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Abstract. Software vulnerabilities have increased dramatically, and multiple severe attacks have
occurred in recent years. This poses a critical challenge for early detection and prevention of vulnera-
bilities in Software Quality Assurance. This paper introduces a novel framework, JULY, which serves
the dual purpose of detecting vulnerable commits and localizing the root causes of the vulnerabilities.
The fundamental concept of JULY is that the determinant of the vulnerability of a commit is the
inherent meaning embedded in its changed code. For just-in-time vulnerability detection (JIT-VD),
JULY represents each commit by a Code Transformation Graph and employs a Graph Neural Network
model to capture their meanings and distinguish between vulnerable and non-vulnerable commits.
Once a commit is detected as vulnerable, it is passed to the just-in-time vulnerability localization
(JIT-VL) model to localize the root causes, which are vulnerable changed statements. In JIT-VL,
JULY encodes each statement by the following features: operation, context, and topic. Then, JULY
measures the suspiciousness score of each changed statement and ranks them based on their scores.
To evaluate the effectiveness of JULY, we conducted several experiments using a dataset consisting of
20,274 commits in 506 C/C++ projects. JULY achieves a remarkable improvement of 95% in Top-1
ACC and 63% in MRR compared to the state-of-the-art approaches. Furthermore, when examining
the same portion (i.e., 20%) of modified statements in each commit, JULY can find twice as many
vulnerable statements within a given commit as the state-of-the-art approaches.

Keywords. Just-in-time vulnerability detection, just-in-time vulnerability localization, Vulnerable
commit, Vulnerable statement.

1. INTRODUCTION

Software is an integral component in a massive number of real-world systems. Thus,
it is essential to guarantee software robustness and security [3, 14], especially for highly
critical systems such as traffic control, aviation coordination, chemical/nuclear industrial
operations, etc. Moreover, the number of vulnerabilities has expanded rapidly, from 5,297
in 2012 to 25,082 in 2022 [1]. Therefore, it poses a critical challenge to modern Software
Quality Assurance (SQA) practices for accurately detecting and preventing vulnerabilities
early in the software development life cycle.

In practice, multiple just-in-time vulnerability/defect detection (JIT-VD) methods [21,
22, 23, 33] have been introduced for early identifying software weaknesses and preventing
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them from being merged into source code. These JIT-VD methods can provide prompt
feedback for the authors of code commits on their modifications. This can help them quickly
fix the vulnerabilities and improve the code quality while the context of their changes remains
fresh in their minds. Additionally, these JIT-VD techniques can also assist code auditors in
the process of reviewing code commits.

However, most of these methods only focus on the JIT-VD phase [20, 22, 33] and mainly
rely on commit messages and expert features such as the number of modified code lines
for assessing the suspiciousness of the commits. Indeed, these features may exhibit some
connections, but do not inherently imply the existence of vulnerabilities in the code changes.
For instance, a commit with a message containing keywords indicative of bug-fixing, such as
“fix”, “failures”, or “resolve” may be categorized as safe. However, a bug-fixing commit could
still introduce a new bug [20]. Additionally, the approaches leveraging expert features often
predict the code change with multiple added lines as vulnerable since the more complex a
commit, the more dangerous it is. Consequently, commits with a few code additions might be
incorrectly identified as safe/non-vulnerable. Indeed, commit messages and expert features
can be related, yet they do not necessarily lead to the presence of vulnerabilities, which are
caused by the semantics of the modifications.

Furthermore, even if a vulnerable commit is correctly detected, it is still wearisome and
laborious to manually investigate the whole commit to figure out the vulnerable statements.
The reason is that a commit is often tangled [28] and contains a large number of modifi-
cations (e.g., about 100 added statements in each commit on average [30]). There are a
few approaches to localizing just-in-time vulnerable statements. However, these approaches
only consider the lexical features. Therefore, their results are still limited. For example,
JITLINE [23] localizes vulnerable statements by using LIME [25] to identify the tokens in
the commits that most impact the detection results of their model. In addition, JIT-DIL
leverages a n-gram language model to measure the suspiciousness of a statement in a commit.
However, both of these approaches capture only lexical-level features, but the semantics of
tokens and the statements are not considered.

In this paper, we introduce a novel framework, JULY, which serves the dual purpose of
detecting vulnerable commits and fine-grained localizing the root causes of the vulnerabilities
in each detected commit. The fundamental concept of JULY is that the main determinant
of the vulnerability of a commit is the inherent meaning embedded in its changed code.
Furthermore, we are aware that the just-in-time vulnerability detection (JIT-VD) task and
the just-in-time vulnerability localization (JIT-VL) task possess distinct characteristics. To
optimize their performance, we design specialized models tailored to the unique demands of
each task.

For the JIT-VD, JULY represents each commit by a Code Transformation Graph (CTG)
and subsequently employs a Graph Neural Network (GNN) model to capture their mean-
ings and distinguish between vulnerable and non-vulnerable commits. Once a commit is
suspiciously vulnerable, it is passed to the JIT-VL model to identify the suspicious changed
statements.

To comprehensively capture the statements’ meaning for an effective JIT-VL process,
JULY encodes each statement by the following features: operation, context, and topic. Par-
ticularly, the statement’s operation expresses what the statement is. The context captures
how the statement works. Since the analyzing statement is a changed statement in a commit,
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to properly capture the meaning of code change, we consider the context in both the code
aspect (context.) and the change operators of its elements (context,). In addition, the topic,
i.e., the name of the containing function, indicates where the statement is. Finally, JuLy
ranks the changed statements in a suspicious commit based on these statements’ likelihood
to be vulnerable.

To evaluate the effectiveness of JULY, we conducted several experiments using a dataset
consisting of 20,274 commits in 506 C/C++ projects. There are 11,299 non-vulnerable
commits, while the remaining 8,975 commits are vulnerable. Among the vulnerable commits,
there are approximately 40,000 vulnerable statements and over 1.0 million non-vulnerable
statements. The experimental results show that JULY significantly outperforms the existing
state-of-the-art approaches in the integrated end-to-end process of JIT-VD and JIT-VL.
Specifically, JULY achieves a remarkable improvement of 95% in Top-1 accuracy and an
increase of 63% in Mean Reciprocal Rank (MRR). Furthermore, when examining the same
portion (i.e., 20%) of modified statements in each commit, JULY can find twice as many
vulnerable statements within a given commit as the other approaches. For the stand-alone
JIT-VL phase, JuLY’s performance is significantly better than those of the state-of-the-art
approaches by 100%-30% in Top-1 accuracy and 60%-167% in Recall@20%Effort. This
demonstrates that by using JUuLY, we can find more vulnerabilities with less effort compared
to the other approaches.

In brief, this paper makes the following contributions:

e Introduce JULY, a novel framework for both JIT-VD and JIT-VL.

e An extensive empirical evaluation showing that JULY significantly outperforms the
state-of-the-art approaches.

