
Journal of Computer Science and Cybernetics, V.39, N.4 (2023), 313–321

DOI no 10.15625/1813-9663/18680

A NOVEL ALGORITHM FOR FINDING ALL REDUCTS IN THE
INCOMPLETE DECISION TABLE

PHAM VIET ANH1,2,∗, VU DUC THI3, NGUYEN NGOC CUONG4

1Graduate University of Science and Technology, Vietnam Academy of Science and
Technology, 18 Hoang Quoc Viet Street, Cau Giay District, Ha Noi, Viet Nam

2HaUI Institute of Technology, Hanoi University of Industry, 298 Cau Dien Street,
Bac Tu Liem District, Ha Noi, Viet Nam

3Information Technology Institute, Vietnam National University, 144 Xuan Thuy Street,
Cau Giay District, Ha Noi, Viet Nam

4General Department of Logistics and Engineering, Ministry of Public Security,
17 To Huu Street, Trung Van Ward, Nam Tu Liem District, Ha Noi, Viet Nam

Abstract. Attribute reduction, or feature selection for decision tables is a fundamental problem

of rough set theory. Currently, many scientists are interested in and developing these issues. Unfor-

tunately, most studies focus mainly on the complete decision table. On incomplete decision tables,

researchers have proposed tolerance relations and designed attribute reduction algorithms based on

different measures. However, these algorithms only return a reduct and do not preserve information in

the decision tables. This paper proposes an efficient method to determine entire reducts of incomplete

decision tables according to the relational database approach. In the complex case, this algorithm

has exponential computational complexity. However, this algorithm has polynomial computational

complexity in the different cases of databases.

Keywords. The reduct, rough set theory, tolerance relation, incomplete decision table.

1. INTRODUCTION

Attribute reduction for decision information systems is the process of removing redundant
attributes in the condition attribute set without affecting the classification of the objects.
Based on the reduct set obtained, the rule generation and classification accuracy achieve
the highest efficiency. Up to now, there have been many research works about attribute
reduction algorithms according to rough set theory [1]. However, these algorithms only de-
termine a reduct based on an evaluation criterion with polynomial computational complexity
(algorithms following the heuristic approach) without solving the problem of finding all the
reducts in the decision table. Compared with only finding a reduct, algorithms that find
reducts in a decision table can provide results that are close to the performance of the best
reduct set. Therefore, research on these algorithms brings lots of significance.

Nowadays, decision tables often miss information and are called incomplete decision

*Corresponding author.
E-mail addresses: anhpv@haui.edu.vn (P.V. Anh); vdthi@vnu.edu.vn (V.D. Thi);
cuongnn.hvan@gmail.com (N.N. Cuong).

anhpv@haui.edu.vn
vdthi@vnu.edu.vn
cuongnn.hvan@gmail.com

314 PHAM VIET ANH et al.

tables. The problem of finding reduct on the incomplete decision table is considered a
general issue. Many algorithms eliminate object sets with missing data or replace missing
data with other values to handle the issue of incomplete decision tables for knowledge mining
problems. This dramatically affects the results of data mining algorithms, especially for
attribute reduction problems. M. Kryszkiewics [2] introduced the concept of a tolerance
relation and constructed a tolerance rough set model to study the problem of incomplete
decision tables. Based on the tolerance relation and Boolean reasoning methodology, the
authors in [3] have proposed a method to find the reducts in incomplete decision tables.
According to the approach using the relational data model [4,5], authors in [6] proposed an
algorithm with polynomial time for finding all the reducts in the consistent decision table.
This algorithm can select columns (attributes) in the decision table. The authors in [7] have
proposed a polynomial algorithm that reduces the rows (objects) in the decision table. Thus,
these two efficient algorithms can remove redundant columns and rows on the decision table.

