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Abstract. Clustering is an important technique in data mining and in machine learning. Given a

set of objects, the main goal of clustering is to group objects into clusters such that objects within a

cluster have high similarity to one another, but objects in different clusters have high dissimilarity.

In recent years, problems of clustering categorical data have attracted much attention from the

data mining research community. Several rough-set based algorithms for clustering categorical data

have been proposed. These algorithms make important contributions to the problem of clustering

categorical data, some of them can handle uncertainty during the clustering process, while others

allow users to obtain stable results. However, they have some limitations such as they often have low

accuracy and high computational complexity. In this paper, we review two baseline algorithms for

use with categorical data, namely Min-Min Roughness (MMR) and Mean Gain Ratio (MGR), and

propose a new algorithm, called Minimum Mean Normalized Variation of Information (MMNVI).

MMNVI algorithm uses the Mean Normalized Variation of Information of one attribute concerning

another for finding the best clustering attribute, and the entropy of equivalence classes generated by

the selected clustering attribute for binary splitting the clustering dataset. Experimental results on

real datasets from UCI indicate that the MMNVI algorithm can be used successfully in clustering

categorical data. It produces better or equivalent clustering results than the baseline algorithms.

Keywords. Data mining, clustering, categorical data, information system, normalized variation of

information.

1. INTRODUCTION

Clustering is a fundamental technique in data mining and machine learning. Let D =
{x1, x2, . . . , xn} be the set of n objects, where each xi is an N dimensional vector in the given
feature space. The clustering activity is to find clusters/groups of objects in such a way that
objects within the same cluster have a high degree of similarity, while objects belonging
to different clusters have a high degree of dissimilarity [1]. Clustering problem appears in
many different domains such as pattern recognition, information retrieval, computer vision,
bioinformatics, medicine, etc. At present, there exists a large number of clustering algorithms
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in the literature. The choice of clustering algorithm depends on the data available and the
purpose of the application [1, 2].

The major clustering methods can be classified as partitional, hierarchical, density-based,
grid-based, and model-based clustering [1–4]. Among these, partitional and hierarchical clus-
tering are the most popular. Partitional methods construct a single partition of dataset D
into k clusters optimizing a criterion function, where k is an input parameter. Hierarchical
clustering methods create a hierarchical decomposition of dataset D and this hierarchical
decomposition is represented by a dendrogram. Hierarchical clustering methods can be ag-
glomerative or divisive. Agglomerative hierarchical clustering methods start with each object
in a separate group. These groups are combined successively based on a distance measure
until only one group or a specific stopping criterion is achieved. Divisive hierarchical cluster-
ing methods initialize a cluster system as a single cluster of all points and gradually divide
them into smaller clusters based on distance measurements. Unlike partitioning methods,
hierarchical methods do not require the number of clusters, k, as an input parameter. How-
ever, a termination condition must be specified indicating when the merging or division will
end [3].

Most of the earlier works on clustering have been focused on numerical data whose
inherent geometric properties can be exploited to naturally define distance functions between
data points. However, data mining applications frequently involve many datasets that consist
of categorical attributes (such as gender, nationality, color, etc.) on which there is no inherent
distance measure between categorical objects. Clustering categorical data is more challenging
than clustering numerical data [2,5] and clustering algorithms developed for numerical data
cannot be used to cluster categorical data.

In recent years, clustering categorical data has attracted much attention from the data
mining research community. Several algorithms for clustering categorical data have been
proposed. The initial important algorithms include those of Huang [5, 6], Ganti et al., [7],
Gibson et al., [8], and Guha et al., [9]. These algorithms make important contributions to
the problem of clustering categorical data, but they are not designed handling uncertainty
in the clustering process.

When studying the problem of categorical data clustering, special attention should be
paid to finding techniques that allow to handle uncertainty and ambiguity, because in many
real-world applications, there is no sharp boundary between clusters. Huang [6] and Kim et
al. [10] have applied fuzzy set theory to clustering categorical data. However, these fuzzy set
application techniques require multiple scans of the dataset to obtain the necessary stability
for the membership fuzzy control parameter.

Rough set theory proposed by Z. Pawlak in the early 1980s [11], and is a relatively new
soft computing tool for dealing with uncertain data. One of the major advantages of rough
set theory is that it does not require any additional information about the data such as apriori
probability distribution in statistics and membership function in fuzzy set theory [12]. In
recent years, several rough set based divisive hierarchical clustering algorithms have been
proposed for clustering categorical data [13–26].

The main idea of using rough set theory in clustering categorical data is to select a series
of clustering attributes, where one of them is selected and used to split the objects at each
time until all objects are clustered. Thus, the primary important task for this approach is to
select from many candidates in a dataset one attribute that can best partition the objects.
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The first attempt at a rough set-based technique to select clustering attributes is proposed
by Mazlack et al. [17]. In [17], Mazlack et al. proposed a technique using the average of
the accuracy of approximation in the rough set theory, called total roughness (TR), where
the higher the total roughness is, the higher the accuracy of selecting clustering attribute.
Parmar et al. [19] proposed the min–min–roughness (MMR) algorithm which is a “purity”
rough set-based divisive hierarchical clustering algorithm for categorical data. The MMR
algorithm determines the clustering attribute by the Min–Roughness (MR) criterion. In [27],
Herawan et al. proposed a technique, called maximum dependency attributes (MDA), to
select attributes used for divisive hierarchical clustering. MDA is constructed based on the
dependency measure in rough set theory and uses it to evaluate the dependency of one
attribute on the other attributes in a dataset. The MDA technique can be used to select
attributes for spitting a cluster, however, it is not a completely divisive hierarchical clustering
algorithm. Following the work of Herawan et al., some other researchers have also proposed
new methods to select clustering attributes [14–16, 22, 23, 25, 28]. However, they have not
presented specific clustering algorithms nor have they evaluated the practical effectiveness
of their categorical data clustering techniques.

