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Abstract. Reconstructing phylogenetic trees from protein sequences normally requires empirical

amino acid substitution models to calculate the likelihood of trees or genetic distances between species.

The tree of life is classified into three domains of Eukaryotes, Archaea, and Bacteria. The amino acid

substitution models have been intensively studied for decades, but few are related to Bacteria. Root-

ing bacterial trees remains a challenging problem in the phylogenetic analysis due to the long branch

separating Bacteria and other domains. The two main objectives of this paper are estimating amino

acid substitution models Q.bac and NQ.bac for bacterial evolutionary studies and assessing the ca-

pability of the time non-reversible model NQ.bac in rooting bacterial trees. Experiments showed

that both the time-reversible model (Q.bac) and the time-non-reversible model (NQ.bac) were sig-

nificantly better than the existing models in analyzing bacterial protein sequences. Interestingly, the

time non-reversible model NQ.bac helped reconstruct maximum likelihood bacterial trees with reli-

able roots for 177 (23.7%) out of 748 testing alignments without requiring predefined outgroups. This

outgroup-free rooting method enhances the studies of bacterial evolution. We recommend researchers

employ both Q.bac and NQ.bac models in analyzing bacterial protein sequences. The datasets and

scripts used in this manuscript are available at https://doi.org/10.6084/m9.figshare.20457264.

Keywords. Amino acid substitution models, bacterial protein sequences, time-non-reversible mod-

els, time-reversible models.

1. INTRODUCTION

Amino acid (AA) substitution models are a powerful tool to study the relationships
among species using their protein sequences. The likelihood or Bayesian tree construction
methods require AA substitution models to calculate the likelihood of trees. The AA substi-
tution models can be used as the score matrices to measure the distances between sequences
in protein sequence similarity searches. Using improper AA substitution models might result
in systematic errors in inferred trees [1] or Ancestral sequence construction [2].

The AA substitution model consists of a large number of parameters. Therefore, it
must be estimated from an empirical dataset. A number of general models such as WAG [3],
LG [4], Q.pfam [5], or NQ.pfam [6] have been estimated from large datasets including protein
sequences from various species. A substitution model such as WAG or LG consists of a 20×20
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matrix and a vector of 20 elements. The matrix represents the substitution rates between 20
amino acids while the vector contains the frequencies of 20 amino acids. The general models
can be used for any protein sequences. However, they might not properly represent the
evolutionary patterns of specific clades, so several clade-specific models have been estimated
for plants, birds, etc. [5, 6]. Experiments showed that the clade-specific models are much
better than the general models in analyzing their corresponding protein sequences.

The performance of models estimated from genome datasets using the maximum likeli-
hood methods has been currently investigated based on simulation data [7]. The QMaker [5]
and nQMaker [6] methods were examined in estimating both time-reversible and time-non-
reversible amino acid substitution models from simulated genome datasets. The experiments
showed that models estimated from genome datasets with greater than an equal to 100 genes
highly correlated with the true models and performed well in reconstructing trees.

The short generation time and large population size of Bacteria help them evolve rapidly
to adapt to environmental changes or immune responses from the hosts. This makes Bacteria
the most diverse and abundant organisms on the Earth. Many bacterial protein sequences
are available and appropriate for studying Bacteria because the rapid evolution of Bacteria
might make their nucleotide sequences saturated. To date, there is no existence of amino acid
substitution models specifically for analyzing bacterial protein sequences. We had to rely on
the general amino acid substitution models, e.g., WAG [3] or LG [4], or clade-specific models
such as Q.yeast or Q.insect [5]. The existing models are unlikely to be able to properly reflect
the evolutionary patterns of Bacteria.

Rooting trees is an essential problem in phylogenetic analyses that has been studied
for a long time [8]. There are several approaches to root phylogenetic trees, e.g., using an
outgroup [8–10], assuming a molecular clock [11], or employing time non-reversible models of
evolution [6,12,13]. Selecting outgroups from Archaea to root bacterial trees is controversial
because the long distance from the outgroups to Bacteria might distort the tree structure of
within-bacterial species. The molecular clock approach assumes a constant substitution rate
along all lineages that might be biologically unrealistic especially when analyzing distantly
related species because their substitution rates may vary during the long evolution process.
Other rooting methods could be using gene duplication or indels [14, 15], minimal ancestor
deviation [16], or minimum variance rooting [17]. Recently, a phylogenomic approach using
information from gene duplications and losses within a genome together with gene transfers
between genomes is proposed to root the tree without including an archaeal outgroup [18].