On the other hand, it is essential to find all reducts in the complete decision table. In [8],
the authors have proposed a method to find all reducts in a consistent and complete decision
table. The authors have demonstrated that the problem of finding all reducts on this decision
table has an exponential computational complexity following the number of attributes. It
means that we need to prove the existence of an algorithm with exponential computational
complexity when finding all these reducts and prove that the time complexity of this problem
is not less than the exponential function. We also know that finding a reduct on a complete
and consistent decision table is performed by a polynomial algorithm. However, the problem
of finding a reduct with the smallest size and ensuring the best classification efficiency on
machine learning models is challenging. It indicates that no polynomial algorithm so far
can solve this. Because the set of all reducts on the complete and consistent decision table
is essential, we have proved this set of reducts is equivalent to the Sperner system (this
system is a combinatorial system in which its elements do not contain each other) in [9]. It
emphasizes that the study of reduct sets can lead to the study of Sperner systems.

2. PRELIMINARY

This section will summarize some basic concepts of rough set theory [7, 10–16]. The
information system or decision table is known as a set of four elements S = (U,C ∪D,F ,P),
where U = {u1, u2, . . . , un} is a non-empty set, comprising objects; C = {c1, c2, . . . , cm} is a
set of condition attribute; D is a set of decision attributes which satisfies C ∩D = ∅, and
F =

⋃
b∈C∪D

F{b} with F{b} is the value set of the attribute b; P : U × (C ∪D) → F is called

the information function. For any u ∈ U , b ∈ C∪D, function P has P (u, b) ∈ V{b}. Without
losing the comprehensive features, suppose that D only contains one decision attribute d (in
the case size of D higher than 1, it can transform into an attribute by using encryption [8]).
Thus, we only need to consider S = (U,C ∪ {d} ,F ,P), in which {d} /∈ C.

An attribute subset B ⊆ C ∪ {d} determines an indiscernibility relation and is called
an equivalence relation: IR (B) =

{
(u, v) ∈ U2 |∀b ∈ B,P (u, b) = P (v, b)

}
. IR (B) gen-

erates a partition on U , denoted by U/B = {B1, B2, ..., Bm}. Each element Bi ∈ U/B
(1 ≤ i ≤ m) is considered an equivalence class. For any U

′ ⊆ U and P ⊆ C, we have
P -upper approximation and P -lower approximation of U

′
are crisp sets and presented by

PU
′
=
{
u ∈ U | [u]P ∩ U

′ ̸= ∅
}

and PU
′
=
{
u ∈ U | [u]P ⊆ U

′
}
, respectively. The P -

A NOVEL ALGORITHM FOR FINDING ALL REDUCTS 315

boundary region of U
′
is determined by the formula PU

′\PU
′
and the P -positive region

of {d} is calculated by POSP ({d}) =
⋃

U ′∈U/D (PU
′
). If POSC ({d}) = U or functional

dependency (FD) C → {d} is true, then S is consistent, whereas S is inconsistent. If S is
an inconsistent decision table, then POSC({d}) is the maximum subset of U that satisfies
the FD C → {d}.

Definition 2.1. Given a decision table S = (U,C ∪ {d} ,F ,P), a subset A ⊆ C is called a
reduct of C if satisfies:
(i) POSA({d}) = POSC({d}).
(ii) ∀ A′ ⊂ B(POSA′({d}) ̸= POSC({d})).

If S is a consistent decision table, then the Definition 2.1 indicates that A is a reduct set
of C if A → {d} and ∀ A′ ⊂ A,A′ ↛ {d} .

Definition 2.2. Given a finite set of attributes R = {a1, a2, ..., an} and the possible values
set of attributes ai is D (ai) with ai ∈ R, a relation L over R is the tuples set {l1, ..., lm}, in
which lj : R →

⋃
ai∈R D (ai) , 1 ≤ j ≤ m is a function that satisfies lj (ai) ∈ D (ai).

Consider a relation L = {l1, . . . , lm} over R. Any pair of attribute sets P,Q ⊆ R is consid-
ered the FD overR, and denoted by P → Q, if and only if (∀ lilj ∈ L) ((∀ l ∈ P) (li (u) = lj (u))) =⇒
((∀ v ∈ Q) (li (v) = lj (v))). The set FDr = {(P,Q) |P,Q ⊆ R ∧ P → Q} is called the com-
plete family of FDs in L.

Definition 2.3. Let L = {l1, . . . , lm} be a relation on R = {a1, . . . , an}. If ∀ai ∈ R has Dai

and ∗ ∈ Dai where ∗ is “missing value” lj : R → ∪Dai so lj(ai) ∈ Dai .