Qin et al. [20] proposed an information-theory-based divisive hierarchical clustering algo-
rithm for categorical data that is implemented by selecting a clustering attribute using the
mean gain ratio (MGR) and then selecting an equivalence class generated by the clustering
attribute as one cluster using cluster entropy.

Recently, Wei et al. [26] systematically analyzed existing rough set-based hierarchical
clustering algorithms for categorical data and introduced a uniform framework. According
to this framework, a clustering algorithm is an iterative process, and each iteration comprises
three main steps: (1) Select some attributes for splitting the clustering dataset; (2) Based on
these selected attributes, generate bipartitions of the clustering dataset; (3) Determine which
of the resulting leaf nodes should be further split. In the first step, informative attributes
are selected to generate candidate bipartitions of the clustering dataset. In the second step,
appropriate bipartitions are selected from the candidate bipartitions using an evaluation
method. Application of the first and second steps produces a bipartition of the clustering
dataset, so any given number of clusters can be reached by recursively running a divisive
bisecting clustering procedure. In the third step, one of the two datasets resulting from the
bipartition is selected for further splitting in the next iteration.

Although, rough set theory-based proposed categorical clustering algorithms make im-
portant contributions to the issue of clustering categorical data, they have some limitations
such as they often have low accuracy and high computational complexity. Especially, on
some datasets they fail or hardly select their best clustering attributes [25,26,29].

In this paper, we revisit two baseline divisive hierarchical clustering algorithms for use
with categorical data and propose a new algorithm, called Minimum Mean Normalized Vari-
ation of Information (MMNVI). Two baseline algorithms are Min-Min Roughness (MMR)
and Mean Gain Ratio (MGR). MMNVI iteratively performs only two steps on the current
clustering dataset: (1) Selecting a clustering attribute; (2) Selecting an equivalence class
generated by the selected clustering attribute as one cluster, and taking the union of other
equivalence classes as the new clustering dataset. To implement the first step, MMNVI uses
the concept of normalized variation of information in information theory which is a universal
metric in the space of attributes. To perform the second step, MMNVI uses the concept
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of cluster entropy. Experimental results on eight benchmark data sets from UCI show that
MMNVI is a stable clustering algorithm and produces better or equivalent clustering results
than the baseline algorithms.

The structure of the remainder of this paper is as follows. Section 2 presents some basic
notions of rough set theory, and related concepts from information theory, and revisits two
baseline algorithms. Section 3 introduces the MMNVI algorithm followed by examples for
illustrative purposes. Section 4 presents our experimental results. Section 5 concludes the
paper and identifies future research directions.

2. PRELIMINARIES

2.1. Some concepts of rough set theory

Definition 2.1. [11] An information system is a pair IS = (U,A), where U is a non-empty
finite set of objects, A is a nonempty finite set of attributes, and for every a ∈ A there is a
mapping a : U → Va, where Va denotes the domain of a.

In the rest of this article, unless otherwise stated, we assume that all attributes in a given
information system are categorical, i.e., that they have a finite and unordered domain.

In an information system IS = (U,A), if an attribute is interpreted as the result of a
classification, then this information system is called a decision table DT = (U,C ∪ {d}),
where C ∪ {d} = A, d /∈ C, C is called the condition attribute set, while d is called the
decision attribute.

Definition 2.2. [11] Let IS = (U,A) be an information system, B ⊆ A. Two elements
x, y ∈ U are said to be B -indiscernible in S if and only if a(x) = a(y) for every a ∈ B.

We denote the indiscernibility relation induced by the set of attributes B by IND(B),
IND(B) is an equivalence relation and it induces a unique partition (clustering) of U . The
partition of U induced by IND(B) in IS = (U,A) denoted by U/IND(B) or U/B and the
equivalence class in the partition U/IND(B) containing x ∈ U , denoted by [x]B.

Definition 2.3. [11] Let IS = (U,A) be an information system, where B ⊆ A and X ⊆ U .
The B -lower approximation of X, denoted by B(X), and B -upper approximation of X,
denoted by B(X), respectively, are defined as follows

B (X) = {x ∈ U | [x]B ⊆ X} and B (X) = {x ∈ U | [x]B ∩X ̸= ∅} . (2.1)

These definitions state that object x ∈ BX certainly belongs to X, whereas object
x ∈ BX could belong to X. There is BX ⊆ X ⊆ BX and X is said to be definable if
BX = BX. Otherwise, X is said to be rough with B -boundary BNB (X) = BX −BX.

Definition 2.4. [11] Let IS = (U,A) be an information system, where B ⊆ A and X ⊆ U .
The roughness of X with respect to B is defined as

RB (X) = 1− |B (X)|∣∣B (X)
∣∣ . (2.2)

Obviously, 0 ≤ RB (X) ≤ 1. If RB(X) = 0, X is crisp with respect to B, in other words,
X is definable with respect to B. If 0 < RB (X) ≤ 1, X is rough with respect to B, that is,
B is vague with respect to X.
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Definition 2.5. [11] Let IS = (U,A) be an information system. For P, Q ⊆ A, it is said
that Q depends on P in a degree k (0 ≤ k ≤ 1), denoted by P=⇒kQ, if

k = γP (Q) =

∑
X∈Q |P (X)|

|U |
. (2.3)

2.2. Related concepts from information theory

The main aim of our work is to introduce an algorithm for clustering categorical data.
So, we need some special measurements to measure the disorder (uncertainty) in the col-
umn vector associated with an attribute and the intra-class similarity of a cluster. Such
measurements would be the entropy of an attribute and the entropy of a cluster presented
below.