Using the time-non-reversible AA substitution model to reconstruct the maximum like-
lihood of rooted trees from protein alignments is a promising approach for Bacteria. In
this paper, we collected 1748 bacterial protein alignments and used the maximum-likelihood
methods to estimate both the time-reversible model (Q.bac) and the time-non-reversible
model (NQ.bac) from 1000 alignments. We used the remaining 748 alignments to examine
the performance of newly estimated bacterial models and the existing models. Experiments
showed that bacterial models outperformed the existing models in analyzing bacterial pro-
tein sequences. The time-non-reversible model NQ.bac was better than the time-reversible
models in a considerable number of cases. The time-non-reversible model NQ.bac helped
reconstruct rooted bacterial trees of which 177 trees have root branches with support val-
ues ≥ 70% indicating that these trees were correctly rooted with a high probability. To
summarize, two main contributions of this paper are:
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• Estimating two amino acid substitution models Q.bac and NQ.bac for bacterial evo-
lutionary studies. Comparing the fit of the two new models to 31 existing models in
reconstructing a bacterial tree.

• Assessing the capability of the time non-reversible model NQ.bac in rooting bacterial
trees.

The rest of the paper is organized in three sections, Section 2 presents the proposed
method, the workflow, and the evaluation metrics. Section 3 shows the experimental results
and Section 4 is the conclusion of the paper.

2. MATERIALS AND METHODS

2.1. Data

To estimate Q.bac and NQ.bac, we obtained alignments from the HAMAP database [19].
HAMAP contains a collection of 2388 expert-curated protein families, and these protein
families are used for protein family classification and functional annotation. Since we are
interested in bacterial sequences only, we removed all non-bacterial alignments. We also
removed duplicated sequences. The final bacterial protein dataset consists of 1748 alignments
including 107842 sequences with a total of 711669 sites. On average, each alignment consists
of 62 sequences with a length of 407 amino acids.

The alignments were randomly divided into two datasets: the training dataset including
1000 alignments and the testing dataset consisting of 748 remaining alignments. We esti-
mated both time-reversible and time-non-reversible models from the training dataset and
analyzed them against the 31 existing models on the 748 testing alignments.

2.2. Methods

We assume that substitutions among amino acids are independent among sites during
the evolution and modeled by a time-homologous, time-continuous, and stationary Markov
process. The substitution process can be expressed in terms of a matrix Q = {qxy} describing
the instantaneous substitution rates between twenty amino acids. Precisely, the off-diagonal
elements qxy (x ̸= y) represents the substitution rate from amino acid x to amino acid y
while the diagonal elements qxx are calculated such that the sum of each row equals zero. In
the phylogenetic tree, the branch length indicates the number of substitutions between two
nodes, therefore, the matrix Q is normalized so that the total number of substitutions per
time unit is one. This effectively removes one parameter in the Q matrix, i.e., the model
consists of 379 parameters.

The amino acid substitution process can be assumed to be time-reversible (i.e., the ex-
changeability rates between two amino acids are the same in both directions) to simplify
the model estimation process. The time-reversible property helps decompose the matrix Q
into a symmetric exchangeability rate matrix R = {rxy} and an amino acid frequency vector
Π = {πx}, i.e., qxy = πyrxy and qxx = −

∑
y qxy. As a result, the time-reversible model con-

sists of 208 parameters much fewer than the time non-reversible model. Note that maximum
likelihood trees reconstructed with time-reversible models are unrooted.

Let A = {A1, . . . , An} be a list of n alignments. Let T = {T 1, . . . , Tn} denote a list
of trees for alignments A. As we do not know the true tree for alignments of A, trees
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determined by the maximum likelihood tree reconstruction method (e.g., IQ-TREE) can be
used in the model estimation algorithms. In phylogenetic analyses, the rate heterogeneity
among sites should be accounted for by a site rate model, e.g., Γ distribution of rates [20].
Let H = {H1, . . . ,Hn} be the list of site rate models for alignments A. The best-fit site
rate model Hi for alignment Ai is normally selected by a model selection program, e.g.,
ModelFinder [21].

The maximum likelihood (ML) model estimation methods determine parameters of the
substitution model Q together with treesT and site rate modelsH to maximize the likelihood
value L (Q|T, H, A). Note that L (Q|T, H, A) can be calculated from the likelihood values
of alignments, i.e., L (Q|T, H, A) =

∏
i=1...n L(Q|T,H, Ai). Optimizing L (Q|T, H, A)

from a set of alignments is a computationally complicated and expensive task.
Several approximate ML methods have been proposed to efficiently estimate AA substitu-

tion models [4–6,22]. They discovered that the parameters of Q can be efficiently estimated
based on near-optimal trees T and site rate models H. Thus, the parameters of Q, T, and H
can be estimated iteratively instead of simultaneously. The estimation process should be re-
peated several times until the parameters of Q remain unchanged to optimize the likelihood
value L (Q| T, H,A).