Definition 2.4. Given a relation L on R and B ⊆ R, then we denote li ∼ lj(B) if b ∈ B :
li (b) = lj (b) or li (b) = ∗ or lj (b) = ∗.

Definition 2.5. Let L = {l1, . . . , lm} on R = {a1, a2, ..., an}. Then A,B ⊆ R and A toler-

ance determines (TD) B presented by A
t−→ B if (∀ li, lj ∈ r) if (li ∼ lj(A) then li ∼ lj(B).

We set TRr =
{
(A,B)

∣∣∣A,B ⊆ R ∨A
t−→ B

}
. It can be easily seen that

(i) (A,A) ∈ TRr ∀A ⊆ R.

(ii) (A,B) ∈ TRr then A ⊆ X , Y ⊆ B has (X ,Y) ∈ TRr.

(iii) (A,X) ∈ TRr, (X , B) ∈ TRr =⇒ (A,B) ∈ TRr.

Set A+ =
{
a ∈ R : A

t−→ {a}
}
.

Definition 2.6. Given an incomplete decision table S = (U,C ∪ {d} ,F ,P) with ∗ /∈ Dd (it

emphasizes that the value domain of d does not comprise ∗), if C t−→ {d}, then S is considered
the incomplete decision table which is consistent.

It can be easily shown that if S is an inconsistent decision table, we can experiment by
using a method that has the computational time according to the polynomial function on
objects of U to remove the elements, making S consistently. After the removal process, we
obtain the set O then S = (O, C ∪ {d} ,F ,P) is consistent.

Definition 2.7. Given a consistent incomplete decision table S = (U,C ∪ {d} ,F ,P), an

attribute subset G is called a reduct of S if G ⊆ C : G
t−→ {d} and ∀ G′ ⊊ G then G′ ̸ t−→ {d}

(it emphasizes that if G′ is a crucial subset of G then G′ does not tolerance determine d),
set PRD(C) = {G : G is a reduct of S}.

316 PHAM VIET ANH et al.

Definition 2.8. Suppose that R = {a1, a2, ..., an} and K = {Z1, Z2, ..., Zm} is the Sperner
system (SPS) on R if ∀ i, j, Zi ⊈ Zj .

Definition 2.9. Given a Sperner system K = {Z1, Z2, ..., Zm} on R, then K−1 is called the
anti-key of K if K−1 = {B ⊊ R : (Z ∈ K =⇒ Z ⊈ B and B ⊊ C) then ∃ Z ∈ K : Z ⊆ C}.

K−1 is one of the subsets of R, which does not include the elements of K, essentially, they
represent the largest non-key set. Evidently, K−1 is also considered an SPS. If a minimum
key set exists, an anti-key set will also exist. From this basis, it can be easily seen that the
role of the anti-key set is very crucial and leads to an algorithm to determine the minimum
key set, creating a premise for building an algorithm to find all reducts in the decision table.

Assume that S = (U,C ∪ {d} ,F ,P) is a consistent incomplete decision table. Set R =
C ∪ {d}, r = U = {u1, u2, . . . , un} and PRD (C) is called an SPS. Obviously, PRD (C) =

Kt
d =

{
Z ⊆ C : Z

t−→ {d} ∨ ∄B : B
t−→ {d} ∨B ⊊ Z

}
.

From there, we have the following two important steps.

(i) Compute the equivalence sets ϵr = {Eij |1 ≤ i, j ≤ m ∨ i ≤ j } from r with
Eij = {b ∈ R : b(ui) = b(uj) or b(ui) = ∗ or b(uj) = ∗}.

(ii) Set Nd = {Z ∈ ϵr : Z ̸= R, d /∈ Z, and ∄B ∈ εr : d /∈ B and Z ⊊ B} from ϵr.

3. SOME ALGORITHMS BASED ON THE RELATIONAL DATABASE

3.1. Algorithm determining the anti-keys set

In this section, we will propose an algorithm for determining the set of anti-keys. The
main steps of the algorithm are designed as below.

