2. Neural transition-based parsing

Early transition-based constituency parsers used perceptrons over features of words and
their neighbors [11]. These days, feature-based models have been mostly replaced with neural
models. Instead of features, the starting point is some form of embedding of the original text,
such as those produced by word2vec [14] or Glove [15].

3. IMPROVEMENTS TO BASE MODEL

The simplest and most effective improvement to the base model of [2] is to make use of
stronger word representations (see textcolorredsection 4.1.). Beyond that, there are several
improvements made to the base model and its training.

The first is that, whereas [12] and [11] used a Bi-LSTM as a composition function when
merging several constituents, we found that a simple max function worked better.

We tried several variants of the constituent function aside from the Bi-LSTM and max. A
Tree-LSTM [16] using the previous layers and an embedding over the constituent types as
the inputs were competitive, in some cases even better than max, especially when also using
an embedding to initialize the cell state of the Tree-LSTM. However, on some datasets, we
found that it was less effective, and this method was substantially slower, so we left max as
the default. Taking a max over bigrams was slightly worse than max, as was taking the max
over node outputs instead of combining the endpoints of the original bi-LSTM method. We
also tried multiple forms of self-attention over the nodes, as it seemed compelling that an
attention layer should be able to learn which of the subtrees matter most, but none of the
variants we tried beat max; see Figure 3.

bil
stm

tre
e lst

m
big

ram

bil
stm

max att
n

max
0.82

0.822

0.824

Figure 3: VI dev scores for various constituency composition methods

Both the previous top-down and in-order papers [2], [12] use a one-directional LSTM to
represent the incoming word buffer. We found that there is a slight increase in performance
using a bi-LSTM instead. It should be noted that using the bi-LSTM rules out using a
generative version of the model for reranking, though.

Liu and Zhang briefly discussed the nonlinearity they used between layers. We further
explored that concept, testing virtually every nonlinearity available in PyTorch [17]; see
Figure 4. Out of all of them, ReLU [18] and GeLU [19] were the most effective. When tested
over multiple trials, ReLU slightly beat out GeLU. An A/B test specifically between ReLU
and GeLU, training on gold + silver data (see Subsection 4.3) gave 0.8270 averaged over 5
models with ReLU, and 0.8248 averaged over 5 models for GeLU. Accordingly, we kept the
ReLU nonlinearity for the remainder of the project. Other nonlinearities we tried include
Mish [20], SiLU [21], tanh, ELU [22], and ReLU6 [23], among others.



IN-ORDER TRANSITION-BASED PARSING FOR VIETNAMESE 211

elu silu rel
u6

mish rel
u

gel
u0.81

0.815

0.82

Figure 4: VI dev scores with use of the different non-linearities

We implemented both a partitioned attention layer [24] and a labeled attention layer [25],
although unfortunately, we were unable to find a balance between the default encoder and
the attention layers which improved scores. Some mechanisms we attempted were to concat
the attention outputs to the encoder outputs, replace one with the other, or use various
weightings of residual connections. Future work will include tuning these layers to get better
results in Vietnamese or the other languages for which we build models.

3.1. Training mechanism

Of the learning algorithms included in PyTorch, we found that AdaDelta [26] worked the
best, with AdamW [27] a close second. An externally available algorithm, MADGRAD (and
the associated Mirror MADGRAD) [28], was slightly more accurate than AdamW.

An interesting observation, though, was that while AdamW, MADGRAD, and similar
optimizers generally achieved their high accuracy scores by making very small adjustments
in the tensors of the model, AdaDelta with a high weight decay made much larger changes
to the model. For example, the norm of the tensor which converts a word to a constituent
gradually changes with MADGRAD, but changes drastically at the beginning with AdaDelta,
as shown in Figure 5.

0 50 100 150
15

20

25

30

35

Iteration

N
or

m

Norm of word_to_constituent

AdaDelta
MADGRAD

Figure 5: Effect of optimizer choice on the tensor norm

The hypothesis is that AdamW, MADGRAD, and similar optimizers can find a very
strong local minimum in the neighborhood of the initial conditions, but the initial starting
points for the values of the matrices in the model were far from ideal. AdaDelta with high
weight decay, on the other hand, would effectively move to a much better region of the state
space, but would then be unable to find the strongest local minimum in the new region of
the state space.



