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Abstract. Medical image fusion is a process of extracting features from multi-modal medical images
and combining them into a composite image. It brings huge support in medical imaging and clinical
diagnosis. However, the extraction of both structural and functional information from input MRI and
PET images using multi-scale transform fusion methods poses a challenge of providing high-quality
decomposition layers since during the decomposition process, images can still lose information such
as blur or noise at the edges of the image. To address this limitation, we present a new method to
improve the visual information fidelity of medical image fusion. Firstly, the YCbCr color space is
utilized to prevent distortion when merging color and grey images. The second algorithm uses the
CLAHE model, which allows the input images to have good contrast. Then, a Gaussian blur filter is
employed to decompose the images into base and detail layers. The use of Gaussian blur ensures a
smoothing filter of the edges. After that, the Robinson compass operator is applied to create the fusion
rule of detail components. Finally, the fused base and detail layers are concatenated together to form
the final composite image. The experimental results show that the proposed approach outperforms
the latest methods in bringing visual information fidelity of the input images to the fused image,
which is helpful in supporting doctors and radiologists in visual analysis of the medical images.

Keywords. Medical image fusion, two-scale image decomposition, Gaussian blur filter, compass
operator.

1. INTRODUCTION

In medical imaging, fusion is a common technique to extract features from multi-modal
images and combine them into one image. Medical image fusion includes various modali-
ties: Single photon emission computed tomography (SPECT), Positron emission tomography
(PET), Magnetic resonance imaging (MRI), and Computed tomography (CT). Each type
of image modality has its own features and specific information for radiologists to use in
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Figure 1: Example of multi-modal medical image fusion: An MRI image (left) is fused with
a PET image (middle) to form an MRI/PET composite image (right).

diagnosing diseases [1]. For example, SPECT images allow radiologists to examine perfusion
and functionality in color, low-resolution images. Meanwhile, MRI images offer anatomical
and structural information in grayscale and high resolution. Fig. 1 illustrates an example
of a composite MRI/PET image (right) which combines an MRI image (left) with a PET
image (middle).

Currently, there are two main categories for medical image fusion: spatial-domain meth-
ods and transform-domain ones [2]. In the first category, the input images are processed in
the spatial domain. The processing tasks can be on as small scale as pixels [3], areas, or even
as large as a whole part of the image [4] with various fusion rules such as maximum/minimum
selection or weighted average rules. The main advantage of the spatial-domain approaches
is that they supply spatial information of the input images for the fusion process. However,
the fused image can lose information because of the lack of spectral information in those
methods.

In the second category, the input images are processed in the transformed domain. To
do so, they are first converted from the spatial domain to the transform domain by using
some transformation techniques. Then, the transform coefficients are fused together using
certain fusion rules. Finally, an inverse transformation is applied to produce the output com-
posite image. In those approaches, many transform methods can be used such as Laplacian
Pyramid [5, 6], Contourlet Transform [7], Shearlet Transform [8], Fast Fourier transform
(FFT) [9, 10], and Discrete wavelet transform (DWT) [11, 12]. The transformation can be
a two-scale transform as in [9, 10, 13] or a multi-scale transform as in [14, 15]. After the
transform step, many techniques are proposed to create the fusion rules in the transform
domain. For example, in [9, 10, 16, 17], the authors employ meta-heuristic optimization
algorithms and maximum local energy functions to create fusion rules for detail and base
features. Besides, in [18, 19], the authors utilize deep learning-based transfer learning tech-
niques for medical image fusion. Those methods significantly improve the fusion quality of
medical images.

Although many medical fusion methods have been introduced in the literature, the fused
image quality still needs further improvements. Particularly, in terms of Visual information
fidelity for fusion (VIFF) which is very helpful in supporting doctors and radiologists in the
visual analysis of medical images, the latest result is 0.8169 as proposed in [10]. In this
paper, we propose a new method for improving the visual information fidelity of the fused
medical image. The main points of our method are as follows:
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Figure 2: Tllustration for the two-scale image decomposition: an input image (left) is decom-
posed into a base layer (middle) and a detail layer (right).

e The use of the Gaussian blur filter to create a gradual smoothing for the base layers of
the input images.

e From the input images, the utilization of the Robinson compass operator to extract
edge features for building rules to fuse the detail layers.