Algorithm 1 [17] Determining the anti-keys set

Input: Given a SPS K = {Z1, ..., Zm} on R = {b1,...,bn}.
Output: K−1.
1: Step 1: Set K1 = {R− {b} : b ∈ Z1}. It can be seen that K1 = {Z1}−1 .
2: Step p+1 (p<m): Suppose that Kp = Wp∪{Y1, ..., Ytp}, in which Y1, ..., Ytp are elements

of Kp comprising Zp+1 and Wp = {B ∈ Kp : Zp+1 ⊈ B}.
3: For any i (i = 1,. . . ,tp).
4: Calculate {Zp+1}−1 on Yi as K1, which are the maximal subsets of Yi not comprising

Zp+1 , they are presented by Bi
1, ..., B

i
ri.

5: Set Kp+1 = Wp ∪
{
Bi

p

∣∣B ∈ Wp ⇒ Bi
pwith 1 ≤ p ≤ ri ∨ 1 ≤ i ≤ tp

}
.

6: Finally, let K−1 = Km.

We now examine the computational complexity of the proposed algorithm. Suppose that
Tp with 1 ≤ p ≤ m− 1 is the number of elements in Kp from the above algorithm. Based on

[14], the computational complexity of the algorithm is O

(
|R|2

m−1∑
p=1

tpup

)
with up = Tp − tp

if Tp > tp and up = 1 if Tp = tp. It is easy to see two following problems.

(i) Kp is the Sperner coefficient on R in each step of the method. According to [18], the

cardinality of any SPSs on R does not exceed C
[n/2]
n ≈ 2n+1/2/

(∏
n1/2

)
. Therefore,

A NOVEL ALGORITHM FOR FINDING ALL REDUCTS 317

the worst computational complexity of the algorithm is an exponential function over
n.

(ii) In case Tp ≤ Tm (p = 1, . . . ,m− 1), the computational complexity of the algorithm is

not greater than O
(
|K| |R|2

∣∣K−1
∣∣2), then the algorithm complexity is a polynomial

function according to |R|, |K|, and
∣∣K−1

∣∣. If the number of elements of K is small,
then the algorithm is very efficient when only requiring polynomial time following |R|.

3.2. Algorithm determining the minimum key set based on the anti-keys set

Based on the method proposed in Subsection 3.1, in this Section, we continue to design
two algorithms as the basis for building an attribute reduction algorithm in the next section.

Algorithm 2 [18] Determine the minimum key set based on the anti-keys set

Input: Given an SPS K having the role of an anti-key set, I = {y1, . . . , yn } ⊆ R and G is
an SPS in the role of key set

(
G−1 = K

)
for ∃Z ∈ K : Z ⊊ I.

Output: V ∈ G.
1: Step 1: Set c (0) = I.
2: Step i+ 1: Set c (i+ 1) = c (i)− yi+1 if ∀Z ∈ K without c (i+ 1) ⊂ Z; On the contrary,

c (i+ 1) = c (i).
3: Finally, set V = c (n).

It is noticeable that the computational complexity of the above method is polynomial ac-
cording to n and |K|.

Algorithm 3 [18] Determine the minimum key sets based on the anti-keys set

Input: Let K = {Z1, Z2, . . . , Zk} be the SPS on R.
Output: G with G−1 = K.
1: Step 1: Based on the Algorithm 2, calculate A1 and set K1 = A1.
2: Step i + 1: If there is Z ∈ K−1

i which satisfies Z ̸⊂ Zj (∀j : 1 ≤ j ≤ k), then calculate
Ai+1 (Ai+1 ∈ G, Ai+1 ⊆ Z) using the Algorithm 2 and set Ki+1 = Ki ∪ Ai+1. In the
opposite case, set G = Ki.

We continue to evaluate the computational time of the Algorithm 3. Based on [18], the

computational time of the Algorithm 3 is O

(
|R|

(
k−1∑
p=1

(|K|Tp + |R| tpup) + |K|2 + |R|

))
.

The worst computational time of Algorithm 3 is an exponential function following |R|. In
the case Tp ≤ |K| (p = 1, . . . , k − 1), the computational complexity of the Algorithm 3 is

O
(
|R|2|K|2 |G|

)
, this is the computational complexity of the polynomial function of |R|, |K|,

and |G|. If |G| is a polynomial according to |R| and |K|, then the algorithm is efficient. If
the number of elements in G is small, then the algorithm is very efficient.