212 JOHN BAUER et al.

Accordingly, we introduced a mechanism where we first trained for 70 epochs on AdaDelta
to essentially pick better initial conditions, then trained for another 70 epochs using AdamW or
MADGRAD. This led to much higher accuracy than either optimizer by itself (see Figure 6).

mad
gra

d

ad
ad

elt
a

com
bin

ed

0.816

0.818

0.82

Figure 6: VI dev scores for different choices of optimizer

4. LANGUAGE SPECIFIC PROCESSING

4.1. Encoder

The encoder for the parser is flexible and can make use of several types of components.
The simplest foundational component used in neural NLP models is word embeddings. In

this case, we used the word2vec embeddings from the CoNLL 2018 Shared Task [29]. While
there are more recent and presumably more accurate word vectors available for Vietnamese,
such as PhoW2V [30], that package has a restrictive license, and the word vectors chosen
have a relatively low impact once larger language models are employed. Using these vectors
gives us a score of .7623 on a randomly chosen validation set.

A character language model such as that used in Flair is a significant improvement over
using word vectors alone [31]. The CoNLL 2017 shared task included a large repository of
Vietnamese data for use in training large language models. Using this dataset, we trained
forward and backward character models for Vietnamese. Adding these character models to
the encoder improved results to 0.7732. Larger repositories of Vietnamese text are available,
such as the Oscar Common Crawl [32] or Wikipedia; again, though, our expectation is larger
transformer-based language models would help more than retraining the character model on
a larger dataset would have.

Two transformer-based models have been released in recent years, both by the VinAI
research group. PhoBERT [33] and BARTpho [34] both drastically improve results. BARTpho
improved results to 0.78, or 0.785 when using diacritic normalization, whereas PhoBERT
improved results to 0.82+ when using the full architecture described here. Specifically, we
obtained the best results when using a learned weighting over 6, 7, or 8 of the final output
layers from vinai/phobert-large.

In general, using transformers as the input greatly improves the quality of the final
model. For the various languages listed above, we found improvements for most of them using
transformers (see Table 2).

4.2. POS tagging

In most parsing tasks, including this one, the dataset itself contains POS tags. However,
for best results, the tags should not be used as inputs to the training or evaluation of the



IN-ORDER TRANSITION-BASED PARSING FOR VIETNAMESE 213

0.7
6

0.7
8 0.8 0.8

2
PhoBERT

BARTpho

charlm

emb

Figure 7: VI dev scores for different choices of pretraining

Table 2: With and without Transformer parsing scores

lang w/o T w/ T Transformer ref
da 82.70 83.45 bert-base-multilingual-cased [35]
en 93.21 95.80 roberta-base [36]
it (tut) 89.42 92.76 Musixmatch/umberto-commoncrawl-cased-v1 [37]
it (vit) 78.52 82.43 Musixmatch/umberto-commoncrawl-cased-v1 [37]
pt 90.98 93.61 neuralmind/bert-large-portuguese-cased [38]
tr 73.04 75.70 dbmdz/bert-base-turkish-128k-cased [39]
zh 86.85 90.98 hfl/chinese-roberta-wwm-ext [40]

parsing model, as gold standard tags will not be available when using the parser on raw text.
Indeed, the test section for this task did not even provide the tags.

To handle tagging, we used the Stanza tagger [1] retrained on the gold tags provided for
the training portion of the task. When trained on 90% of the data, with 10% held out for
validation, a tagger using PhoBERT-Large [33] achieved 94.1% token accuracy.

We then similarly shared the input data with the constituency data, using an ensemble of
5 taggers to produce the tags used to train the model used in the bakeoff.

4.3. Additional silver-standard data

In addition to training on the VLSP dataset, we parsed a large collection of text from
Wikipedia† and used this as silver standard data. To split Wikipedia into sentences, we first
extracted it with WikiExtractor [41] and then tokenized it with RDRSegmenter [42].

To ensure the accuracy of the silver data, we constructed a top-down version of the
parser [12] and only selected trees where the in-order and top-down models aligned, as in
Choe-Charniak [43]. After filtering duplicate sentences, and removing small articles in order
to eliminate the 200,000 sentences isomorphic to “The dung beetle is a type of beetle”, this
process resulted in 1.2M silver standard trees.