The organization of this paper is structured as follows. Section 2 presents foundation con-
cepts such as contrast limited adaptive histogram equalization, Gaussian blur filter, YCbCr
color space conversion, Robinson compass operator, and the proposed method for creating
the fused image. The experiments and evaluation of the proposed method are presented in
Section 3. Section 4 demonstrates the conclusion and some future directions of this work.

2. METHODS

2.1. Gaussian-blur filter two-scale image decomposition (GBF-TSID)

There are many different methods to perform image decomposition such as multi-scale
transformation [14], sparse representation [15], and two-scale transformation [11]. Among
the existing ones, two-scale image decomposition (TSID) methods (Fig. 2) are widely used
in many research works for medical image fusion such as two-scale using Discrete wavelet
transform (DWT) [11, 12], Fast fourier transform (FFT) [9, 10], or Gaussian Blur filter
(GBF) [18]. In this section, we present the use of a Gaussian blur filter to perform the TSID
of an input image (I) into two parts, called the base layer (I°) and the detail layer (I?). The
base layer demonstrates the large-scale deviation or general features of the image while the
detail layer contains small-scale variations or detailed information of the image. We chose
GBF for TSID since it is efficiently used in other research works in medical image fusion [18].

To calculate I from the input image I, we perform a convolution operation on each pixel
of the input image using a Gaussian filter G of the kernel size 5-by-5 as follows

1 4 7 4 1
|4 20 33 20 4
—— |7 33 54 33 7
330 14 90 33 20 4
1 4 7 4 1

In Gaussian blur, the standard deviation o of the Gaussian distribution controls the
spread or width of the Gaussian curve. Increasing o leads to a wider Gaussian curve,
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intensifying the blur effect and increasing the effect of close pixels on the central pixel during
blurring. On the contrary, reducing o results in a narrower Gaussian curve, leading to a less
pronounced blur effect. In this work, a standard deviation of 1 is used to have a standard
Gaussian curve when performing TSID of the input images.

Subsequently, the detail layer I? is deduced using the following suppression approach

f=r1-1% (1)

2.2. Robinson compass operator (RCO)

Edge detection holds significant importance for extracting features relevant to shape
analysis, especially in medical imaging. Different compass operators are used in medical
image fusion such as Kirsch [9] and Prewitt [10]. In this work, we employ the Robinson
compass operator for edge detection of the input images. We chose the Robinson operator
due to its ability to identify the highest edge strength along eight compass directions. The
used eight Robinson compass masks are presented in Table 1.

Table 1: Illustration for 8 Robinson compass masks

-1 0 1 0 1 2 1 2 1 2 1 0]
Rl=[-2 0 2 R2=[-1 0 1 R3=1[0 0 0 Ré=[1 0 -1
-1 0 1] -2 -1 0] -1 -2 —1] 0 -1 —2]
10 —1] 0 -1 —2] 1 -2 —1] —2 —1 0]
R5=[2 0 -2 R6=[1 0 -1 R7=[0 0 0 R8=[-1 0 1
1 0 —1] 2 1 0] 12 1] L0 1 2]

2.3. Contrast limited adaptive histogram equalization (CLAHE)

In medical imaging, histogram equalization techniques are used to enhance the contrast of
the input medical images [20, 21]. In this section, we present the CLAHE algorithm which
is a variant of adaptive histogram equalization for reducing amplification of noise in the
images. The main idea behind CLAHE involves dividing an image into smaller blocks and
applying histogram equalization independently to each block. By constraining the contrast
enhancement within these local regions and utilizing adaptive mechanisms, CLAHE prevents
the global amplification of noise that can occur when using traditional equalization methods.