318 PHAM VIET ANH et al.

4. ALGORITHM FOR FINDING THE ENTIRE REDUCT IN AN
INCOMPLETE DECISION TABLE

Theorem 4.1. Nd = (Kt
d)

−1
.

Proof:
It can be easily seen that X = X+ ∀X ∈ Nd because if X ⊊ X+ then there is x ∈ X+

and x /∈ X. Since X is the equivalence maximum set, so ∃i, j (1 ≤ i < j ≤ m) for Eij = X,

and based on the concept of the set X+, we have X
t→{x}. Besides, to be suitable for the

definition of set Eij , then x ∈ Eij . Thus, if X = X+ and d /∈ X then d /∈ X+. Therefore,

X ̸ t−→{d} (X does not TD d).
We consider P with X ⊊ P , from the definition of set X if d /∈ P then ∀i, j (1 ≤

i < j ≤ m) we have li ∼ lj (P) , which is false. Hence, from the concept of TD, we have

P
t→R. In the case d ∈ P , then we can see that d ∈ P+. Thus, in two cases, we have

∀P : X ⊊ P ⇒ P+ t→{d}. Consequently, based on the definition of Kt
d then I∈ Kt

d, so

I ⊆ P and from the definition of set (Kt
d)

−1
, we have X ∈ (Kt

d)
−1

.

On the contrary, if X ∈ (Kt
d)

−1
then X+ = X. Since if X ⊊ X+ then from the concept of

anti-key set, we have I ∈ (Kt
d) with I ⊆ X+, means X+ t→{d}, leading to X

t→{d}. Based
on the definition of (Kt

d)
−1

then X is not TD {d} (X ̸ t−→{d}). Hence, X+ = X.

According to the definition of the sets Nd and (Kt
d)

−1
(is the set of biggest sets do not

TD d), this implies that X ∈ Nd. Thus, Nd = (Kt
d)

−1
. ■

Algorithm 4 The algorithm for finding entire reducts in an incomplete decision table.

Input: Given a consistent incomplete decision table S = (U,C ∪ {d} ,F ,P), set r = U =
{u1, . . . , um} , R = C ∪ {d}.

Output: PRD(C).
1: From r, calculate the equivalence sets: εr={Eij : 1 ≤ i ≤ j ≤ m} with

Eij = {a ∈ R: a(ui) =a(uj) or a(ui) = ∗ or a(uj) = ∗} .
2: Based on the εR, set Nd = {X ∈ εr : X ̸= R, d /∈ X and ∄Z ∈ εr : d /∈ Z and X ⊊ Z}.
3: Calculate the set K from Nd

(
K−1 = Nd

)
by the Algorithm 3.

4: Set PRD(C)) = K\{d}.

The computational complexity of the proposed algorithm in steps 1 and 2 is a polynomial
function allowing the size of r. Therefore, the computational time of the Algorithm 4 is the
same as Algorithm 2 when calculating the minimum key set from the anti-key set in step 3.
Therefore, the complexity of the algorithm is

O

|R|

m−1∑
p=1

(|Nd|Tp + |R|Tpup) + |Nd|2 + |R|

 ,

where Tp, tp, up are denoted as in Algorithm 1, and the computational complexity of this
algorithm in the worst case is an exponential function over n, where n is the number of
elements in R. In the case Tp ≤ |Nd| (p = 1, . . . ,m− 1), the computational time of the

algorithm is O
(
|R|2|Nd|2

∣∣Kt
d

∣∣), this computational time is a polynomial function according

A NOVEL ALGORITHM FOR FINDING ALL REDUCTS 319

to |R|, |Nd|, and |K|. Evident in step 2, |Nd| is a polynomial function of the size of r, so
if
∣∣Kt

d

∣∣ is a polynomial function according to |R|, then the computational complexity of the
algorithm is a polynomial function based on the size of r. If the number of elements of

∣∣Kt
d

∣∣
is small, the algorithm is very efficient.

We will illustrate a specific example for finding all reducts on an incomplete decision
table to understand the algorithm more clearly.