Retraining this collection of silver trees at a rate of 1 silver tree per gold tree resulted
in a noticeable improvement. When using 5 models in an ensemble, scoring on a held-out
1/10th of the data, training on the silver trees improved scores from .8281 to .8315.

Inspecting the results revealed a gap in performance for a specific tree structure, that of
identifying questions (SQ) versus statements (S). Partly this was because there were very
few questions in the original training data. One would expect ? at the end of a sentence to be

†https://dumps.wikimedia.org/backup-index.html

https://dumps.wikimedia.org/backup-index.html


214 JOHN BAUER et al.

indicative, but there were some sentences in the training set which did not have an SQ label
despite the question mark. Furthermore, there were very few trees with any form of WH-
node in them, leading to a very low probability of the parser predicting WH- as a constituent.

To compensate for this, we parsed the questions in UIT-ViQuAD [44] and used them to
build a silver dataset similar to the Wikipedia dataset. To ensure relevance to the problem
of parsing questions correctly, we discarded all sentences which did not have an SQ as the
top node or a WH- constituent somewhere in the tree. Unfortunately, this did not improve
performance. When using 5 models with 1/10th held out as a test set, the performance with
the Wikipedia silver only was .8315, whereas the performance with the added questions was
.8313.

Our best working theory is that the filtering step was too restrictive. The difference
between this and the Wikipedia silver trees is that the Wikipedia silver dataset introduced
many new words, letting the parser learn on out-of-domain text, whereas the restrictive
filtering of UIT-ViQuAD meant the parser only saw trees with question words it already knew
to label as WH-. Given more time, we should instead either manually adjust UIT-ViQuAD
sentences parsed as S to have an SQ and a WH- node, or we should generate multiple trees
and take the highest scoring tree with SQ and WH- in it.

5. DYNAMIC ORACLE

The main theoretical improvement to the parser in this work is a dynamic oracle.
In the most commonly used teacher forcing training, at every step of training, the model

makes a predicted transition from which a loss is calculated, but then the predicted transition
is discarded and the gold transition is applied. This is suboptimal because, at test time, that
means the model may make an error, transition into a state space it has not trained on, and
have less context to make the following decisions. This leads to one error cascading into more
errors, whereas ideally, the model would continue to make the best tree possible after such
an error.

Instead, we make a dynamic oracle which adjusts the remaining gold transitions to best
match the parser’s errors at training time. The general intuition is that a missed bracket or
extra bracket early in the parse does not affect the transition sequence of later subtrees, so
the transition sequence can be repaired to minimize the bracket errors due to the incorrect
subtree by keeping the rest of the transition sequence intact.

One caveat is that there are sequences where an error can lead to multiple trees with
equivalent scores. In such cases, we found that using the dynamic oracle to enforce one or the
other result tree leads to worse scores overall. Instead, when an ambiguous tree such as this
occurs, we revert to teacher forcing. In our experiments, roughly 1/3rd of the errors which a
fully trained model makes are ambiguous in one way or another.

Dynamic oracles have been used in the past for dependency parsing [45] and bottom-up
transition parsers [46], but to the best of our knowledge, this is the first use of one in an
in-order parser.

We now discuss some particular types of errors that are addressed by the dynamic oracle.
Root unary. The first error type we fix is one of the simplest. At the end of each sequence
when using the standard in-order transition scheme, there is a unary transition to ROOT,
executed by NTROOT, CLOSE. In the event of parsing a short phrase which does not end in



IN-ORDER TRANSITION-BASED PARSING FOR VIETNAMESE 215

S, the parser may well transition to S anyway before adding the ROOT:

Should be Instead built
ROOT

NP

a noun phrase

S

NP

a noun phrase

In this case, the simplest fix is to add the transition to ROOT after the incorrect replacement.
ROOT

S

NP

a noun phrase

Wrong unary. If a transition is predicted which skips part of a unary chain, it is safe to
continue with no further alterations. A long chain of unaries is rare and difficult to get right.
Note that without the oracle, the learning algorithm would force the model to make the
correct unary chain instead.

As an example of where this might happen in the VLSP dataset

Should be Instead built
SBAR

S

VP

theo dõi

SBAR

VP

theo dõi

Nested open. This error occurs when a subtree is missed, a different non-terminal is chosen,
and the non-terminal matches the surrounding tree.

Should be Instead built
S

NP

My hip

?

...

S

S

My hip ...?