Let I be the input image, and Icpapg be the output image after applying the CLAHE
algorithm. The CLAHE formula can be represented as

Icpang(z,y) = Interpolate (Clip (Equalize(Ipiock))) ,

where Ipjocx is the intensity values of the pixels within a block centered at (x,y).

2.4. YCDbCr color space

There exist different color models to perform color space conversion in medical image
fusion such as HSV [22], YUV [23], and YCbCr [10]. In this section, YCbCr color space
is chosen since it is efficiently used in medical image fusion by other researchers in the
literature [10]. The main idea of YCbCr space is the separation of luminance component (Y)
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from chrominance components (Cb,Cr). Separation allows independent image processing
methods, which is very helpful in enhancing visual fusion quality.
The RGB-YCbCr color space conversion is presented as follows

Y 0.257  0.564  0.098 R 16
Cb| = |-0.148 —0.291 0.439 G|+ [128
Cr 0.439 -0.368 -0.071| |B 128

Conversely, the YCbCr-RGB conversion is computed as follows

R 1.164 0.000  1.596 Y — 16
G| =[1164 —-0.392 —-0.813| [Cb— 128
B 1.164 2.017  0.000 Cr —128

2.5. The proposed method

Figure 3: The diagram of the proposed method

The proposed method contains several steps as detailed in Fig. 3. Firstly, the medical
color image is converted from RGB to YCbCr space. In the second step, the contrast of the
medical images (the gray one and the obtained Y channel of the color one) is enhanced using
the CLAHE algorithm. Then, a Gaussian-blur filter is implemented to split the enhanced
images into the base and detail layers, and the edge features of the enhanced images are
extracted using the Robinson compass operator (RCO). After that, we add two distinct detail
layers and the extracted features to obtain a composite detail layer. For the composite base
layer, it is created by summing two distinct base layers. Finally, the fused image is calculated
by adding the composite base and detail layers together. This grayscale fused image is finally
combined with the original Cr and C'b channels and transformed back to RGB to create the
fused output image. The detail of the proposed method is presented in Algorithm 1.

3. EVALUATION

3.1. Evaluation metrics

There are many objective metrics to evaluate the quality of the used images. We use
five different objective metrics in this paper: Average information of an image (Entropy
or EN) [24]; Difference between the two input images and the fused image (Overall cross
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Algorithm 1: The proposed method

Input :I; and Io: grayscale and color medical image.s
Output: Fused image Ir in RGB format

1 Step (i): Convert the color medical image I to YCbCr color space;
2 (Y,Cb,Cr) = RGB_YCbCr(I2).

3 Step (ii): Enhance the contrast of the grayscale image I; and the obtained Y

channel from Step (i) using the CLAHE algorithm;

4 I = CLAHE(I}), I}, = CLAHE(Y).

5 Step (iii): Extract edge features from I and I} using RCO;

6 E1 = RCO(I}), E2 = RCO(Z}).

7 Step (iv): Decompose two images I] and I}, using GBF-TSID;

8 (1Y, 1) = GBF_TSID(I});

9 (I3, 1) = GBF_TSID(I3).
10 Step (v): Fuse base layers and detail layers to obtain I° and I%;
1 I° =10+ I3
12 I9=[{ + I$ + Ey + Es.

13 Step (vi): Calculate the fused image in grayscale;

14 I3 = 1"+ 14

15 Step (vii): Convert I3, Cb and Cr from YCbCr to RGB;

16 Ir = YCbCr.RGB(I3,Cb,Cr).

entropy or OCE) [24]; Edge information preservation (Q*B/F) [25]; Feature mutual informa-
tion (FMI) [26]; Visual information fidelity for fusion (VIFF) [27]. Those metrics are chosen
to measure the overall image clarity and visual fidelity in the fused image. Among the five
metrics, the OCE value is lower means the image quality is better whereas, for the other
four metrics (EN, QAB/F FMI, and VIFF), the bigger value means that the image quality
is higher.