2. RELATED WORK

Vulnerability detection. Various deep learning-based techniques [4, 5, 6, 9, 10, 11, 16,
17, 26] have been proposed for detecting vulnerabilities in programs at different levels such
as components, files, or functions, etc. In these approaches, two types of representation
are often utilized: token-based and graph-based. In token-based models, code is considered
as a sequence of tokens [16, 17, 26], whereas in graph-based models, code is depicted as
a graph [4, 5, 6, 15]. For instance, IVDetect [15], Devign [34], or ReVeal [5] are graph-
based vulnerability detection approaches which represent a function as a dependence graph,
then employ GNN models for capturing the hidden features and determining whether the
function is vulnerable or not. JULY also leverages a GNN model for capturing the code
semantics and detecting vulnerabilities. However, different from these methods, which focus
on identifying vulnerabilities at the release time, JULY focuses on detecting vulnerabilities at
the commit level. In JULY, not only the code elements and their dependence relationships
in the graphs but also the change operators are important for determining whether a code
change is dangerous or safe. JULY and the release-time vulnerability detection methods can
complement each other, providing robust support to developers in ensuring software quality
throughout the development process.

Furthermore, JULY aligns with the just-in-time defect/vulnerability detection research [2,
21, 22, 23, 31, 33]. In VCCFinder [22], VulDigger [31], and LAPredict [33], expert features
are leveraged, and vulnerable/non-vulnerable commits are classified by machine learning
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models such as SVMs or Random Forests. JITLINE [23] utilizes the expert features and
token features using bag-of-words from commit messages and changed code to build a defect
prediction model with a random forest classifier. JITFINE [21] combines expert features with
semantic features extracted by CodeBERT [8] from modified code and commit messages to
identify vulnerabilities in the commits. Different from these approaches, our work focuses
on capturing the semantics of the changed code for detecting and localizing vulnerabilities
at the commit level. In JULy, the vulnerability of a commit is measured regardless of the
commit message but based on only the semantics of code change represented by the code
elements, the change operators, and the program dependence relationships.

Vulnerability localization. There are several studies [6, 9, 11, 21, 23, 24, 30] focusing
on detecting defects/vulnerabilities at the statement level. For example, LineVD [11], Line-
Vul [9], and Velvet [6] are the state-of-the-art approaches that detect vulnerabilities at the
most fine-grained, statement level, or line-level. However, the objective of these methods
is to detect vulnerable statements at the release time, which is different from Jury. JurLy
aims to identify changed statements that are dangerous to source code to prevent them from
being merged into the project’s source.

For just-in-time defect/vulnerability localization, JITFINE [21] and JITLINE [23] lever-
age information from the detection phase, while JIT-DIL and DEEPDL build separated
localization models. Specifically, JITFINE [21] takes the attention weights of the code to-
kens to identify the most dangerous tokens. JITLINE [23] employs LIME [25] to interpret
their models for localization tasks. Both JIT-DIL [30] and DEEPDL [24] take the ideas of
“naturalness” of source code for localizing just-in-time vulnerabilities. The more unnatural a
modified code line, the more suspicious it is. In JULY, we also design a specialized model for
the JIT-VL task. However, different from the previous work, which only captures the lexical
level features, we comprehensively capture the semantics of the statements by four features:
operation, context., context,, and topic. Through these contexts, JULY can understand code
statements and distinguish them to find the root cause of vulnerabilities. This helps JuLy
obtain better performance compared to the existing approaches which are demonstrated in
the experimental results.

3. MOTIVATION AND GUIDING PRINCIPLES

3.1. Motivating example

Figure 1a shows a vulnerability in project DCMTK!, which is introduced by commit e4£7026
on May 11th, 2018. In this commit, for copying a string, this commit replaced the function
strcpy with a new function 0FStandard:strlcpy. However, if the source string is null,
there will not exist any value for copying. It could lead to undefined behaviors. Thus,
invoking OFStandard:strlcpy without checking the value of aString could cause a null
pointer deference problem. Until September 15th, 2021 (more than three years after the
commit e4f7026), this vulnerability was identified and fixed by the commit 5c14bf5 shown
in Figure 1b. For existence in such a long period, this vulnerability could be exploited and
cause serious problems.

Thttps://github.com/DCMTK /dcmtk
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Ea @@ -177,7 +177,7 @@ DU_getStringDOElement(DcmItem *obj, DcmTagKey t, char xs)
177 177 sle]l = "\e';
178 178 } else {
179 179 ec = elem—->getString(aString);
180 - strepy(s, aString);

180 + OFStandard::strlcpy(s, aString, bufsize);

181 181 }
182 182 }
183 183 return (ec == EC_Normal);

(a) A vulnerability introduced by commit e4£7026

A @@ -171,7 +171,8 @@ DU_getStringDOElement(DcmItem *obj, DcmTagKey t, char *s, size_t bufsize)

171 171 sfo] = "\e';
172 172 } else {
173 173 ec = elem->getString(aString);
174 - OFStandard::strlcpy(s, aString, bufsize);

174 + if (ec == EC_Normal)

175 + OFStandard::strlcpy(s, aString, bufsize);
175 176 }
176 177 }
177 178 return (ec == EC_Normal);

(b) The patch of the vulnerability shown in Figure la

Figure 1: Example of vulnerable commit and its corresponding patch in project DCMTK

Moreover, this vulnerability introducing commit changed 32 files with 403 additions and
347 deletions.

Consequently, even once this vulnerable commit is detected, manually investigating these
changed files to identify the vulnerable statement(s) in this commit is still time-consuming
and labor-intensive. Thus, for productive security inspection, it is necessary to assist devel-
opers in both detecting vulnerable commits before it is merged into source code (JIT-VD)
as well as localizing such vulnerabilities at fined-grain such as statement level (JIT-VL).

3.2. Guiding principles for JIT-VD and JIT-VL

This section introduces the principles guiding our approach for JIT-VD and JIT-VL.

3.2.1. Detecting just-in-time vulnerabilities

Principle 1. For a commit, the semantics of the code change is the crucial factor for
determining its vulnerabilities.

In practice, one could leverage multiple characteristics of a commit to determine whether
it is vulnerable. For example, based on the hypothesis that the more complex a commit, the
more suspicious it is, several approaches [22, 30, 31, 33| identify a dangerous commit based
on the manually defined expert features such as the number of added lines, etc. Moreover,
several other methods [20, 21, 23] capture the meaning of code change and/or the correspond-
ing commit message to measure the suspiciousness of the commit. Meanwhile, the existing
approach [20] shows that the approaches considering the code’s meaning obtained better
detection performance. This demonstrates that code change is essential for determining a
commit’s danger.