Figure 1: The flowchart to estimate amino acid substitution models for bacteria

The model estimation process is composed of four main steps (i.e., initial step, tree
determination step, model estimation step, and comparing step) and is illustrated in Figure 1.
The overall workflow is as follows:

1. The initial step assigns the general model LG [4] as the current best model, called Qbest,
for the training alignments A. Let Q be the set of existing amino acid substitution
models.

2. The tree determination step builds trees for alignments of A. For each alignment Ai,
it selects the best-fit substitution model Qi ∈ Q and the best-fit site rate model Hi
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using the model selection program ModelFinder [21]. The ModelFinder program uses
an initial parsimony tree to compute the likelihood value for each model in Q, and
subsequently selects the best-fit substitution and site rate models that minimize the
BIC score [23]. For each training alignment Ai, best-fit substitution model Qi, and
best-fit site rate model Hi, we infer one tree Ti using the maximum likelihood tree
construction package IQ-TREE 2 [24].

3. The model parameter optimization step determines a new matrix Qnew to maximize the
likelihood value L (Qnew|T, H ;A). As Qnew can be efficiently estimated with nearly
optimal trees, we only re-estimate branch lengths of trees, but fix the tree topologies
in this step to avoid computational burden. The tree topologies will be re-optimized
if the new model Qnew is considerably different from the current best model Qbest.

4. The comparing step uses the Pearson correlation to measure the similarity between
Qnew and Qbest. We flattened out two matrices into two 400-element vectors and
computed their correlation. If the correlation is greater than 0.99, finish the estimation
process and consider Qbest as the final best model. Otherwise, assign Qbest by Qnew,
add Qbest to the model set Q, and go to step 2. Experiments show that Qbest is
normally obtained after three iterations.

We applied the estimation pipeline (Figure 1) to estimate two new bacteria-specific mod-
els from 1000 bacterial protein alignments in the training dataset, i.e., using the QMaker
method [5] to estimate the time reversible model Q.bac, and the nQMaker method [6] to es-
timate the time-non-reversible model NQ.bac. The current study on simulation data reveals
that QMaker and nQMaker can estimate reliable time-reversible and time-non-reversible
amino acid substitution models from genome datasets [7]. The authors simulated various
genome datasets with different numbers of genes based on predefined models and predefined
trees. The QMaker and nQMaker methods were used to estimate both time-reversible and
time-non-reversible amino acid substitution models from the simulated genome datasets.
The experiments showed that models estimated from simulated datasets with greater than
and equal 100 genes were highly correlated with the true models (Pearson correlations ≥
0.995), and performed well in reconstructing trees.

In the maximum likelihood phylogenetic analyses, the model Q (e.g., Q.bac or NQ.bac)
is used to calculate the likelihood value L (T |Q,H,A) of a tree T given the model Q, the
site-rate model H, and the alignment A as followings

L (T |Q, H, A) =

l∏
j=1

L
(
T |Q, H, Aj

)
=

l∏
j=1

Prob
(
Aj |T, Q, H

)
, (1)

where, l is the length of alignment A, Aj is the data at site j of alignment A, L
(
T |Q, H, Aj

)
is the likelihood value of tree T at site j that can be computed by the conditional probability
Prob

(
Aj |T, Q, H

)
of data Aj . Technically, the matrix Q is used to calculate the transition

probability matrix P (t) = eQt (i.e., Pxy(t) is the probability of changing from amino acid x to
amino acid y after t time units) in computing the conditional probability Prob

(
Aj |T, Q, H

)
using the pruning algorithm [25].

We examined the performance of Q.bac, NQ.bac, and the 31 available reversible and
non-reversible models (see supplementary Table 3) on the 748 testing alignments using the
Bayesian information criterion (BIC) [23]. The BIC score combines both likelihood value



58 CUONG CAO DANG et al.

L (Q| T, H,A) and the number of parameters in the models used to build the trees to assess
the performance. A previous study showed that the BIC criteria and the AIC criteria [26]
gave similar results [27]. Therefore, in this paper, we reported and discussed the results
using the BIC scores.