3.2. Experimental setup

The dataset contains 180 medical images with the size of 256 x256 pixels extracted from
slices 50 to 79 of the MRI/PET image of a normal person'. These images include 60 MRI
and PET images in the Transaxial axes (Set-T), 60 MRI and PET images in the Sagittal
axes (Set-S), and 60 MRI and PET images in the Coronal axes (Set-C) used to evaluate
fusion results.

To evaluate the performance of the proposed method, we select several popular two-scale
image decomposition methods along with four edge detection techniques for the experiments.
The decomposition methods include the Gaussian-blur filter (GBF'), Fast Fourier transform
(FFT), and Discrete wavelet transform (DWT) and the edge detectors are Canny, Kirsch,

!Obtained from http://www.med.harvard.edu/AANLIB
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Figure 4: Different images to fuse in PET and MRI mediums and the corresponding extracted
frames in the datasets Set-T (top row), Set-S (middle row), and Set-C (last row).

Prewitt, and Robinson operators. This paper evaluates the performance of our proposed
method using five objective metrics: EN, OCE, QAB/F FMI, and VIFF.

The experiments were performed using Python language and Matlab R2022a on a per-
sonal computer with Intel (R) Xeon (R) Gold 6133 CPU @ 2.50GHz, 32GB of RAM, NVIDIA
GeForce RTX 3090 24 GB.

3.3. Results and discussion

From Table 2, our method yields the best results, in terms of OCE, FMI, and VIFF
among the experimented popular approaches. Particularly, Table 3 shows that our method
outperforms the state-of-the-art methods in medical image fusion in terms of visual informa-
tion fidelity (0.9511 vs. 0.8169 as proposed in [10]). This indicates that our method performs
well in transferring visual information fidelity of the input images to the fused image, which
is an important feature of the fused image related to the human visual system for supporting
doctors and radiologists in disease diagnosis and treatment.

Figure 4 shows examples of the three pairs (MRI/PET) of input images and the corre-
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Table 2: Comparison of our proposed method and other popular approaches.
results are highlighted in bold.

Dataset Methods EN OCE QAB/F  FMI VIFF
DWT Canny 5.2761  0.6033  0.4056  0.6835  0.5884

DWT Kirsch 5.4880  0.5465 0.3719  0.8233  0.8965

DWT Prewitt 5.5472  0.3998  0.4137  0.7705  0.4953

DWT Robinson  5.4830 0.5461  0.3719  0.8233  0.8964

FFT Canny 6.2843  0.4683 0.4178 0.6864  0.5953

oy FFT Kirsch 6.4485 1.4745 0.4143 0.8149  0.8672
FFT Prewitt 6.4563 0.4279  0.4416 0.7776  0.5043

FFT Robinson 6.4445 1.4801 0.4137 0.8150 0.8671

GBF Canny 5.4353  0.4747  0.4306  0.6906  0.6156

GBF Kirsch 5.6492  0.1734  0.4367 0.8283  0.9508

GBF Prewitt 5.5974  0.3810 0.4681 0.7807  0.5269

GBF Robinson 5.6490 0.1696 0.4367 0.8290 0.9511

DWT Canny 6.3622 1.3062 0.2431  0.6931  0.2530

DWT Kirsch 6.4092 1.2576  0.2723  0.7709  0.3169

DWT Prewitt 6.5038  1.2491  0.2067 0.7429  0.2745

DWT Robinson  6.4091  1.2577  0.2722  0.7707  0.3169

FFT Canny 6.9815 1.2901 0.2554  0.6783  0.2486

Gorg  FFT Kirsch 7.0602 1.2955 0.3851  0.7716  0.3181
FFT Prewitt 7.0706 1.2164 0.2052 0.7405 0.2714