In this case, there are a few possible solutions. For example, we could keep the wrong
transition, ignore the missed subtree, or attempt to add a unary transition to the correct
subtree. Using a unary transition to the correct subtree is hard to learn. In terms of final
scoring, predicting the wrong label adds a recall error to the final score, unless we use a
unary transition to fix the missing subtree. However, in general, learning unary sequences
is difficult for the in-order model. Treating the wrong label as a new subtree can lead to
unusual structures; in this case, the final tree would have an extra S if we build a subtree
with the new label:

S

S

My hip

VP

hurts ...



216 JOHN BAUER et al.

Furthermore, this would add a precision error as well as a recall error. To minimize the
total errors learned, while not making the structure too difficult to learn, we simply drop the
expected subtree (the NP in this case):

S

My hip VP

hurts ...

It is unclear from experiments whether this helps much, and there is certainly room for
other options to work better.
Other oracle fixes These are just the first few oracle fixes; the remainder are documented
in the source code for the parser.

The impact of oracle fixes applied cumulatively on just one training run is shown in
Figure 8.

0.8
18 0.8

2
0.8

22
0.8

24
close/shift
shift/close
open/close
open/shift

missed unary
wrong open

wrong unary
nested open
root unary

none

Figure 8: VI dev scores for cumulatively adding individual oracle fixes

Most of the oracle fixes produce small gains. However, although some variation is expected
in the scores of different models, the large drop when adding the open/shift correction is
concerning and should be further investigated to make sure the oracle is working for that
particular transition error.

6. EXPERIMENTAL SETUP

We trained multiple versions of the model on the Stanford computer cluster, A/B
testing various code changes and parameter sweeping across various hyperparameters. The
hyperparameters of our most successful model are in Table 3. In particular, we increased the
hidden size of the model compared to [2], as the total encoder dimension is much higher (WV
+ tag embedding + charlm + BERT) compared to the original in-order parser.

The training data for the VLSP dataset consisted of 8160 sentences. The unparsed data
for the bakeoff consisted of 5000 sentences, of which 1204 were later released as gold-parsed
test sentences. One model takes roughly 12 hours to converge on an Nvidia 2080ti GPU when
trained on the VLSP dataset, and 24 hours when trained with the silver dataset as well.

For searching over hyperparameters and testing the model improvements described here,
we started from the 8160 training trees and held out 10% as a validation set. The final model
submitted to VLSP was an ensemble of 5 models trained on a different 4/5th of the given
training data, using the remaining 1/5th for validation for that specific model. We used
AdaDelta + MADGRAD as the optimizer for the final models and included the corpus of
silver trees described above.



IN-ORDER TRANSITION-BASED PARSING FOR VIETNAMESE 217

Table 3: Hyperparameters

Parameter Value

Optimizer AdaDelta +
MADGRAD

AdaDelta LR 1.0
AdaDelta WD 0.02
MADGRAD LR 7e-7
MADGRAD WD 2e-6
Trans. embedding 20
Hidden size 512
Nonlinearity ReLU
Constituency Composition Max
Dynamic Oracle Yes
Dropout 0.2
LSTM Layers 2
FC Layers at Output 3
Ensemble size 5

Table 4: Hyperparameters

Model Dev % F1
No Oracle, No Silver 81.48

Oracle, No Silver 81.91
Oracle and Silver 82.65

When tested on the held-out portion of the training data, we achieved the results shown
in Table 4.

7. FUTURE WORK

In addition to making use of partitioned attention and labeled attention (see section 3.),
another technique which has seen great success is building a reranker over multiple candidate
parses. We tried multiple reranking techniques, but none of them proved beneficial. Finding
a reranked implementation which improves the scores should be a good source of improved
F1. Reducing the ambiguities in the dynamic oracle should make the oracle more effective,
also leading to higher scores overall.

Several varieties of transition sequences are theoretically possible. Currently, the non-
terminals are labeled. Labeling the reduces instead or in addition to the non-terminals may
give the model more context to use when making the final decision on a constituent’s label.
Furthermore, unary transitions in an in-order sequence are implemented in a somewhat
awkward manner: first a non-terminal is pushed, then it is immediately closed. Initial
experiments to replace that with a single transition were quite promising, but unfortunately
adding such a transition would require reimplementing the entire dynamic oracle, so the
net result was negative. Further refining that mechanism and updating the oracle to be
compatible with the new transition scheme may improve performance.