Indeed, expert features or commit messages could be useful guidance for examining a
commit. However, a commit is dangerous to the source code if it introduces vulnerabilities
to the program via the changed lines.
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For example, the commit in Figure la is considered a dangerous commit because the
added code line does not check null before copying the value of the parameter aString,
regardless of the number of added lines in this commit or the commit message. Thus, to
precisely determine whether a commit is vulnerable, the meaning of the code change is the
key factor that should be represented and investigated appropriately.

Principle 2. The relations of the changed statements with the others, including both changed
and unchanged statements, are important for capturing the meaning of the code change.

The program’s behavior is formed from the code statements and their interactions via
control/data dependencies.

In a commit, changed statements are introduced to create new behaviors or modify
old behaviors of the program. Thus, the dependencies among changed statements must
be analyzed to interpret the newly introduced behaviors and how they are constructed.
In addition, to recognize and explain which old behaviors are modified and how they are
affected, the relations of the changed statements with the other unchanged statements also
need to be investigated.

In summary, as the change code meaning is the primary determinant to effectively detect
just-in-time vulnerability, code change should be well represented for capturing both the
changed and semantically related unchanged statements and their relations.

3.2.2. Localizing just-in-time vulnerabilities

Principle 3. To precisely assess the suspiciousness of a statement, it is essential to under-
stand the operation of the statement.

Indeed, each statement is responsible for a specific operation that contributes to the pur-
pose of the commit and eventually contributes to the whole behaviors of the function/pro-
gram. To precisely localize the most suspicious statements in the commit, which are likely to
be the root cause of the vulnerability, the suspiciousness score of each statement must be ac-
curately assessed. Thus, capturing the meaning of each statement, e.g., what the statement
is or what it does, is essential. For example, we cannot conclude whether sigp in Figure 1a is
vulnerable if we do not know the functionality of OFStandard: :strcpy, i.e., what the func-
tion does and what the corresponding parameters are. Therefore, analyzing the statement’s
operation is of first importance for understanding the statement.

Principle 4. Assessing a statement’s suspiciousness should consider the statement in its
context.

In a program, a statement does not solely execute to complete its operation and contribute
to the behaviors of the program. Instead, the statement interacts with the others regarding
control and data dependencies (the statement’s context). Thus, to precisely understand the
statement, not only the statement itself but also its contexts should be considered. For
instance, the vulnerability introduced by line 180 in Figure la is caused by the null value
of variable aString. With only the statement sigg, we cannot know whether aString can
have a null value or whether it is carefully checked before copying. This information can
be obtained by the statements having control/data dependencies with s159. In addition,
statements s1gg in Figure 1a and si75 in Figure 1b are identical, but the former statement is
vulnerable, and the latter statement is safe. The reason is that statement si74 in Figure. 1b
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Figure 2: JUuLy framework’s overview

guarantees that sy7s5 can copy the value of variable aString only if it successfully gets a
non-null value. As a result, the execution of s175 in Figure 1b is safe.

Furthermore, to capture the context of a changed statement s in a commit, besides the
code aspect of the context, the change operators of the contexts are also valuable. Specifically,
the code aspect of the context (context.) of s is the code statements that impact/be impacted
by s. These statements have an impact on the behaviors of s. Thus, their importance in
understanding s is apparent. In addition, the change operators of the context (context,)
of s specify how each code element in the context is added/deleted/unchanged. Under the
circumstance of analyzing a vulnerable commit, context, helps to understand how the source
code is transformed from the old version to the new one and then leads to a vulnerability.
Therefore, both the code aspect and change operators of the context, context., and context,,
are essential when analyzing the context.

Principle 5. The topic feature, such as the function name, could be valuable for narrowing
down the search space.

A vulnerable commit often contains many changed lines (e.g., about 100 added statements
on average [30]) across multiple files and functions. Taking the (general) topic feature, such
as the name of the containing function, could help the model focus on the vulnerable-prone
function instead of considering the whole commit equally. Thus, the topic feature could help
to narrow down the search space for better localizing specific vulnerable statements.

In summary, to precisely localize the just-in-time vulnerable statements, the changed
statements’ operations and their contexts (including both context, and context,) need to be
appropriately represented. In addition, the topic feature could be helpful in narrowing down
the search space.

4. JUST-IN-TIME VULNERABILITY DETECTION AND
LOCALIZATION FRAMEWORK

Figure 2 shows the overview of our proposed JIT-VD and JIT-VL framework, JULY. For
a commit, JULY’s JIT-VD model accesses and identifies whether that commit is vulnerable
or not. Next, if it is detected as a vulnerable commit, the JIT-VL model further analyzes to
measure the suspiciousness score of each statement in the commit and returns a ranked list
of suspicious statements.
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4.1. Code change representation

Following the guiding principles discussed in Section 3.2., we leverage the Code Trans-
formation Graph (CTG) [20] to capture the changed code and its relations with the other
semantically related parts in the program. Specifically, a CTG is an annotated graph repre-
senting the changed /unchanged code elements of the program before and after the change is
applied, as well as the relations among these code elements. Formally, the CTG is defined
as follows.

Definition 1. (Code transformation graph (CTG) [20]) For a commit changing code from a
version v, to another version vy, the code transformation graph, G = (N, E, R, ) representing
the code elements and their relations in both versions respectively, in which:

e N consists of the code elements (i.e., AST nodes) in both v, and vy,.

e & is the set of edges representing the relations between nodes, For n;,n; € N, an
edge exists from n; to n; regarding relation r € R = {structure, dependency}, Jei; =
(ng,r,nj) € £ if there is a relation  between n; and n; in a code version.

e R isaset of the considered relations between code elements, R = {structure, dependency}.

e Annotations for nodes and edges are either unchanged, added, or deleted by the change.
Formally, a(g) € {unchanged, added, deleted}, where g is a node in A/ or an edge in &:

+ a(g) = added if g is a node or edge which contained in v,, and not contained in
V-

+ a(g) = deleted if g is a node or edge which contained in v, and not contained in
Up,.

+ Otherwise, a(g) = unchanged.

Figure 3 shows a partial CTG of the commit in Figure la. In statement sigg, the called
function strcpy is deleted, and the new function OFStandard: :strlcpy is added. Also, one
more parameter bufsize is added for this function. In addition, this graph also demonstrates
the relation of this changed statement, s1g9, with the others. For instance, sigg is control
dependent on sy176 and data-dependent on Sj7g.

4.2. Just-in-time vulnerability detection model

In the detection phase, JULY employs a Relational Graph Convolution Network (RGCN) [27]
to capture the semantics of code changes represented by the nodes and their relations in
CTGs. Next, a Multilayer Perceptron (MLP) is used to learn the patterns and classify vul-
nerable and non-vulnerable commits. The overview of the JIT-VD model is demonstrated
in Figure 4.