Given information system IS = (U,A), and attribute a ∈ A. The information system
IS can be viewed as a statistical population and attribute a as a discrete random variable.
Suppose Va = {x1, x2, . . . , xh}, U/{a} = {X1, X2, . . . , Xh}. Then the probability distribution
of a can be determined by

P (a = xi) = p (xi) = |Xi|/|U | , i = 1, . . . , h. (2.4)

Other related probability distributions can be similarly defined. Suppose

Va = {x1, x2, . . . , xh} , U/{a} = {X1, X2, . . . , Xh} ,

Vb = {y1, y, . . . , yg} , U/{b} = {Y1, Y2, . . . , Yg} ,

then the joint probability distribution P (a, b) of a and b, and the conditional probability
distribution P (a|b) of a given b are defined respectively as following

P (a = xi, b = yj) = p (xi, yj)= |Xi ∩ Yj |/|U |,

P (X = xi | Y = yj) = p (xi | yj) = |Xi ∩ Yj |/|Yj |, (2.5)

i = 1, . . . ,m, j = 1, . . . , n.

Definition 2.6. [29, 30] Let IS = ((U,A)) be an information system, attribute a ∈ A.
Shannon’s entropy (entropy for short) of a is defined by the following expression [29]

H (a) = −
h∑

i=1

p (xi) log2p (xi) , (2.6)

and by the convention 0log20 = 0.

For an attribute a, entropy H(a) is a metric that measures the degree of disorder (un-
certainty) in the column vector associated with attribute a. The smallest possible value for
entropy is 0, which occurs when all components in the associated vector are the same. In
other words, there is no disorder in the vector. The maximum value of entropy is log |Va|,
which occurs when all components are different. The larger the value of entropy, the more
disorder there is.
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Definition 2.7. [17,30] Let S = (U,A) be an information system, where A = {a1, a2, . . . , ap}.
Assuming the attributes in A are independent of each other, we define the entropy of dataset
X ⊆ U as follows

Entropy (X) = HX (a1) +HX (a2) + · · ·+HX (ap) , (2.7)

whereHX (ai) denotes the entropy of attribute ai onX and is calculated by (2.6), i = 1, . . . , p.

The smaller the entropy of X, the more similar the objects in X are. Therefore, the
entropy of a cluster has been used by many authors as a measure to determine the intra-
class similarity of a cluster [18,20,31,32].

Definition 2.8. [29, 30] Let S = (U,A) be an information system, a, b ∈ A. The joint
entropy H (a, b) of a and b is defined by

H (a, b) = −
h∑

i=1

g∑
j=1

p (xi, yj) log2p (xi, yj), (2.8)

where p (xi, yj) = |Xi ∩ Yj |/|U |, i = 1, 2, . . . , h and j = 1, 2, ..., g.

The join entropyH (a, b) is the measure of the amount of uncertainty which two attributes
a and b contain.

Definition 2.9. [29,30] Let S = (U,A) be an information system, a, b ∈ A. The conditional
entropy of a with respect to b denoted by H (a | b) is defined as

H (a | b) = −
g∑

j=1

p (yj)
h∑

i=1

p (xi | yj) log2p (xi | yj) =
g∑

j=1

p (yj)H
(
a
∣∣ b = yj

)
. (2.9)

The conditional entropy H (a | b) quantifies the uncertainty of a random variable a when
the outcome of another random variable b is known. We also have H (a | b) = H (a, b)−H(b).

Definition 2.10. [29,30] Let S = (U,A) be an information system. The mutual information
between the two attributes a, b ∈ A is defined as

I (a; b) = H (a)−H (a | b) = H (b)−H (b | a) = H (a) + H (b)−H (a, b) . (2.10)

Mutual information I (a; b) is non-negative and symmetric, i.e., I (a; b) ≥ 0 and I (a; b) =
I(b; a). It measures the information that a and b share; It tells us how much the knowledge
of one of the two attributes reduces uncertainty about the other one. Mutual information
between a and b is also known as information gain of a with respect to b.

2.3. MMR algorithm

The MMR algorithm was proposed by Parmar et al. in [19]. It is one of the most
successful and pioneering rough set-based hierarchical clustering algorithms for categorical
data [20, 26]. MMR algorithm determines the clustering attribute using roughness measure
(Definition 2.4), which allows it to have the ability to deal with uncertainty.

Given the actual clustering dataset (CDataset) and the set of attributes A, the MMR
algorithm performs three main steps in each iteration of the clustering process as follows:
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(1) For each attribute ai ∈ A, let the partition of the actual clustering dataset generated
by ai be CDataset/ai = {X1, X2, . . . , Xg}, calculate MR(ai), the minimum roughness
value of ai with respect to each aj ∈ A, aj ̸= ai, using formula

MR (ai) = min
(aj∈A)∧(j ̸=i)

(
Roughaj (ai)

)
, (2.11)

where Roughaj (ai) =
∑g

k=1Raj (Xk)/g, and Raj (Xk) is the roughness of Xk with
respect to aj , and is calculated by formula (2.2). After that, it determines the clustering
attribute a∗, such that a∗ = argminai∈A {MR (ai)}.

(2) Select the splitting equivalence class X0 ∈ Dataset/a∗ satisfying

X0 = argminXk

 ∑
aj∈A, aj ̸=a∗

Raj (Xk)

 ,

and set X ′
0 = CDataset−X0 .

(3) Among X0 and X ′
0, choose the set which has the bigger number of objects as the new

clustering dataset, and output the remaining set as a cluster.

The iterative clustering process continues until the number of clusters obtained equals
the pre-defined number k of clusters.