FFT Robinson 7.0571  1.2941  0.3810 0.7709  0.3165

GBF Canny 6.4748  0.4143 0.5017 0.6366 0.7883

GBF Kirsch 6.4964 0.1636  0.4164 0.7650 0.8773

GBF Prewitt 6.5448  0.4221  0.4430 0.7642  0.6683

GBF Robinson 6.4940 0.1586 0.4137 0.7805 0.8774

DWT Canny 5.8%65 1.0965  0.2403  0.6937  0.2644

DWT Kirsch 5.9633  1.0570 0.2348  0.7476  0.3018

DWT Prewitt 6.0740  1.0073  0.1850  0.7216  0.2749

DWT Robinson  5.9632  1.0571  0.2347  0.7474  0.3017

FFT Canny 6.6189 1.0564 0.2473  0.6836  0.2544

o FFT Kirsch 6.7324 09859 0.3320 0.7429  0.2849
FFT Prewitt 6.7288  0.9772  0.1771  0.7195  0.2655

FFT Robinson 6.7286  0.9931 0.3286  0.7415  0.2830

GBF Canny 5.9518 0.3424 0.5008 0.6411  0.8348

GBF Kirsch 59783  0.0351  0.4342  0.7437  0.8850

GBF Prewitt 6.0305 0.2424  0.4627  0.7423  0.6957

GBF Robinson 5.9757 0.0342 0.4320 0.7628 0.8878

The best
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Table 3: Visual information fidelity of the proposed method and the latest approaches. The
best result is highlighted in bold.

Methods VIFF

GOA & FR-KCO [9] 0.7086
EOA & SLE_PCO [10] 0.8169
GBF Robinson on Set-T  0.9511
GBF Robinson on Set-S  0.8774
GBF Robinson on Set-C =~ 0.8878

A

Fused #079-T (DWT-RCO) Fused #079-T (FFT-RCO) Fused #079-T (GBF-RCO)

Fused #079-S (GBF-RCO)

Fused #079-C (DWT-RCO) Fused #079-C (FFT-RCO) Fused #079-C (GBF-RCO)

Figure 5: Extracted frames of the fused images in the datasets Set-T (top row), Set-S (middle
row), and Set-C (last row) using three experimented methods (DWT-RCO, FFT-RCO, and
GBF-RCO).
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sponding extracted frames in the datasets (Set-T, Set-S, Set-C) used in our experiments.
The extracted frames of the fused images using three experimented methods (DWT-RCO,
FFT-RCO, and GBF-RCO) on the three pairs (MRI/PET) of the input image are presented
in Figure 5. It is easy to see that our method (GBF-RCO) shows substantial enhancements
in the overall image clarity and visual fidelity in the fused image over the experimented
methods.

4. CONCLUSION AND FUTURE WORKS

In this paper, a new method based on the Gaussian blur filter and Robinson compass
operator is proposed to improve the visual information fidelity of the composite image in
medical image fusion. Firstly, the CLAHE technique is applied to enhance the contrast of
the input images. Then, a Gaussian blur filter is applied to split the input images into two
distinct layers: base and detail ones. After that, the Robinson compass operator is employed
to create the fusion rule of the detail layers. Finally, the decomposed base layers and the
new detail layer are added together to form the final fused image.

The experiments were conducted on three datasets (Set-T, Set-S, and Set-C) using the
popular two-scale image decomposition and edge detection approaches. We select five dif-
fernt evaluation metrics (EN, OCE, QAB/F FMI, and VIFF) to measure fusion quality. The
evaluation shows that our method outperforms the latest approaches in bringing visual infor-
mation fidelity of the input images to the fused image, which is helpful in supporting doctors
and radiologists in the visual analysis of the medical images.

In the future, there are several potential directions to continue this work. Firstly, some
optimization algorithms can be studied to improve the fusion step of the base layers. Next,
more edge detection techniques such as transfer learning can be employed to form the efficient
fusion rule of the detail layers. Last but not least, the study on improving input quality,
such as contrast enhancement or noise removal, can also be a potential direction to continue
this work.
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