First, we embedded the nodes in CTGs into numeric vectors before feeding them into an
RGCN model. In this work, the feature vector of each node in CTG contains information
about the node content and its annotated changed operator (added, deleted, or unchanged).
For embedding node content into a d-dimensional vector ¢;, we employ Word2vec [19], which
is widely used for embedding semantics of code tokens [7]. The changed operator is embedded
by a one-hot vector, o;. Then, the feature vector of node ¢ is the concatenation of its node
content vector and changed operator vector, h; = ¢; € o;.

The embed CTGs, whose nodes are encoded appropriately, are fed to an RGCN to learn
their important features. Each layer of RGCN computes the representations for the nodes
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of the graph through message passing, where each node gathers features from its neighbors
under every relation to represent the local graph structure. Stacking L layers allows the
network to build node representations from the L-hop neighborhood of each node.

After L RGCN layers, a k-dimensional graph-level vector representation for the whole
CTG G = (N, &, a) is built by aggregating over all node features in the final GNN layer.
Finally, the graph features are then passed to an MLP to classify if G is vulnerable or not.

4.3. Just-in-time vulnerability localization model

Jury’s JIT-VL model is shown in Figure 5. For each statement, JULY extracts the cor-
responding features, including operation, context., context,, and topic. Then, these features
are embedded appropriately. After that, these embedding vectors are concatenated to rep-
resent the whole feature map of the statement. The final vector is fed into fully connected
layers. The output of the last layer is the predicted suspiciousness score of the statement.

4.3.1. Representation learning

This section presents how we build a representation vector for statements in a detected
vulnerable commit. For each statement s, we extract and represent it by four features:
operation, context., context,, and topic.

Operation is the specific task which s is responsible for in the function/program. In
Figure la, statement s179 gets a value type String from object elem, and assigns the returned
value into ec. Statement s;gg performs copying a value of variable aString with size bufsize
into variable s.



88 HIEU DINH VO

E OFstandard, stricpy, s, i_,{ Word2Vec }—»{ BiLSTM ’—>
H aString, bufsize '

e 1
ec, elem, getString, aString |

OFStandard, strlcpy, s, é—»‘ Word2Vec ‘4'1 BiLSTM ’—'

aString, bufsize

E deleted, added, unchanged,
H unchanged, added !

DU, getStringDOElement, : .‘ Word2Vec H BiLSTM }—» Dense and softmax layers
Dcmitem, ... '

Figure 5: Just-in-time vulnerability localization model

To capture such operation of s, we aim to embed the code tokens constructing s. Specifi-
cally, we apply lexical analysis to tokenize s into a sequence of tokens. Next, the Word2vec [19]
model is employed for embedding each token into a numeric vector. After that, to capture
the relationship of tokens in the whole statement, the vectors of these tokens are fed into a
BiLSTM network. BiLSTM is applied because of the following reasons. First, code tokens
must appear together in a certain order to make the program syntactically correct [18]. In
addition, code tokens in a statement often have a particular relation with their preceding
and succeeding tokens [12].

Context. contains the statements in the CTG of the suspicious commit which are seman-
tically related to s. The context represents the situation where s belongs. This feature helps
to position the task of s in a particular context and thus helps to understand s precisely.

Moreover, it is unreasonable to conclude that s is vulnerable regarding its context. For
example, although it is clear that sigp is vulnerability-prone since this statement invokes a
function that can lead to undefined behaviors, we cannot conclude it is a vulnerable state-
ment without considering its control/data dependence. This statement is vulnerable in the
context where its second variable, aString, is not guaranteed to be non-null before invoking
this function. Thus, considering the statements having control/data dependence with s is
necessary to assess its suspiciousness.

JULY extracts the context. of s by conducting both backward and forward slicing in the
CTG of the commit, starting from s. For example, the context. of statement s1gg in Figure 1a
containing siv7g, S179, etc. For embedding the context., we also tokenize the statements in
the context, into a sequence of tokens and then vectorize by them Word2vec and BiLSTM
models.

Contert, is the sequence of annotated change operators (added/deleted/unchanged) of
code elements in the context of s. Indeed, besides the semantics of the modified statements
(context.), how the statements are changed, such as added or deleted, also helps to capture
the changes’ meaning.

Moreover, capturing a general pattern in the change operator sequence (context,) is easier
than capturing the semantics since its information is looser than the information contained
in the context.. Therefore, this feature can provide valuable guidance and can be combined
with the semantics of the context. to better evaluate the suspiciousness of s.

In this framework, we use the Ordinal Encode technique for embedding the changing
pattern of the context, of s. The reason is that the values of changed operators are categor-
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ical, and the number of operators is limited. Next, we fed the encoded vector into a CNN
network to obtain the whole change pattern of the context,.

Topic is a global/general feature that could help to narrow down the search space by
identifying whether s is contained in a vulnerable function. In this work, we take the function
name as the topic of s. Similar to operation and context., the topic is also lexical tokenized
and then vectorized by Word2vec and BiLSTM models.

4.3.2. Suspiciousness assessment

To accumulate each feature by keeping their most important elements and also reduce the
output dimension, JULY employs a Global Max Pooling layer following each BILSTM/CNN
network. After that, to obtain the patterns of the statement, the representation vectors of
the four features are concatenated into a unified one to represent a whole feature map of s.
The unified vectors are then fed into several fully connected layers. The last layer is activated
by a Softmaz function and has two hidden units. The value of this layer, which corresponds
to the probability of being a vulnerable statement of s, is considered as the suspiciousness
score of s. A higher score implies a greater probability of s being a vulnerable statement.

4.3.3. Data imbalance handling

Class imbalance is an inevitable challenge of vulnerability detection problems in general.
This imbalance of labels could negatively impact the deep learning models’ performance since
they are often biased by the majority class [5, 32]. In our dataset, the ratio of vulnerable
and non-vulnerable statements is 1:27, which is severely imbalanced. To mitigate the impact
of this extreme imbalance, we aim to balance the training data set by the under-sampling
technique, which has been demonstrated to be the best choice if recall is pursued [32].
Moreover, the impact of the data balancing techniques is also empirically investigated in
Subsection 6.5.1.

5. EXPERIMENTAL METHODOLOGY

5.1. Research questions

For evaluation, we seek to answer the following research questions. First, we follow the
same procedure in the existing work [21, 23, 30] to evaluate the performance of JULy and
compare JULY with the state-of-the-art end-to-end JIT-VD and JIT-VL approaches:

RQ1: End-to-End Performance Evaluation & Comparison. How effective is our end-to-end
JIT-VD and JIT-VL framework compared with the state-of-the-art approaches?
Additionally, we evaluate the performance of JULY as a stand-alone JIT-VL approach:

RQ2: Stand-alone Performance Evaluation & Comparison. How effective is our JIT-VL
phase’s performance compared with the state-of-the-art baselines?