MMR is considered one of the most successful rough set-based clustering algorithms.
Besides the ability to handle uncertainty in the clustering process, the MMR algorithm is a
powerful clustering algorithm and it is capable of handling large data sets. Although MMR
still has two major drawbacks: (1) MMR tends to choose the clustering attribute with fewer
values [20, 27], so if an attribute has only a single value, it will be selected, resulting in the
termination of clustering. (2) The MMR algorithm chooses the dataset with more objects
for further split, which is not always consistent with the natural distribution of clusters, thus
possibly generating undesirable clustering results.

2.4. MGR algorithm

The MGR algorithm was proposed by Qin et al. in [20]. It is an information theory based
divisive hierarchical clustering algorithm for categorical data. MGR algorithm determines
the clustering attribute using the information gain ratio which also allows MGR to have the
ability to deal with uncertainty.

Given the actual clustering dataset (CDataset) and the set of attributes A, the MGR
algorithm performs three main steps in each iteration of the clustering process as follows:

(1) For each attribute ai ∈ A, let the partition of actual clustering dataset grnerated
by ai be CDataset/ai = {X1, X2, . . . , Xg}, calculate the mean information gain ratio
(MGR) of attribute ai, with respect to each aj ∈ A, aj ̸= ai, using the following
formula

MGR (ai) =
1

|A| − 1

|A|∑
j=1,j ̸=i

GRaj (ai), (2.12)
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where GRaj (ai) is gain ratio of ai with respect to aj and is calculated by the following
formula

GRaj (ai) =
I (ai; aj)

H (ai)
. (2.13)

After that, the algorithm determines the clustering attribute a∗ satisfying that

a∗ = argmaxaj∈A {MGR (aj)} .

(2) Selects the splitting equivalence class X0 ∈ Dataset/a∗ satisfying

X0 = argminXk∈CDataset/a∗ (Entropy (Xk)) .

(3) Output X0 as one cluster, and take set CDataset = CDataset−X0 as a new clustering
dataset for the next iteration.

MGR repeats the above steps on the new clustering dataset until the number of clusters
obtained equals the pre-defined number k of clusters.

In comparison with MMR, the MGR algorithm has two advantages [20]: (1) MGR does
not tend to choose the clustering attribute with fewer values; (2) MGR outputs the found
cluster in each iteration based on the intra-class similarity of a cluster, regardless of its
cardinality and performs further decomposition on the remaining objects, which is more
natural than MMR algorithm.

According to Wei et al. [26], the main disadvantage of the MGR algorithm is that it
would be not suitable to use MGR to select the baseline attribute for splitting a clustering
dataset. From formula (2.13), one can see that the gain ratio GRaj (ai) of one attribute
ai with respect to another attribute aj can be very large if both the entropy of ai and the
information gain I (ai; aj) are low. In other words, the similarity between two attributes ai
and aj can be low even if the gain ratio GRaj (ai) is large. In such cases, it is not suitable
to use MGR to select baseline attributes for splitting a cluster.

3. PROPOSED ALGORITHM

Considering the advantages and disadvantages of the two baseline algorithms above, this
section introduces a new algorithm for clustering categorical data, which is called Minimum
Mean Normalized Variation of Information (MMNVI).

3.1. Basic definitions and idea of MMNVI

As seen in Section 2, in a categorical information system S = (U,A), each attribute in A
defines a partition on the set U of objects. A good clustering of the objects should share as
much information as possible with the partitions defined by each attribute in A [18, 20, 32].
Also, the smaller the entropy of the data set is the more similar the objects in it are. Keeping
this in mind, in our iterative clustering algorithm, at each iteration, we expect to choose the
clustering attribute whose partition is closest to those defined by other attributes. Then,
in the partition defined by the chosen clustering attribute, select the equivalence class with
the highest intra-class similarity as a cluster, and take the rest of the objects to form a new
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clustering dataset. The above two steps will be repeated on the new clustering dataset until
the number of clusters obtained equals the pre-defined number k of clusters.

To measure the distance between two attributes, the NVI (normalized variation of infor-
mation) metric is used and it is defined below.

Definition 3.1. [29, 30] Given an information system IS = (U,A), ai, aj ∈ A. The normal-
ized variation of information between ai and aj is defined by

NV I (ai, aj) = 1− I (ai; aj)

H (ai, aj)
. (3.1)

NV I (X,Y ) is a metric on the space of attributes, that is, for any attributes ai, aj , and ak,
it satisfies:

1) NV I (ai, aj) ≥ 0 and the equality holds iff ai= aj ,

2) NV I (ai, aj) = NV I (aj , ai),

3) NV I (ai, aj) +NV I (aj , ak) ≥ NV I (ai, ak).

Values of NV I (ai, aj) are in the range [0,1]. Note that, NV I (a, b) is a universal metric
in the sense that if any other distance measure puts a and b close to each other, the NV I will
also evaluate them to be close [29].

Definition 3.2. Given an information system IS = (U,A), ai ∈ A. The mean normalized
variation of information of ai with respect to each aj ∈ A, aj ̸= ai, is defined by

MNV I (ai) =
1

|A| − 1

|A|∑
j=1, j ̸=i

NV I (ai, aj). (3.2)

3.2. MMNVI algorithm

With the above idea and definitions, our MMNVI iterative algorithm works as follows.
On the first iteration, it takes the set of all objects U as the clustering dataset and

performs the following three main steps:

1. Remove all the single-valued attributes.

2. Selects a clustering attribute as the one that has the smallest MNVI value.

3. Output a cluster the equivalence class generated by the partitioning attribute which has
the lowest entropy, and takes as a new clustering dataset the union of other equivalence
classes.

The above clustering process repeats until the number of the leaf nodes equals the pre-
defined number k of clusters. Fig.1 shows the pseudo-code of the MMNVI algorithm.