8. CONCLUSION

We introduce the Stanza constituency parser, based on an in-order transition-based parser,
with language-agnostic accuracy improvements and additional work specific to Vietnamese



218 JOHN BAUER et al.

parsing. The high-accuracy language-agnostic model, combined with Vietnamese-specific
work, is shown to work well on Vietnamese constituency parsing.

ACKNOWLEDGEMENTS

We would like to thank VLSP for organizing an interesting and challenging project. We
would also like to thank Jiangming Liu, author of In-Order Parsing [2], for clarifying a couple
of points on the implementation of a transition parser. Rodolfo Delmonte held extensive
discussions with us regarding the Italian version of the parser, although those discussions
were not directly applicable to the Vietnamese results.

At Stanford, we would like to thank Drew Hudson and Sidd Karamcheti for valuable
discussions regarding model architecture and model training.

REFERENCES

[1] P. Qi, Y. Zhang, Y. Zhang, J. Bolton, and C. D. Manning, Stanza: A Python natural
language processing toolkit for many human languages, 2020. doi: 10.48550/ARXIV.
2003.07082. [Online]. Available: https://arxiv.org/abs/2003.07082.

[2] J. Liu and Y. Zhang, “In-order transition-based constituent parsing,” Transactions of
the Association for Computational Linguistics, vol. 5, pp. 413–424, 2017. doi: 10.1162/
tacl_a_00070. [Online]. Available: https://aclanthology.org/Q17-1029.

[3] M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz, “Building a large annotated
corpus of English: The Penn Treebank,” Computational Linguistics, vol. 19, no. 2,
pp. 313–330, 1993. [Online]. Available: https://aclanthology.org/J93-2004.

[4] N. Xue, F. Xia, F.-D. Chiou, and M. Palmer, “The Penn Chinese Treebank : Phrase
structure annotation of a large corpus,” Natural Language Engineering, vol. 11, pp. 207–
238, 2005.

[5] J. Silva, A. Branco, S. Castro, and R. Reis, Out-of-the-Box Robust Parsing of Portuguese,
Springer, Berlin, 2010.

[6] N. Kara, B. Marşan, M. Özçelik, et al., “Creating a syntactically felicitous constituency
treebank for turkish,” in 2020 Innovations in Intelligent Systems and Applications
Conference (ASYU), 2020, pp. 1–6. doi: 10.1109/ASYU50717.2020.9259873.

[7] Y. K. Thu, W. P. Pa, M. Utiyama, A. Finch, and E. Sumita, “Introducing the Asian
language treebank (ALT),” in Proceedings of the Tenth International Conference on
Language Resources and Evaluation (LREC’16), Portorož, Slovenia: European Language
Resources Association (ELRA), May 2016, pp. 1574–1578. [Online]. Available: https:
//aclanthology.org/L16-1249.

[8] R. Delmonte, A. Bristot, and S. Tonelli, “VIT – Venice Italian Treebank: Syntactic and
quantitative features,” in Proceedings of the Sixth International Workshop on Treebanks
and Linguistic Theories, 2007, pp. 43–54.

[9] C. Bosco, “Multiple-step treebank conversion: From dependency to Penn format,” in
Proceedings of the Linguistic Annotation Workshop, Prague, Czech Republic: Association
for Computational Linguistics, Jun. 2007, pp. 164–167. [Online]. Available: https:
//aclanthology.org/W07-1526.

https://doi.org/10.48550/ARXIV.2003.07082
https://doi.org/10.48550/ARXIV.2003.07082
https://arxiv.org/abs/2003.07082
https://doi.org/10.1162/tacl_a_00070
https://doi.org/10.1162/tacl_a_00070
https://aclanthology.org/Q17-1029
https://aclanthology.org/J93-2004
https://doi.org/10.1109/ASYU50717.2020.9259873
https://aclanthology.org/L16-1249
https://aclanthology.org/L16-1249
https://aclanthology.org/W07-1526
https://aclanthology.org/W07-1526


IN-ORDER TRANSITION-BASED PARSING FOR VIETNAMESE 219

[10] E. Bick, “Arboretum, a hybrid treebank for Danish,” in Proceedings of Treebanks and
Linguistic Theory, J. Nivre and E. Hinrich, Eds., 2003, pp. 9–20.