We also applied the same procedure in the existing studies [13, 24, 30, 33] to evaluate JULY’s
performance in learning from a set of projects and testing for another set of projects (cross-
project):

RQ3: Cross-project Evaluation. How effective is JULY in the cross-project setting?
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Table 1: Dataset statistics [20]

s | commi | %040 | of 1

FFmpeg | 4,449 | 3,462 | 73.95 | 0.70

Qemu ‘ 3,551 ‘ 3,183 ‘ 76.80 ‘ 0.68

Linux \ 783 | 780 | 78.45 | 0.66

Tensorflow | 224 | 189 | 81.48 | 1.18
502 projects more . ..

Total \ 11,299 | 8975 | 73.31 | 0.70

Furthermore, we perform several experiments to evaluate the impacts of different aspects
on JULY’s JIT-VL performance and running time:

RQ4: Feature Analysis. How do different features impact JULY’s performance?

RQ5: Other Factors. How do different factors affect JULY ’s performance, such as imbal-
anced training data and commit length?

RQ6: Time Complexity. What is the time complexity of JULY?

5.2. Dataset

To evaluate our approach and compare the performance with the baselines, we employ
the benchmark proposed by Nguyen et al. [20]. To the best of our knowledge, this is the
newest and largest dataset of vulnerable and non-vulnerable commits. This dataset contains
20,274 commits from 506 C/C++ projects. There are 11,299 non-vulnerable commits and
8,975 vulnerable commits. Among the vulnerable commits, there are approximately 40,000
vulnerable statements and over 1.0 million non-vulnerable statements.

Table 1 shows the statistics of the dataset provided by Nguyen et al. [20]. The table
shows the detailed number of commits, the average percentage of added statements in each
commit, and the average ratio of the numbers of nodes and edges in each CTG by each
project. Specifically, most of the vulnerable and non-vulnerable commits are collected from
popular C/C++ projects such as FFmpeg, Qemu, and Linux. The average percentage of
added statements is 73%, and the average ratio of nodes and edges in each CTG is 0.7.

5.3. Experimental procedure and evaluation metrics

5.3.1. Experimental procedure

RQ1: End-to-End Performance Evaluation & Comparison.
Baselines: 'We compare the performance of JULYy with the state-of-the-art end-to-end
JIT-VD and JIT-VL approaches, including JITFINE [21], JITLINE [23], and JIT-DIL [30].

e JITFINE [21]: Deep learning-based approach using CodeBERT to embed changed code
and commit message features, and then combine with expert features to detect buggy
commits. Next, to localize the buggy statements, it leverages the weight of each token
obtained from the attention mechanism in CodeBERT.
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e JITLINE [23]: This tool utilizes changed code and expert features to detect buggy

commits and apply LIME [25] for localizing buggy statements.

e JIT-DIL [30]: Expert features are used to detect buggy commits, and a language

model, i.e., n-gram, is used to localize buggy statements.

Procedure: We evaluate the performance of the approaches in the real-world time-aware
setting as in the related studies [2, 20, 21, 22, 23, 33]. We divided the commits into those
before and after time point ¢. We selected a time point ¢ to achieve a training/test split ratio
of 80/20 based on time. The commits before ¢ were used for training, while the commits
after ¢ were used for testing. The detail of data splitting is shown in Table 2.

Table 2: Data splitting by time point ¢ for Table 3: Data splitting for the cross-project
end-to-end performance evaluation evaluation
‘ Commit ‘ Statements ‘ Commit ‘ Statements
#Vul. #Non-vul | #Vul. | #Non-vul. #Vul. #Non-vul | #Vul. | #Non-vul.
commits | commits stmts stmts commits | commits stmts | stmts
Training | 7,748 | 8,471 | 33,844 | 907,050 Training | 7,714 | 9,176 | 34,645 | 864,075
Testing | 1,227 | 2,828 | 6,077 | 168,780 Testing | 1,261 | 2,123 | 5276 | 211,755

RQ2: Stand-alone Performance Evaluation & Comparison. In this experiment, we measure
the JIT-VL performance of the approaches on the same set of detected vulnerable commits.
We select the set of vulnerable commits which are correctly detected by all four approaches,
Jury, JITFINE, JITLINE, and JIT-DIL. Then, we compare the JIT-VL of the approaches
on this set.

RQ3: Cross-project Evaluation. Similar to existing work [13, 24, 30, 33|, in this experiment,
we evaluate how well the approaches can learn to recognize dangerous commits in a set of
projects and detect suspicious commits in the other set. Specifically, the whole set of projects
is randomly split into 80% (402 projects) for training and 20% (104 projects) for testing.
The detail of data splitting by projects is shown in Table 3.

RQ4: Feature Analysis. To analyze the impact of each feature on JuLY’s localization
performance, we build different variants of JULY by alternatively excluding each feature.

RQ5: Other Factors. We studied the impacts of the following factors on the performance
of JuLy: the imbalance of training data and change size. For the impact of data imbalance
on JULY’s performance, we build and evaluate different variants of JUuLY, which are trained
with the original imbalanced training data set and the re-balanced dataset. For studying the
impact of change size, we gradually vary the range of the change size and analyze JULY’s
results.

5.3.2. Evaluation metrics

Top-k Accuracy measures whether the first k-ranked statements are the vulnerable state-
ments. Given a vulnerable commit ¢, if at least one vulnerable statement of ¢ is ranked in
top-k, we consider an accurate localization, topk(c) = 1. Otherwise, we consider an in-
accurate localization, topk(c) = 0. For a set of n commits, top-k accuracy is measured
as TopK_ACC = %Z?:l topk(c;). In this work, we evaluate k = [1,3,5,7,10,20] as the
experimental setting in the related studies [21, 23, 24, 30].
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MRR measures how far we need to check down a sorted list to find the first vulnerable
statement. In other words, MRR is the average of the reciprocal ranks for a set of commits.
For a commit ¢, its reciprocal rank is the multiplicative inverse of the rank of the first
correctly localized vulnerable statement (rank.,). For a set of n commits, MRR is measured
as MRR = % Z?:l Tarik’ci :

MAP is the mean of the average precision of all the vulnerable statements in each commit.
For a commit ¢, which has total m statements and v of them are vulnerable statements, the
average precision (AP) of ¢ is AP(c) = 1 >5 P(4) x rel(j).

In this equation, the P(j) is the precision at cut-off j in the ranked list of statements
of ¢, e.g., the percentage of vulnerable statements correctly ranked in the first j statements.
rel(j) = 1 if the statement at rank j is a vulnerable statement, otherwise rel(j) = 0.
MAP = 15" AP(c).

Recall@X%Effort measures the proportion of vulnerable statements that can be correctly
found with a given X% effort. In this work, we applied the same procedure in existing

work [21] considering X = 20% modified statements of a given commit.