We have two following remarks about the MMNVI algorithm.

1. In Step 4, if many attributes have the same smallest MNVI value, we choose the first
of them.

2. In Steps 5 and 6, after having an attribute for splitting the clustering dataset, MMNVI
selects the equivalence class with the lowest entropy as one cluster and takes the union
of other equivalence classes as the new clustering dataset. This is because the entropy
of the second dataset is larger as indicated by the following proposition. In addition,
if there are multiple equivalence classes with the same lowest entropy, we select the
equivalence class with the largest number of objects.
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Algorithm MMNVI 

Input:   Set of all objects +, set of all attributes ,, the given number of clusters -. 

Output:   Clustering of + 

Begin 

Step 1:   Set current number of cluster /0/ = 1; 

Set  /23�345� = + // /23�345� denotes the actual clustering data set  

Step 2:   B = A; 

for each 36 ∈ 8 

 determine partition /23�345� 9�:{36}⁄ ; 

if  |/23�345� 9�:{36}⁄ | = 1  // all objects in /23�345t have the same values of 36  

B = B - 36 // exclude attribute 36; 

endif  

endfor 

Step 3:  for each 36 ∈ 8  

calculate <0>9(36)  using formula (3.2); 

endfor 

Step 4:  Determine the clustering attribute 3∗ which satisfies 

3∗ = argmin@A∈B<0>9(36); 

Step 5:  Determine partition ��������  !"{�∗} = {$%, $&, … , $'}⁄ ; 

$ = argmin)*
(�!�($-))  for $- ∈ �������t  !"{�∗}⁄ ; 

Step 6:  Output $ as one cluster; 

CNC = CNC + 1; 

if CNC < k  

�������� = �������� − $; 

go to Step 2; 

else   

output �������� as the last cluster; 

endif 

End 

Proposition 1. Let S = (U,A) be a information system, attribute a ∈ A, and

U/a = {X1, X2, . . . , Xh}.

If Entropy (X1) = min {Entropy(X1),Entropy (X2) , . . . ,Entropy (Xh)},
then

Entropy (X2 ∪X3 ∪ · · · ∪Xh) ≥ Entropy (X1) .

Proof. Let U ′ = X2∪X3∪· · ·∪Xh. Because, U/a is the partition of U generated by a, every
object in Xi has the same value xi on attribute a. For each attribute b ∈ A− {a}, we have

HU ′ (b | a) =
h∑

i=2

|Xi|
|U ′|

HU ′ (b | a = xi) =
h∑

i=2

|Xi|
|U ′|

HXi (b) .

On the other hand, according to formula (2.10), HU ′ (b) ≥ HU ′ (b | a). Therefore,

HU ′ (b) ≥
h∑

i=2

|Xi|
|U ′|

HXi (b) ,
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∑
b∈A−{a}

HU ′ (b) ≥
∑

b∈A−{a}

h∑
i=2

|Xi|
|U ′|

HXi (b) =
h∑

i=1

|Xi|
|U ′|

∑
b∈A−{a}

HXi (b).

Note that, HXi (a) = 0 for each i = 2, 3, . . . , h, we have∑
b∈A−{a}

HXi (b) =
∑
b∈A

HXi(b),

∑
b∈A

HU ′ (b) ≥
h∑

i=1

|Xi|
|U ′|

∑
b∈A

HXi (b) =
h∑

i=1

|Xi|
|U ′|

Entropy (Xi) ≥ Entropy(X1),

or
Entropy (X2 ∪X3 ∪ · · · ∪Xh) ≥ Entropy (X1) .

■

3.3. Example

Let’s consider the categorical information system given in Table 1, there are eight objects
with seven categorical attributes. Suppose we want to split this set of objects into 3 clusters.
We have

U = {1, 2, . . . , 8} ,

A = {Degree,English,Experience, IT,Mathematics,Programming, Statistics} .

Table 1: An information system of student enrollment qualification in [27]

� = {1,2, … , 8}  = {Degree, English, Experience, IT,Mathematics, Programming, Statistics

Student Degree 

a1 

English  

a2 

Experience 

a3 

It 

a4 

Mathematics 

a5 

Programming 

a6 

Statistics 

a7 

1 

2 

3 

4 

5 

6 

7 

8 

Ph.D 

Ph.D 

M.Sc 

M.Sc 

M.Sc 

M.Sc 

B.Sc 

B.Sc 

Good 

Medium 

Medium 

Medium 

Medium 

Medium 

Medium 

Bad 

Medium 

Medium 

Medium 

Medium 

Medium 

Medium 

Good 

Good 

Good 

Good 

Medium 

Medium 

Medium 

Medium 

Good 

Good 

Good 

Good 

Good 

Good 

Medium 

Medium 

Medium 

Medium 

Good 

Good 

Good 

Good 

Medium 

Medium 

Medium 

Medium 

Good 

Good 

Good 

Medium 

Medium 

Medium 

Medium 

Good 

�
At the first iteration, MMNVI takes the set of all eight objects U as the clustering dataset.

Because all seven attributes are multivalued attributes, no attribute is removed. MMNVI
determines the best clustering attribute for the first binary split.

The normalized variation of information of a1 with respect to a2, for example, is calcu-
lated by (3.1) as follows

U/Ind ({a1}) = {X1, X2, X3} = {{1, 2} , {3, 4, 5, 6} , {7, 8}} ,

U/Ind ({a2}) = {Y1, Y2, Y3} = {{1} , {2, 3, 4, 5, 6, 7} , {8}} ,

U/Ind ({a1, a2}) = {Y1, Y2, Y3} = {{1} , {2} , {3, 4, 5, 6} , {7} , {8}} ,

H (a1) = 1.5, H (a2) = 1.0613, H(a1, a2) = 2, I (a1; a2) = 0.5613.