[11] M. Zhu, Y. Zhang, W. Chen, M. Zhang, and J. Zhu, “Fast and accurate shift-reduce
constituent parsing,” in Proceedings of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), Sofia, Bulgaria: Association
for Computational Linguistics, Aug. 2013, pp. 434–443. [Online]. Available: https:
//aclanthology.org/P13-1043.

[12] C. Dyer, A. Kuncoro, M. Ballesteros, and N. A. Smith, “Recurrent neural network
grammars,” in Proceedings of the 2016 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, San
Diego, California: Association for Computational Linguistics, Jun. 2016, pp. 199–209.
doi: 10.18653/v1/N16-1024. [Online]. Available: https://aclanthology.org/N16-1024.

[13] K. Yang and J. Deng, “Strongly incremental constituency parsing with graph neural
networks,” in Neural Information Processing Systems (NeurIPS), 2020.

[14] T. Mikolov, K. Chen, G. S. Corrado, and J. Dean, “Efficient estimation of word repre-
sentations in vector space,” in International Conference on Learning Representations,
2013. [Online]. Available: https://api.semanticscholar.org/CorpusID:5959482.

[15] J. Pennington, R. Socher, and C. Manning, “GloVe: Global vectors for word repre-
sentation,” in Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), Doha, Qatar: Association for Computational Lin-
guistics, Oct. 2014, pp. 1532–1543. doi: 10.3115/v1/D14- 1162. [Online]. Available:
https://aclanthology.org/D14-1162.

[16] K. S. Tai, R. Socher, and C. D. Manning, “Improved semantic representations from
tree-structured long short-term memory networks,” in Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), Beijing,
China: Association for Computational Linguistics, Jul. 2015, pp. 1556–1566. doi:
10.3115/v1/P15-1150. [Online]. Available: https://aclanthology.org/P15-1150.

[17] A. Paszke, S. Gross, F. Massa, et al., “Pytorch: An imperative style, high-performance
deep learning library,” in Advances in Neural Information Processing Systems 32,
Curran Associates, Inc., 2019, pp. 8024–8035. [Online]. Available: http://papers.
neurips.cc/paper/9015- pytorch- an- imperative- style- high- performance- deep-
learning-library.pdf.

[18] K. Fukushima, “Cognitron: A self-organizing multilayered neural network,” Biological
Cybernetics, vol. 20, no. 3, pp. 121–136, 1975.

[19] D. Hendrycks and K. Gimpel, Gaussian error linear units (GELUs), 2016. doi: 10.
48550/ARXIV.1606.08415. [Online]. Available: https://arxiv.org/abs/1606.08415.

[20] D. Misra, Mish: A self regularized non-monotonic activation function, 2019. doi: 10.
48550/ARXIV.1908.08681. [Online]. Available: https://arxiv.org/abs/1908.08681.

[21] S. Elfwing, E. Uchibe, and K. Doya, Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning, 2017. doi: 10.48550/ARXIV.1702.
03118. [Online]. Available: https://arxiv.org/abs/1702.03118.

https://aclanthology.org/P13-1043
https://aclanthology.org/P13-1043
https://doi.org/10.18653/v1/N16-1024
https://aclanthology.org/N16-1024
https://api.semanticscholar.org/CorpusID:5959482
https://doi.org/10.3115/v1/D14-1162
https://aclanthology.org/D14-1162
https://doi.org/10.3115/v1/P15-1150
https://aclanthology.org/P15-1150
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.48550/ARXIV.1606.08415
https://doi.org/10.48550/ARXIV.1606.08415
https://arxiv.org/abs/1606.08415
https://doi.org/10.48550/ARXIV.1908.08681
https://doi.org/10.48550/ARXIV.1908.08681
https://arxiv.org/abs/1908.08681
https://doi.org/10.48550/ARXIV.1702.03118
https://doi.org/10.48550/ARXIV.1702.03118
https://arxiv.org/abs/1702.03118


220 JOHN BAUER et al.

[22] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, Fast and accurate deep network
learning by exponential linear units (ELUs), 2015. doi: 10.48550/ARXIV.1511.07289.
[Online]. Available: https://arxiv.org/abs/1511.07289.

[23] A. G. Howard, M. Zhu, B. Chen, et al., Mobilenets: Efficient convolutional neural
networks for mobile vision applications, 2017. doi: 10.48550/ARXIV.1704.04861. [Online].
Available: https://arxiv.org/abs/1704.04861.