6. EXPERIMENTAL RESULTS

6.1. RQ1: End-to-End Performance Evaluation & Comparison

Table 4: RQ1. End-to-End Performance Table 5: RQ2. Stand-alone Performance
Evaluation & Comparison Evaluation & Comparison

Jury | JITFINE | JITLINE | JIT-DIL Jury | JITFINE | JITLINE | JIT-DIL

| |
Top-1 ACC | 0.19 ] 0.14 | 0.09 | 0.08 Top-1 ACC | 012 ] 0.05 | 0.06 | 0.03
Top-3 ACC | 032 | 0.25 | 0.18 | 0.16 Top-3 ACC | 020 | 0.11 | 0.12 | 0.08
Top-5 ACC | 0.38] 0.31 | 0.24 | 0.22 Top-5 ACC | 0.24 | 0.15 | 0.17 | 0.12
Top-7 ACC | 0.43 ] 0.35 | 0.28 | 0.26 Top-7 ACC | 0.28 | 0.19 | 0.20 | 0.15
Top-10 ACC | 047 | 0.40 | 0.34 | 0.31 Top-10 ACC | 0.31] 0.22 | 0.23 | 0.18
Top-20 ACC | 0.55 | 0.49 | 0.43 | 0.42 Top-20 ACC | 0.37 ] 0.29 | 0.30 | 0.26
MRR | 0.28 | 0.22 | 0.16 | 0.15 MRR | 0.18] 0.10 | 0.11 | 0.08
MAP | 0.23 ] 0.20 | 0.13 | 0.13 MAP | 0.14 ] 0.08 | 0.08 | 0.06
Recall@20%Effort | 0.31 | 0.17 | 0.19 | 0.13 Recall@20%Effort | 0.24 | 0.13 | 0.15 | 0.09

Table 4 shows that JULY significantly outperforms the other approaches in detecting and
localizing just-in-time vulnerabilities.

Particularly, JULY’s results are much better than those of the others, about 95% in
Top-1 ACC and 63% in MRR. Especially, the results of JULY are two times better than
JITLINE and JIT-DIL. As seen, the Top-1 ACC of JurLy is 19%, while the figures for
JITFINE, JITLINE, and JIT-DIL are only 14%, 9%, and 8%, respectively. In other words,
by using JULY, we can correctly find the vulnerabilities of 19% of the commits right after
investigating the first ranked statement of each commit. Meanwhile, JITFINE can correctly
rank the vulnerable statements first for 14% of the commits. JITLINE and JIT-DIL can do
that for only 9% and 8% of the commits. To obtain similar top results with JuLy (i.e., the
Top-1 ACC), we need to analyze about 2 or 3 statements in each ranked list of JITFINE
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410  + auto const saltLen = strlen(salt);
411 + if ((saltLen > sizeof("$2X$00$")) &&

411 412 (salt[e] == '$') 8&&
412 413 (salt[1] == '2') &&
413 414 (salt[2] >= 'a') && (saltl[2] <= 'z') &&

€

@@ -417,7 +418,16 @R char *xstring_crypt(const char xkey, const char xsalt) {

417 418 (saltl6] == '$')) {
418 419 // Bundled blowfish crypt()
419 420 char output[61];

420 if (php_crypt_blowfish_rn(key, salt, output, sizeof(output))) {
421
422
423
424
425
426
427
428

static constexpr size_t maxSaltLength = 123;
char paddedSalt[maxSaltLength + 1]
paddedSalt[0] = paddedSalt[maxSaltLength]l = '\@';

memset (&paddedSalt[1], '$', maxSaltLength - 1);
memcpy (paddedSalt, salt, std::min(maxSaltLength, saltlLen));
paddedSalt[saltLen] = '\@';

+ 4+ o+ + o+ o+ o+ o+

(a) Commit abe0b29 introducing a vulnerability at line 428 into source code of project

hhvm
X @@ -425,7 +425,7 Q@R char xstring_crypt(const char xkey, const char *salt) {
425 425
426 426 memset (&paddedSalt[1], '$', maxSaltlLength - 1);
427 427 memcpy (paddedSalt, salt, std::min(maxSaltLength, saltLen));
428 - paddedSalt[saltLen] = '\@';
428  + paddedSalt[std::min(maxSaltLength, saltLen)] = '\@';

(b) Commit 08193b7 fixing the vulnerability in Figure 6a

Figure 6: Example of vulnerable statements which correctly localized in Top-7 by JuLy

and JITLINE, and even five statements in the output of each commit produced by JIT-
DIL. These results demonstrate that JULY can help developers correctly find vulnerable
statements in more commits while investigating fewer statements in each commit compared
to the state-of-the-art approaches.

For Recall@20%Effort, the results of JULY are considerably better than the state-of-the-
art approaches, up to about 95% relatively. Specifically, JULY’s result is 31%, while JITFINE
and JITLINE obtain 17% and 19%, and JIT-DIL obtains only 13% for this metric. This
means that by investigating the same number of statements in each commit (i.e., 20% of
changed statements), JULY can find two times more vulnerable statements in a commit than
those of the other approaches.

Interestingly, although the Recalls of the JIT-VD phase of the approaches are slightly
different, JULY still achieves the highest JIT-VL results. Specifically, both Jury and JIT-
DIL correctly detect 70% of vulnerable commits. The JIT-VD performance of JITLINE is
slightly lower; it can identify 66% of vulnerable commits. Meanwhile, JITFINE obtains a
slightly higher performance, 73% in Recall. However, the integrated JIT-VD and JIT-VL
results of JULY are much better than those of the existing approaches by 30%-77%. This
illustrates that building a specialized model for the specific task of localizing vulnerability
helps JULY comprehensively capture the semantics of the code statements and better localize
vulnerabilities at the commit level.

Figure 6a shows an example of a vulnerable statement introduced by commit abe0b29
in project hhvm ? of Facebook. Specifically, at line 428, they added a character ‘\0’ into

https://github.com/facebook /hhvm
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paddedSalt to denote the end of this string. However, the allocated space for this variable
is maxSaltLength + 1 (line 423). If saltLen is larger than maxSaltLength, the string ter-
minator will be set at an invalid index. This could cause undefined behaviors if paddedSalt
is used. This vulnerability is fixed in commit 08193b7 as shown in Figure 6b.

Indeed, it is very challenging to localize this vulnerability because of two reasons. First,
this vulnerability introducing commit is a large commit involving 21 changed files with 185
additions and 44 deletions. Second, to correctly localize this vulnerability, it needs to capture
the dependencies of the code statements to understand that the accessing index (saltLen)
is different from the maximum allocated memory of paddedSalt. For this vulnerability,
both JITFINE and JITLINE fail to effectively localize it. Specifically, JITFINE localizes this
statement at 315, while JITLINE ranks it at the last of the list. In addition, the result of
JIT-DIL is better, at 135, but still out of Top-10. Meanwhile, by capturing the semantics
of the analyzing statements and their contexts, JULY can localize this vulnerable statement
at 7*", which is much better than the other approaches.