So, NV I (a1, a2) = 1− I (a1; a2) /Ha1, a2) = 0.7194.
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Following similar process, we get the normalized variation of information of a1 with
respect to a3, a4, a5, a6, and a7. These values are 0.4591, 0.3333, 0.7500, 0.7500, and
0.8403.

Table 2 lists the normalized variation of information of each attribute with respect to
each other attribute.

Table 2: Mean certainty of each attribute with respect to each other attribute
Table 2

Attributes NVI (Normalized Variation of Information) 

a1            a2             a3            a4             a5            a6             a7    

MNVI 

a1  0.7194 0.4591     0.3333    0.7500     0.7500    0.8403 0.642 

a2 0.7194       0.7910     0.8221     0.8620     0.8620    0.8221 0.8131 

a3 0.4591    0.7910     0.7925     0.7925     0.7925     1.0000 0.7713 

a4 0.3333     0.8221     0.7925       1.0000    1.0000     0.8958 0.8073 

a5 0.7500 0.8620     0.7925     1.0000      0.0000 0.8958 0.7167 

a6 0.7500 0.8620     0.7925     1.0000     0.0000      0.8958 0.7167 

a7 0.8403 0.8221     1.0000     0.8958     0.8958     0.8958      0.8916 

��The last column of Table 2 lists the Mean Normalized Variation of Information of each
ai with respect to each aj ∈ A, aj ̸= ai.

After having the Mean Normalized Variation of Information of each attribute, the best
clustering attribute for the first binary split is determined. The attribute a1 has the mini-
mum MNVI value. Thus, a1 is selected as the clustering attribute, and binary splitting is
conducted. We have

U/Ind ({a1}) = {X1, X2, X3} = {{1, 2} , {3, 4, 5, 6} , {7, 8}} ,

Entropy (X1) = 1, Entropy (X2) = 2.8113, Entropy (X3) = 2.

Because X1 has the smallest entropy value, it is chosen to form a cluster. The set of
remaining objects is Z1 = {3, 4, 5, 6, 7, 8} and Z1 will be the new clustering dataset for
iteration 2.

In iteration 2, there are three attributes which give us the minimum value of the Mean
Normalized Variation of Information. These attributes are 1, 3 and 4. Choosing attribute
3 as the clustering attribute, we have Z1/a3 = {Y1, Y2} = {{3,4,5,6},{7,8}}. Because
Entropy (Y1) = 2.8113 > Entropy (Y2) = 2, Y2 is selected as the second cluster.

With the pre-defined number of clusters k = 3, MMNVI gives us three clusters C1 =
{1, 2}, C2 = {7, 8}, and C3 = {3, 4, 5, 6}.

3.4. Computational complexity of MMNVI algorithm

Now, let’s consider the time complexity of the MMNVI algorithm. Suppose that in the
dataset for clustering, there are n objects, m attributes, and k is the pre-defined number of
clusters. To split the dataset into k clusters, the algorithm has to run k − 1 iterations. In
each iteration, the MMNVI algorithm needs to calculate the MNVI values of all m attributes.
To compute the MNVI value of an arbitrary attribute ai, the time to determine equivalence
classes is n, and the time to calculate NVI with respect to other attributes is n(m−1). Thus,
the time to calculate the values of MNVI for all m attributes is m(n + n (m− 1)) = nm2.
In addition, the MMNVI algorithm needs to calculate n(k − 1) times the entropy of the
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equivalence classes. The time to calculate the entropy of an equivalence class is no more
than m. Thus, the time to be spent in calculating entropy is much less than (k − 1)nm.
To sum up, the expected time complexity of the MMNVI algorithm is polynomial, which is
O(knm+ knm2).

According to references [26] and [28], the time complexity of the MMR and MGR algo-
rithms is the same and is O(knm + km2l).

3.5. Theoretical advantage of MMNVI algorithm

Similar to MMR and MGR, our MMNVI algorithm is capable of handling the uncertainty
in the clustering process, (by using information measures to measure the uncertainty of an
object set), needs k the pre-defined number of clusters as the input parameter, does not
depend on initial values and the input order of data, and can output a stable clustering
result (repeated runs produce the same result).

Compared with the MMR and MGR algorithms, the MMNVI algorithm has three main
improvements:

(1) In each iteration, before selecting the clustering attribute, MMNVI removes all the
single-valued attributes, thus, MMNVI can avoid premature stopping of the clustering
process.

(2) The MMNVI algorithm evaluates a candidate attribute by the Mean Normalized Vari-
ation of Information rather than by the Min–Min-Roughness because the rationality
of the partition induced by an attribute should be reflected on all of the attributes
instead of on just one best attribute.

(3) The MMNVI algorithm takes the dataset with a larger entropy for further splitting
(clustering), which helps to improve the clustering accuracy. This is superior to the
MMR algorithm, which selects the dataset with more objects.

4. EXPERIMENTAL RESULTS

To test MMNVI, an implementation system was developed in R programming language,
and tested on real-life data sets. Besides the MMNVI algorithm, we also repeat two baseline
algorithms, MMR and MGR, to compare with MMNVI.

4.1. Benchmark datasets

To evaluate the clustering performance of MMNVI, we used 8 real-life data sets obtained
from the UCI Machine Learning Repository [34], including Soybean small, Zoo, Votes, Breast
Cancer Wisconsin, Mushroom, Balance Scale, Car Evaluation, and Chess. The information
about the data sets is given in Table 3.

In the Breast Cancer data set, there are 16 objects with missing values. In our imple-
mentation, these objects were deleted, so the number of left objects was 683.