[24] N. Kitaev and D. Klein, Constituency parsing with a self-attentive encoder, 2018. doi:
10.48550/ARXIV.1805.01052. [Online]. Available: https://arxiv.org/abs/1805.01052.

[25] K. Mrini, F. Dernoncourt, Q. Tran, T. Bui, W. Chang, and N. Nakashole, Rethinking
self-attention: Towards interpretability in neural parsing, 2019. doi: 10.48550/ARXIV.
1911.03875. [Online]. Available: https://arxiv.org/abs/1911.03875.

[26] M. D. Zeiler, Adadelta: An adaptive learning rate method, Dec. 2012. [Online]. Available:
https://arxiv.org/abs/1212.5701.

[27] I. Loshchilov and F. Hutter, Decoupled weight decay regularization, 2017. doi: 10.48550/
ARXIV.1711.05101. [Online]. Available: https://arxiv.org/abs/1711.05101.

[28] A. Defazio and S. Jelassi, Adaptivity without compromise: A momentumized, adaptive,
dual averaged gradient method for stochastic optimization, 2021. arXiv: 2101.11075
[cs.LG].

[29] D. Zeman, J. Hajič, M. Popel, et al., “CoNLL 2018 shared task: Multilingual parsing
from raw text to Universal Dependencies,” in Proceedings of the CoNLL 2018 Shared
Task: Multilingual Parsing from Raw Text to Universal Dependencies, Brussels, Belgium:
Association for Computational Linguistics, Oct. 2018, pp. 1–21. doi: 10.18653/v1/K18-
2001. [Online]. Available: https://aclanthology.org/K18-2001.

[30] A. T. Nguyen, M. H. Dao, and D. Q. Nguyen, “A pilot study of text-to-SQL semantic
parsing for Vietnamese,” in Findings of the Association for Computational Linguistics:
EMNLP 2020, 2020, pp. 4079–4085.

[31] A. Akbik, D. Blythe, and R. Vollgraf, “Contextual string embeddings for sequence
labeling,” in Proceedings of the 27th International Conference on Computational Lin-
guistics, Santa Fe, New Mexico, USA: Association for Computational Linguistics, Aug.
2018, pp. 1638–1649. [Online]. Available: https://aclanthology.org/C18-1139.

[32] J. Abadji, P. Ortiz Suarez, L. Romary, and B. Sagot, “Towards a cleaner document-
oriented multilingual crawled corpus,” arXiv e-prints, arXiv:2201.06642, arXiv:2201.06642,
Jan. 2022. arXiv: 2201.06642 [cs.CL].

[33] D. Q. Nguyen and A. T. Nguyen, “PhoBERT: Pre-trained language models for Viet-
namese,” in Findings of the Association for Computational Linguistics: EMNLP 2020,
2020, pp. 1037–1042.

[34] N. L. Tran, D. M. Le, and D. Q. Nguyen, “BARTpho: Pre-trained sequence-to-sequence
models for Vietnamese,” in Proceedings of the 23rd Annual Conference of the Interna-
tional Speech Communication Association, 2022.

[35] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training of deep bidi-
rectional transformers for language understanding,” CoRR, vol. abs/1810.04805, 2018.
arXiv: 1810.04805. [Online]. Available: http://arxiv.org/abs/1810.04805.

https://doi.org/10.48550/ARXIV.1511.07289
https://arxiv.org/abs/1511.07289
https://doi.org/10.48550/ARXIV.1704.04861
https://arxiv.org/abs/1704.04861
https://doi.org/10.48550/ARXIV.1805.01052
https://arxiv.org/abs/1805.01052
https://doi.org/10.48550/ARXIV.1911.03875
https://doi.org/10.48550/ARXIV.1911.03875
https://arxiv.org/abs/1911.03875
https://arxiv.org/abs/1212.5701
https://doi.org/10.48550/ARXIV.1711.05101
https://doi.org/10.48550/ARXIV.1711.05101
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/2101.11075
https://arxiv.org/abs/2101.11075
https://doi.org/10.18653/v1/K18-2001
https://doi.org/10.18653/v1/K18-2001
https://aclanthology.org/K18-2001
https://aclanthology.org/C18-1139
https://arxiv.org/abs/2201.06642
https://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805


IN-ORDER TRANSITION-BASED PARSING FOR VIETNAMESE 221

[36] Y. Liu, M. Ott, N. Goyal, et al., RoBERTa: A robustly optimized BERT pretraining
approach, 2019. doi: 10.48550/ARXIV.1907.11692. [Online]. Available: https://arxiv.
org/abs/1907.11692.