6.2. RQ2: Stand-alone Performance Evaluation & Comparison

For the same set of detected vulnerable commits, JuLy’s JIT-VL considerably surpasses
the other baselines. In Top-1 ACC, JUuLY’s performance is significantly better than those
of the others by 100%-300%. Specifically, JULY’s Top-1 ACC is 12%, while the figures of
JITLINE, JITFINE, and JIT-DIL are 6%, 5%, and 3%, respectively. In addition, by investi-
gating the three first-ranked statements of each commit, JULY can correctly find vulnerable
statements of 20% of commits. Meanwhile, by using JITFINE, JITLINE, or JIT-DIL, we
must investigate up to 10 statements in each commit to find the vulnerabilities in the same
number of commits.

JULy localizes all the vulnerable statements in each commit more precisely than the ex-
isting approaches. Particularly, JULY’s MAP is better than the others by about two times.
Jury’s MAP is 0.14, while the MAP of JITFINE, JITLINE, and JIT-DIL are 0.08, 0.08,
and 0.06, respectively. This shows that JULY can help identify each commit’s vulnerable
statements much more effectively. Furthermore, using the same effort, i.e., by investing 20%
of modified statements in each commit, JULY can find from 60% to 167% more vulnerable
statements in each commit compared to the baselines. JULY’s Recall@20%Effort is 0.24,
meanwhile, these figures of JITFINE and JITLINE are 0.13 and 0.15, respectively. The
result of JIT-DIL is even worse; it obtains only 0.09 in Recall@20%Effort.

In Jury, we designed different models specialized for JIT-VD and JIT-VL tasks, which
helped JULY optimize its performance in each phase. For the JIT-VD phase, JULY needs
to capture the general features of the whole commit. Thus, we employ an RGCN model
for learning the representation of the whole CTG. For the JIT-VL phase, it is essential to
understand the semantics of each statement in the commit to distinguish them and identify
which is the root cause of the vulnerability. Therefore, we explicitly extract related fea-
tures of each statement and then build different models for appropriately representing these
features. This helps JULY achieve better performance in both end-to-end comparison ex-
periments (Subsection 6.1) and stand-alone comparison experiments. For an example of the
vulnerability in Figure 6a, JULY can localize it better since it considers both the operation
of the statement s40g and its dependencies such as s493 during the JIT-VL process.

Meanwhile, the other approaches that fail to localize the vulnerability in Figure 6a could
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Table 6: RQ3. Cross-project evaluation

Jury | JITFNE | JITLiNE | JIT-DIL

|
Top-1 ACC | 0.14 | 0.11 | 0.10 | 0.07
Top-3 ACC | 0.26 | 0.21 | 0.19 | 0.17
Top-5 ACC | 0.33] 0.26 | 0.26 | 0.24
Top-7 ACC | 0.37 | 0.30 | 0.29 | 0.29
Top-10 ACC | 042 | 0.35 | 0.35 | 0.34
Top-20 ACC | 053] 0.44 | 0.44 | 0.46
MRR | 023 | 0.18 | 0.18 | 0.16
MAP | 0.20 | 0.15 | 0.14 | 0.13
Recall@20%Effort | 0.20 | 0.19 | 0.20 | 0.15

be due to the following reasons. JITLINE and JIT-DIL are ineffective in localizing this
vulnerability since they only capture the lexical features. Specifically, JIT-DIL leverages a
n-gram language model to measure the suspiciousness of a statement in a commit. However,
n-gram can only capture lexical-level features. In addition, JITLINE employs LIME to
interpret their model’s results. However, their model predicts the vulnerability of a commit
based on Bag-of-Tokens features (i.e., the frequency of each code token in a commit). Thus,
the semantics of tokens and the statements are not captured. Moreover, JITFINE localizes
the vulnerabilities based on the weights of tokens obtained from the attention mechanism
in CodeBERT [8]. However, JITFINE considers only modified statements regardless of their
contexts. This could lead the model to incorrectly understand the changes, focus on the
irrelevant parts, and negatively affect the JIT-VL performance.

6.3. RQ3: Cross-project evaluation

Table 6 shows the performance of detecting and localizing just-in-time vulnerabilities of
the approaches in cross-project evaluation experiments. In this experiment, the models are
trained from the set projects different from the testing set. Querall, JULY still obtains much
higher performance than the other approaches, which demonstrates that JULY can perform
better at learning and generalizing vulnerable patterns. For instance, the Top-1 ACC of
JuLy is higher than the state-of-the-art by about 60%. This result shows that by investing
the first ranked statement in the output of each commit, JULY can find about 60% more
vulnerabilities than those found by the others. Moreover, JuLy’s MAP is also much better
than those of the state-of-the-art approaches by 33%—54%. In particular, JUuLY’s MAP is
0.20, while the corresponding figures of the JITFINE, JITLINE, and JIT-DIL are 0.15, 0.14,
and 0.13, respectively. This means that to localize all vulnerable statements in a commit,
JULY is also more effective than the other methods.

6.4. RQ4: Feature analysis

Table 7 illustrates how each feature affects JuLY’s JIT-VL performance. In general, JULY
obtains the best performance when all the features are employed to represent code statements.
Specifically, if all the features are applied, JUuLY’s Top-1 ACC is 19%. Meanwhile, if one of
the features is excluded, JULY’s result declines by 5%—37%.
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Table 7: RQ4 — Impact of features on JULY’s Table 8: RQ5 — Impact of the imbalanced labels

performance on JULY’s performance

‘ JuLy ‘ Not applied feature ‘ Original ‘ Under-sampling | Over-sampling

‘ ‘ Operation ‘ Topic ‘ Context,. ‘ Context, Imbalanced)
Top-1 ACC | 019 017 ] 018  012] 018 Top-1 ACC \ 010 | 019 | 0.17
Top-3 ACC | o032 030 030]  024| 032 Top-3 ACC \ 019 | 0-32 | 0.31
Top-5 ACC | 038] 0.37 | 0.37 | 0.29 | 0.37 Top-5 ACC \ 0.23 | 038 | 0.38
Top-7 ACC | 043 | 041 | 041 ] 032 0.42 Top-7 ACC \ 027 | 043 | 0.42
Top-10 ACC | 047 | 045 | 046 | 037 | 0.45 Top-10 ACC | 0.31 | 047 | 0.47
Top-20 ACC | 055 ] 0.52 | 0.53 | 0.45 | 0.54 Top-20 ACC | 0.39 | 0.55 | 0.56
MRR | 0.28] 0.26 | 027 | 0.20 | 0.27 MRR | 0.17 | 0.28 | 0.27
MAP | 023 ] 022 | 022 ] 0.17 | 0.22 MAP | 0.15 | 0.23 | 0.23
Recall@20%Effort | 0.31 | 027 | 028 ] 0.20 | 0.29 Recall@20%Effort | 0.13 | 0.31 | 0.33

Context. has the highest impact on JULY’s performance. If context is excluded, JULY’s
accuracy significantly drops from 19% to 12% in Top-1 ACC. The reason is that the context
provides comprehensive information for capturing the semantics of the analyzing statements.
For example, the context of statement s498 in Figure 6a provides information about the
allocated space of paddedSalt (s423 and s422) and also the information about the assessing
index saltLen (s410). Without such information, it is difficult to confirm the vulnerability
of S$498.