Three algorithms are sequentially run on all data sets. Each algorithm requires the
number of clusters to be clustered as an input parameter. In our experiments, the number of
clusters was set to be the known number of class labels. For instance, the number of clusters
was set to 4 for the Car evalution data set.
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Table 3: Eight UCI data sets

Datasets name Abbreviations Number of 
objects 

Number of 
attributes 

Number of 
classes 

Soybean small Soybean 47 359 4 

Breast Cancer Wisconsin Breast 683 (699) 9 2 

Car Evalution Car 1728 6 4 

Congressional Voting Records Vote 435 16 2 

Chess Chess 3196 36 2 

Mushroom Mushroom 8124 22 2 

Balance scale Balance 625 4 3 

Zoo Zoo 101 16 7 

4.2. Performance evaluation methods

To evaluate the performance of clustering algorithms, we use three widely used indexes.
These indexes are Overal Purity, Adjusted Rand Index (ARI), and Normalized Mutual In-
formation (NMI).

Table 4: Contingency table

Ω\C  !  " …  # sums 

ω! n!! %!" … %!# &! 

ω" n"! n"' … n"( &" 

… … … … … … 

ω  ! " ! # … ! $ %  

sums &" &# … &$ ∑ !() =() n 

! objects, Ω = {ω", ω#, … , ω } and - = {.", .#, . . . , .$} represent

ω % . &
Suppose that data set has n objects, Ω = {ω1, ω2, . . . , ωI} and C = {c1, c2, . . ., cJ}

represent the clustering result and the original classification, respectively, cluster ωi has ai
objects, class cj has bj objects, and nij is number of objects that are in both cluster ωi and
class cj . Thus, we have the contingency table as given in Table 4.

With the above notations, three evaluation indexes are defined as follows:

(1) The purity of a cluster ωi and the Overall Purity of clusters are, respectively, as follows
[31]

Purity (ωi) =
1

ai
maxj (nij) and OP =

∑I
i=1maxj (nij)

n
. (4.1)

The OP lies between 0 and 1. According to this measure, a higher value of OP indicates
a better clustering result. With perfect clustering, i.e., clustering contains only pure
clusters, the overall purity gives a value of 1.

(2) The Adjusted Rand Index (ARI) can be expressed as [31]

ARI (Ω, C) =

∑
i,j C

2
nij

−
[∑

iC
2
ai

∑
j C

2
bj

]
/C2

n

1
2

[∑
iC

2
ai +

∑
j C

2
bj

]
−
[∑

iC
2
ai

∑
j C

2
bj

]
/C2

n

, (4.2)

where C2
ai = ai(ai − 1)/2, C2

bj
= bj(bj − 1)/2, C2

nij
= nij(nij − 1)/2.

The ARI lies between 0 and 1. When the clustering result and the original classification
agree perfectly, the adjusted rand index is 1.
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(3) The Normalized Mutual Information (NMI) is built upon fundamental concepts from
information theory. Given two clusterings Ω and C, their entropies, joint entropy, and
mutual information are defined naturally via the marginal and joint distributions of
data items in Ω and C, respectively, as follows [30,31]

H (Ω) = −
I∑

i=1

ai
n
log2

ai
n
, (4.3)

H (Ω, C) = −
I∑

i=1

J∑
j=1

nij

n
log2

nij

n
, (4.4)

I (Ω;C) = H (Ω) +H (C)−H (Ω, C) . (4.5)

Then, normalized mutual information (NMI) is calculated by

NMI =
2I (Ω;C)

H (Ω) +H (C)
. (4.6)

NMI lies in [0,1], equal to 1 when the two clusterings are identical, and 0 when they
are independent, that is, sharing no information about each other.

4.3. Clustering results

We first present the detailed clustering results of MMNVI, then we show the Overall
Purity, Adjusted Rand Index, and Normalized Mutual Information values obtained by MMR,
MGR, and MMNVI algorithms on 8 data sets.

For the Soybean small data set, as the known number of class labels in this data set
is 4, therefore, the number of clusters is set to 4 for all three MMNVI, MMR and MGR
algorithms in the test. The clustering distributions on the Soybean data set are summarized
in Table 5. It is evident from Table 5 that the MMNVI algorithm obtains clustering results
with 47 objects belonging to the majority class label. Thus, the Overall Purity of the clusters
is 1. The Adjusted Rand and the Normalized Mutual Information are equal to 0.4601, and
0.6511, respectively.

Table 5: Results of MMNVI on the Soybean Small data set

Cluster Class 1 Class 2 Class 3 Class 4 Cluster purity  Overall purity ARI NMI 

1 10   0 0   0 1 1 0.4601 0.6511 

2 10   0 0   0 1    

3 10   0 0   0 1    

4   0   0 0 17 1    

Tables 6 – 12 show the clustering results of the MMNVI algorithm on seven other UCI
data sets.

Table 6: Results of MMNVI on the Breast Cancer Wisconsin data set

Cluster Class 1 Class 2 Cluster purity Overall purity ARI NMI 

1 369     4 0.9893 0.8843 0.59 0.5446 

2   75 235 0.7581    
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Table 7: Results of MMNVI on the Car Evaluation data set

Cluster Class 1 Class 2 Class 3 Class 4 Cluster purity Overall purity ARI NMI 

1 108   0 324   0 0.75 0.7384 0.0071 0.0452 

2 115 23 268 26 0.6204    

3 108   0 324   0 0.75    

4   72   0 360   0 0.8333    

  

 

 

 

 

 

 

Table 8: Results of MMNVI on the Votes data set

Cluster Class 1 Class 2 Cluster purity Overall purity ARI NMI 

1 200     8 0.9615 0.8276 0.4279 0.4009 

2   67 160 0.7048    

  