[37] L. Parisi, S. Francia, and P. Magnani, Umberto: An italian language model trained with
whole word masking, https://github.com/musixmatchresearch/umberto, 2020.

[38] F. Souza, R. Nogueira, and R. Lotufo, “BERTimbau: Pretrained BERT models for
Brazilian Portuguese,” in 9th Brazilian Conference on Intelligent Systems, BRACIS,
Rio Grande do Sul, Brazil, October 20-23 (to appear), 2020.

[39] S. Schweter, BERTurk – BERT models for Turkish, version 1.0.0, Apr. 2020. doi: 10.
5281/zenodo.3770924. [Online]. Available: https://doi.org/10.5281/zenodo.3770924.

[40] Y. Cui, W. Che, T. Liu, B. Qin, S. Wang, and G. Hu, “Revisiting pre-trained models
for Chinese natural language processing,” in Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing: Findings, Online: Association
for Computational Linguistics, Nov. 2020, pp. 657–668. [Online]. Available: https:
//www.aclweb.org/anthology/2020.findings-emnlp.58.

[41] G. Attardi, Wikiextractor, https://github.com/attardi/wikiextractor, 2015.
[42] D. Q. Nguyen, D. Q. Nguyen, T. Vu, M. Dras, and M. Johnson, “A fast and accurate

Vietnamese word segmenter,” in Proceedings of the 11th International Conference on
Language Resources and Evaluation (LREC 2018), 2018, pp. 2582–2587.

[43] D. K. Choe and E. Charniak, “Parsing as language modeling,” in Proceedings of
the 2016 Conference on Empirical Methods in Natural Language Processing, Austin,
Texas: Association for Computational Linguistics, Nov. 2016, pp. 2331–2336. doi:
10.18653/v1/D16-1257. [Online]. Available: https://aclanthology.org/D16-1257.

[44] K. Nguyen, V. Nguyen, A. Nguyen, and N. Nguyen, “A Vietnamese dataset for evaluating
machine reading comprehension,” in Proceedings of the 28th International Conference
on Computational Linguistics, Barcelona, Spain (Online): International Committee on
Computational Linguistics, Dec. 2020, pp. 2595–2605. doi: 10.18653/v1/2020.coling-
main.233. [Online]. Available: https://aclanthology.org/2020.coling-main.233.

[45] Y. Goldberg and J. Nivre, “A dynamic oracle for arc-eager dependency parsing,” in
COLING, 2012.

[46] M. Coavoux and B. Crabbé, “Neural greedy constituent parsing with dynamic oracles,”
in Proceedings of the 54th Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), Berlin, Germany: Association for Computational
Linguistics, Aug. 2016, pp. 172–182. doi: 10.18653/v1/P16-1017. [Online]. Available:
https://aclanthology.org/P16-1017.

Received on May 23, 2023
Accepted on August 28, 2023

https://doi.org/10.48550/ARXIV.1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://github.com/musixmatchresearch/umberto
https://doi.org/10.5281/zenodo.3770924
https://doi.org/10.5281/zenodo.3770924
https://doi.org/10.5281/zenodo.3770924
https://www.aclweb.org/anthology/2020.findings-emnlp.58
https://www.aclweb.org/anthology/2020.findings-emnlp.58
https://github.com/attardi/wikiextractor
https://doi.org/10.18653/v1/D16-1257
https://aclanthology.org/D16-1257
https://doi.org/10.18653/v1/2020.coling-main.233
https://doi.org/10.18653/v1/2020.coling-main.233
https://aclanthology.org/2020.coling-main.233
https://doi.org/10.18653/v1/P16-1017
https://aclanthology.org/P16-1017

	Introduction
	In-Order parsing
	Transition-based parsing
	Neural transition-based parsing

	Improvements to base model
	Training mechanism

	Language Specific Processing
	Encoder
	POS tagging
	Additional silver-standard data

	Dynamic Oracle
	Experimental setup
	Future work
	Conclusion