Operation, topic, and context, features slightly affect JULY’s performance. For instance,
Recall@20%Effort of JuLYy when all the features are enabled is 0.31. If one of these features
is alternatively disabled, the results of JULY are 0.27, 0.28, and 0.29, respectively. The
reason is that the topic and context, features are two additional features that could boost the
performance of the approach by helping the models focus on important parts of the commits.
However, these features do not directly decide the vulnerabilities of the statements. Thus,
removing them slightly declines the overall JIT-VL performance.

Moreover, the operation is an essential feature of the meaning of the analyzing statement.
However, for each statement s, its context,. is obtained by slicing the CTG of the commit from
s. Thus, the context. contains not only related statements of s but also s itself. Therefore,
even excluding the operation feature, this feature is still implicitly represented in context..
Thus, the JIT-VL performance of the model is still maintained. However, if the operation is
explicitly represented, it could enhance JULY’s results 10% as seen in Table 7.

6.5. RQ5: Other factors
6.5.1. Impact of the imbalanced labels of the training data

To evaluate the impact of the data imbalance and the data balancing techniques, we
employ two sampling techniques, under-sampling and over-sampling, to re-balance the class
distribution in the training set while the testing set is left in the original imbalanced ratio.
For under-sampling, we randomly delete examples from the majority class (non-vulnerable
statements). For over-sampling, we randomly duplicate examples from the minority class
(vulnerable statements). However, due to the limitation of computational resources, we
cannot conduct the experiments with the over-sampling technique for the whole training set,
i.e., the training set after over-sampling will have about 1.8M samples. To estimate how the
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B #Top-3 ACC MRR MAP Recall@20%Effort
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Figure 7: RQ5 — Impact of commit length on JULY’s performance

over-sampling technique affects JULY’s performance, we randomly over-sample the minority
class three times and then under-sample the training set to obtain balanced samples for two
labels. Specifically, the training set will contain about 100k samples for each class.

Table 8 shows that balancing the classes in the training set improves the overall per-
formance of JuLy. Specifically, Top-1 ACC of JuLy is improved 90%. With the original
imbalanced data, JULY is biased towards the majority class, and it only correctly ranks the
vulnerable statements first in 10% of the commits. Meanwhile, with under-sampling, JULY
could be trained to focus equally on both classes and thus better recognize the vulnerable
statements. By training with balanced data, it can correctly localize vulnerable statements
first in 19% of the commits.

Similar to under-sampling, in the over-sampling setting, JULY is also trained with bal-
anced data, and its performance is also improved 1.7 times. Specifically, with over-sampling,
JuLy obtains 17% for Top-1 ACC. Meanwhile, with the original training dataset, this figure
is only 10%. Interestingly, the performance of JULY in under-sampling and over-sampling
techniques is stable. This shows that duplicating vulnerable statements does not prove new
patterns to enhance the performance of JuLy.

6.5.2. Impact of commit length

Figure 7 shows the impact of the number of added lines in a commit on JULY’s per-
formance. As seen, the smaller the number of added lines, the better JULY’s performance.
Specifically, for the commits containing 1-10 added lines, JULY’s Top-3 ACC is about 92%.
However, this result is declined two times if the number of added lines in the commits is
51-100 statements. This is reasonable because the larger a commit, the more difficult to
understand all of its statements and distinguish them. JULY’s accuracy could drop up to 4
times for extremely large commits, i.e., more than 501 statements.

6.6. RQ6: Time complexity

In this work, all experiments were conducted on an Ubuntu 18.04 server equipped with
an NVIDIA Tesla P100 GPU. For the JIT-VD phase, JULY took about 5 hours to train an

RGCN model. For the JIT-VL phase, JULY took about 2 hours to complete training the
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models. Moreover, JULY spends about 1.42 seconds to classify a commit as vulnerable or
not. Also, identifying vulnerabilities within a commit took 0.12 seconds per commit.

6.7. Threats to validity

There are three main threats to the validity of our work:

Threats to internal validity: The primary threat related to the process of constructing
CTG for the JIT-VD phase and extracting features for JIT-VL phase. JULY utilizes multiple
program analysis techniques like structural analysis and program slicing to construct CTGs
and derive corresponding features. To mitigate this threat, we employ the widely used code
analyzer, Joern [29], and we carefully review our implementation.

Threats to construct validity: A threat might be associated with our evaluation procedure.
To minimize this threat, we select commonly used metrics for evaluating approaches such
as Top-K ACC, MRR, MAP, and Recall@20%Effort, which are consistent with established
practices in related studies [21, 23, 24, 30].

Threats to external validity: A potential threat arises from the accuracy of vulnerability
labeling within the dataset. It is possible that there are some mislabeled samples. To
mitigate this, we select the large dataset, which is carefully built from investing the fixing-
vulnerability commits in the public corpus [20]. Additionally, our experiments are conducted
on only C/C++ programs. Thus, the results could not be claimed for other programming
languages.

7. CONCLUSION

The surge in software vulnerabilities and the occurrence of numerous severe attacks in
recent times have posed a challenge for Software Quality Assurance. In this paper, we intro-
duce a novel framework, JULY, which serves a dual purpose: detecting vulnerable commits
and fine-grained localizing the vulnerable statements. The core concept of JULY is that the
vulnerability of a commit is primarily determined by the meaning of the code changes. To
carry out JIT-VD, JULY represents each commit by a CTG and leverages an RGCN model
to capture the meaning within these changes, thereby distinguishing between vulnerable and
non-vulnerable commits. Once a commit is detected as suspicious, it is then passed to the
JIT-VL model to precisely identify the root causes. In the JIT-VL process, JULY encodes
each statement using four features: operation, context., context,, and topic. Subsequently,
JULY calculates a suspiciousness score for each modified statement and ranks them based on
these scores. To evaluate JULY’s effectiveness, several experiments were conducted using a
dataset comprising 20,274 commits from 506 C/C++ projects. Notably, JULY demonstrates
a significant improvement of 95% in Top-1 ACC and 63% MRR. Furthermore, when analyzing
the same portion (i.e., 20%) of modified statements in each commit, JULY is able to identify
twice as many vulnerable statements within a given commit compared to state-of-the-art
approaches.
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