Table 9: Results of MMNVI on the Chess data set

Cluster Class 1 Class 2 Cluster purity Overall purity ARI NMI 

1 922 895 0.5074 0.5307 0.0036 0.0034 

2 605 774 0.5613    

  

Table 10: Results of MMNVI on the Mushroom data set

Cluster Class 1 Class 2 Cluster purity Overall purity ARI NMI 

1       0     36 1  0.5224 -0.0011 0.009 

2 4208 3880 0.5203    

Table 11: Results of MMNVI on the Zoo data set

Cluster Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Cluster purity Overall purity ARI NMI 

1 41 0 0 0 0 0 0 1 0.7327 0.3211 0.3707 

2   1 0 0 0 0 0 0 1    

3   9 6 0 2 1 2 0 0.45    

4 11 3 0 4 2 1 1 0.5    

5   3 0 0 3 0 0 0 0.5    

6   1 0 0 0 0 0 0 1    

7   0 0 0 0 0 8 2 0.8    

Table 12: Results of MMNVI on the Balance Scale data set

Cluster Class 1 Class 2 Class 3 Cluster purity Overall purity ARI NMI 

1 10   17   98 0.784 0.6784 0.1234 0.1346 

2 10   17   98 0.784    

3 28 228 119 0.608    

4.4. Comparison with MMR and MGR algorithms

With the same process MMR and MGR are applied to the 8 real-life data sets. The
Overall Purity values of the three algorithms are summarized in Table 13.

Table 13: Overall Purity values of three algorithms on 8 data sets

Algorithms Soybean Breast Car Votes Chess Mushroom Balance Zoo Average 

MMR 0.8298 0.6559 0.7002 0.6138 0.5225 0.7002 0.6352 0.9109 0.6961 

MGR 1 0.5 0.6998 0.5 0.5338 0.6775 0.6352 0.9307 0.6846 

MMNVI 1 0.8843 0.7384 0.8276 0.5307 0.5224 0.6784 0.7327 0.7393 

Out of 8 data sets, MMNVI has the highest OP on the five data sets, specifically on
the Soybean Small, Breast Cancer Wisconsin, Car evalution, and Votes and Balance scale.
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MMR has the highest OP on the Mushroom. MGR has the highest OP on the Soybean
Small, Chess, and Zoo. The last column of Table 13 shows the average OP of each algorithm
on 8 data sets. On average, MMNVI achieves the highest Overall Purity.

Table 14: ARI values of three algorithms on 8 data sets

Algorithms Soybean Breast Car Votes Chess Mushroom Balance Zoo Average 

MMR 0.6738 0.0101 0.0129 -0.0068 0.0004 0.0129 0.1011 0.913  0.2146 

MGR 0.4601 0.1465 0.0129 0.106 0.0036 0.1254 0.1011 0.9617 0.2397 

MMNVI 0.4601 0.59 0.0071 0.4279 0.0036 -0.0011 0.1234 0.3211 0.2415 

  

The ARI values of the three algorithms are summarized in Table 14. From this table,
we see that MMNVI also has the highest ARI value on the four data sets, Breast Cancer
Wisconsin, Votes, Chess, and Balance scale. MMR has the lowest ARI value across all 8
data sets. MGR has the highest ARI value on Car evalution, Mushroom, and Zoo. The last
column of Table 14 shows the average ARI of each algorithm on 8 data sets. On average,
the MMNVI algorithm also achieves the highest ARI value.

The NMI values of the three algorithms are summarized in Table 15. MMNVI has the
highest NMI value on the three data sets, Breast Cancer Wisconsin, Votes, and Balance scale.
MMR has the highest NMI on the Soybean Small, Car evalution, and Mushroom. MGR has
the highest NMI on Chess and Zoo. The last column of Table 15 shows the average NMI of
each algorithm on 8 data sets.

Table 15: NMI values of three algorithms on 8 data sets

Algorithms Soybean Breast Car Votes Chess Mushroom Balance Zoo Average 

MMR 0.8264 0.0405 0.0621 0.0041 0.0052 0.0621 0.0902 0.913  0.2504 

MGR 0.6511 0.5445 0.0481 0.401 0.017 0.0246 0.1344 0.9617 0.3478 

MMNVI 0.6511 0.5446 0.0452 0.4009 0.0034 0.009 0.1346 0.3707 0.2699 

An important observation is that MMNVI does much better than other algorithms on
the Breast Cancer, Votes, and Balance scale. Breast Cancer and Votes are data sets which
have a balanced class distribution. MGR does much better than other algorithms on the
Zoo.

In summary, MMNVI is a stable clustering algorithm and produces better or equivalent
clustering results than the MMR and MGR algorithms.

5. CONCLUSION

In this paper, we have proposed a new divisive hierarchical clustering algorithm, called
MMNVI (Minimum Mean Normalized Variation of Information), for categorical data. MM-
NVI algorithm uses the Mean Normalized Variation of Information of one attribute with
respect to another attribute for finding the best clustering attribute, and the entropy of
equivalence classes generated by the selected clustering attribute for binary splitting the
clustering dataset. MMNVI is easy to install. Experimental results on real-life data sets
from UCI indicate that the MMNVI algorithm can be used successfully in clustering cate-
gorical data. It is a stable clustering algorithm and produces better or equivalent clustering
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results than the baseline algorithms. It can be applied to the data sets which have balanced
class distribution, such as Breast Cancer and Votes.

For future work, we will attempt to: (1) Enable the MMNVI algorithm to automatically
discover the number of clusters. Instead of specifying the number of clusters, we can let
the MMNVI algorithm stop splitting the clustering data set when the entropies of all the
leaf nodes are lower than a predefined threshold value; (2) Extend MMNVI to handle both
numerical and categorical data; (3) Perform more experiments on larger data sets with more
objects and more attributes.
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