Example 4.1. A decision table S = (U,C ∪ {d} ,F ,P) where U = {u1, u2, u3, u4, u5, u6}
and C = {c1, c2, c3, c4, c5, c6}.

Table 1: An example decision table

U c1 c2 c3 c4 c5 c6 d

u1 1 1 3 2 5 4 2
u2 3 2 * 1 4 3 2
u3 * 1 4 3 3 1 1
u4 2 * 2 * 1 2 3
u5 1 3 * * 2 * 1
u6 * 4 1 2 * 4 3

1) Calculate Nd:

E12 = {c3, d}, E13 = {c1, c2}, E14 = {c2, c4}, E15 = {c1, c3, c4, c6}, E16 = {c1, c4, c5, c6}.
E23 = {c1, c3}, E24 = {c2, c3, c4}, E25 = {c3, c4, c6}, E26 = {c1, c3, c5}.
E34 = {c1, c2, c4}, E35 = {c1, c3, c4, c6, d}, E36 = {c1, c5}.
E45 = {c2, c3, c4, c6}, E46 = {c1, c2, c4, c5, d}.
E56 = {c1, c3, c4, c5, c6}.
2) According to the condition of Algorithm 4, A1 = {c2, c3, c4, c6} andA2 = {c1, c3, c4, c5, c6}

satisfy the condition of Nd. Thus Nd = {{c2, c3, c4, c6}, {c1, c3, c4, c5, c6}}.
3) It can be easily seen that based on Algorithm 3 from Nd, we have

PRD(C) = {{c2, c1}, {c2, c5}} .

Let S = (U,C ∪ {d} ,F ,P) be an incomplete decision table. Attribute a ∈ C is called a
core S if a participates in all reductions of S. The notation CORE(S) is the set of all core
attributes of an S. It can be seen that CORE(S) is the intersection of the reducts of S.
From Algorithm 4, we have two following corollary.

Corollary 4.1. Given an incomplete decision table S = (U,C ∪ {d} ,F ,P), then exists a
method to find CORE(S).

As mentioned above, a core set of a decision table includes the attributes that belong to
all reducts. Therefore, we can obtain a core set using the intersection of all reducts from
Algorithm 4. From there, we have Corollary 1 presented as above. From Theorem 4.1 and
Algorithm 2, we have Corollary 2 as below.

Corollary 4.2. Given an incomplete decision table S = (U,C ∪ {d} ,F ,P), then exists a
method to find a reduct of S. This algorithm has polynomial computational complexity.

We know that finding a reduct on the decision table is equivalent to determining a
minimal key, as in Algorithm 2. On the other hand, before processing Algorithm 2, we need

320 PHAM VIET ANH et al.

to determine the anti-key set based on Algorithm 1. The computational complexity of both
algorithms is a polynomial function. Therefore, determining a reduct on the decision table
is also polynomial.

5. CONCLUSIONS

When dealing with big data, attribute reduction methods are crucial in knowledge mining
and finding the necessary information. These methods typically follow rough set theory,
and algorithms have proven to be highly effective in removing unnecessary attributes to
enhance the quality of classification models. However, these methods may have limitations,
mainly when dealing with tables with missing data. This paper identified specific properties
of conditional attributes as well as developed a method to determine all reducts from the
consistent incomplete decision tables in a polynomial time. This method serves as an effective
tool in identifying essential attribute subsets while preserving information in decision tables.
We plan to study more reduct properties to develop even more efficient attribute reduction
models.

ACKNOWLEDGMENT

We thank the Simulation and High-Performance Computing Department (SHPC) of the
HaUI Institute of Technology (HIT) for generously supporting our research in this paper.

REFERENCES

[1] Z. Pawlak, Rough Sets - Theoretical Aspects of Reasoning about Data. Dordrecht:
Kluwer Academic Publishers, 1991.

[2] M. Kryszkiewicz, “Rough set approach to incomplete information systems,” Information
Science, vol. 112, pp. 39–40, 1998.

[3] J. Demetrovics, N. L. Giang, and V. D. Thi, “An efficient algorithm for determining the
set of all reductive attributes in incomplete decision tables,” Journal of Cybernetics and
Information Technologies, Bulgarian Academy of Sciences, vol. 13, no. 4, pp. 118–126,
2013.

[4] V. D. Thi and N. L. Giang, “A method for extracting knowledge from decision tables in
terms of functional dependencies,” Journal of Cybernetics and Information Technolo-
gies, Bulgarian Academy of Sciences, vol. 13, no. 1, pp. 73–82, 2013.

[5] ——, “A method to construct decision table from relation scheme,” Journal of Cyber-
netics and Information Technologies, Bulgarian Academy of Sciences, vol. 11, no. 3, pp.
32–41, 2011.

[6] N. L. Giang and V. D. Thi, “Some problems concerning condition attributes and reducts
in decision tables,” in Proceedings of the 5th National Symposium Fundamental and
Applied Information Technology Research (FAIR), 2011, pp. 142–152.

A NOVEL ALGORITHM FOR FINDING ALL REDUCTS 321

[7] J. Demetrovics, V. D. Thi, H. M. Quang, and N. V. Anh, “An efficient method to reduce
the size of consistent decision tables,” Acta Cybernetica, vol. 23, no. 4, pp. 167–180, 2018.

[8] J. Demetrovics, N. L. Giang, and V. D. Thi, “On finding all reducts of consistent decision
tables,” Journal of Cybernetics and Information Technologies, Bulgarian Academy of
Sciences, vol. 14, no. 4, pp. 3–10, 2014.

[9] N. L. Giang, J. Demetrovics, V. D. Thi, and P. D. Khoa, “Some properties related to
reduct of consistent decision systems,” Journal of Cybernetics and Information Tech-
nologies, Bulgarian Academy of Sciences, vol. 21, no. 2, pp. 3–9, 2021.

[10] J. Demetrovics, “On the equivalence of candidate keys with sperner systems,”
Acta Cybernetica, vol. 4, no. 3, pp. 247–252, 1979. [Online]. Available:
https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/3183

[11] J. Demetrovics and V. D. Thi, “Algorithms for generating armstrong relation and infer-
ring functional dependencies in the relational data model,” Computer and Mathematics
with Applications, vol. 26, no. 4, pp. 43–55, 1993.

[12] D. János and V. Thi, “Keys, key, antikeys and prime attributes,” Ann. Univ. Scien.
Budapest Sect. Comut, vol. 8, pp. 37–54, 1987.

[13] D. János and V. D. Thi, “Relations and minimal keys,” Acta Cybernetica, vol. 8,
no. 3, pp. 297–285, 1998. [Online]. Available: https://cyber.bibl.u-szeged.hu/index.
php/actcybern/article/view/3342

[14] J. Demetrovics and V. D. Thi, “Some result about functional dependencies,”
Acta Cybernetica, vol. 8, no. 3, pp. 273–280, 1988. [Online]. Available:
https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/3341

[15] N. L. Giang and V. D. Thi, “Algorithm for finding all attribute reduction of a decision,”
Journal of Computer Science and Cybernetics, vol. 27, no. 3, pp. 199–205, 2011.

[16] N. L. Giang, N. T. Tung, and V. D. Thi, “A new method for attribute reduction to in-
complete decision table based on metric,” Journal of Computer Science and Cybernetics,
vol. 28, no. 2, pp. 129–140, 2012.

[17] V. D. Thi, “Minimal keys and antikeys,” Acta Cybernetica, vol. 7, no. 4, pp. 361–371,
1986. [Online]. Available: https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/
view/3305

[18] D. János and V. D. Thi, “Some remarks on generating, armstrong and inferring
functional dependencies relation,” Acta Cybernetica, vol. 12, no. 2, pp. 167–180, 1995.
[Online]. Available: https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/
3455

Received on August 21, 2023
Accepted on November 01, 2023

https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/3183
https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/3342
https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/3342
https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/3341
https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/3305
https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/3305
https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/3455
https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/3455

	INTRODUCTION
	PRELIMINARY
	SOME ALGORITHMS BASED ON THE RELATIONAL DATABASE
	 Algorithm determining the anti-keys set
	Algorithm determining the minimum key set based on the anti-keys set

	 Algorithm for Finding the entire Reduct in an Incomplete Decision table
	CONCLUSIONS