We utilized a resampling estimated log likelihoods (RELL) test [28] with 10000 bootstraps
and a pRELL threshold of 0.05 to calculate the number of alignments that the Q.bac model
is significantly better than the NQ.bac model and vice versa. Consider an alignment A with
l sites, we computed the likelihood values for every site of A using the NQ.bac and Q.bac
models. If BIC value (BICQ.bac) of the tree inferred with Q.bac is smaller than the BIC value
(BICNQ.bac) of the tree inferred with NQ.bac (i.e., ∆BICoriginal = BICNQ.bac−BICQ.bac >
0), we applied the RELL procedure to create 10000 replicates of sites (i.e., each replicate
consists of l sites randomly sampled with replacement from the sites of A). For each replicate
of sites, the BIC value (REPQ.bac) with the Q.bac model and the BIC value (REPNQ.bac)
with the NQ.bac model were calculated to determine the BIC difference (i.e., ∆BICreplicate =
REPNQ.bac − REPQ.bac) between two models on the replicate of sites. The pRELL was
calculated as the percentage of replicates that had ∆BICreplicate > 2 ×∆BICoriginal.

To evaluate the impact of the models on tree structures, we calculated the normalized
robinson and foulds (nRF) distance [29] between trees reconstructed with different models.
The nRF distance between two trees is the unshared splits between them divided by the
total number of all splits. The nRF distance ranges from 0 (two identical trees) to 1 (two
completely different trees).

Since the time non-reversible model NQ.bac allows us to reconstruct rooted trees for
bacterial alignments, we used the time non-reversible model NQ.bac to reconstruct a rooted
tree Tr for each testing alignment; each branch e on Tr is labeled with a rootstrap value [13]
indicating the probability that the root is placed in the branch e. The rootstrap value of
a branch is calculated as the fraction of 1000 rooted bootstrap trees which have the root
on that branch. The 1000 bootstrap trees were produced by using the ultrafast bootstrap
analysis [1].

Additionally, we performed the approximately unbiased (AU) test [30] with 10000 repli-
cates. The AU test compares the log-likelihoods of the trees being re-rooted on each branch
of Tr. The branches with pAU < 0.05 will be rejected as the root placement [13].

3. RESULTS

3.1. Model performance

First, we examined the fit of the 31 existing models on bacteria alignments by comparing
the Bayesian information criterion scores (BIC) [23] of ML trees constructed with these
models on the 748 testing alignments. Since examined models have different numbers of
free parameters (reversible models such as LG and Q.pfam have one free parameter while
non-reversible models such as NQ.pfam have two free parameters), the BIC scores were used
instead of the original likelihood value. This test would propose a list of current top models
best fit with bacteria alignments and we will eventually compare the fit of Q.bac, NQ.bac, and
the four top models. All ML trees were constructed with the site rate model I+Γ4 (Gamma
distribution with four categories and one category of invariant). We found that the general
models NQ.pfam, LG, Q.pfam, and WAG were the best-fit substitution models for 240, 234,
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91, and 34 testing alignments, respectively. The clade-specific models Q.yeast, Q.plant, and
Q.insect were the best substitution models for some testing alignments (i.e., Q.yeast for 47
alignments, Q.plant for 16 alignments, and Q.insect for 14 alignments). Among the existing
models, the general models such as NQ.pfam and LG help build better maximum likelihood
bacterial trees than the other models. A majority of bacterial alignments yield better BIC
scores when constructing ML trees with the general time-non-reversible NQ.pfam and the
general time-reversible LG substitution models.

Table 1 presents the average BIC values per site of Q.bac, NQ.bac, and four top existing
models on 748 testing alignments. The results show that NQ.bac and Q.bac are the best-fit
models for analyzing bacterial alignments. The WAG model is worse than the other models
(e.g., the average BIC/site of WAG is 0.37 lower than that of LG). Two models, Q.pfam
and NQ.pfam are slightly better than LG with a BIC/site improvement of 0.06 and 0.09,
respectively.

Table 1: The average BIC values per site of six main models on 748 bacteria testing align-
ments. Note: All models were tested with four categories of gamma-distributed and one
category of invariant rates (I+Γ4).

Model BIC/site BIC/site gain compared to WAG

WAG 101.82 0

LG 101.45 0.37

Q.pfam 101.39 0.43

NQ.pfam 101.35 0.46

Q.bac 101.30 0.52

NQ.bac 101.26 0.56

Second, we compared directly the fit of Q.bac and NQ.bac on the 748 testing alignments
using the BIC scores. The time-non-reversible model NQ.bac was better than the time-
reversible model Q.bac, i.e., NQ.bac was better (worse) than Q.bac on 465 (283) out of 748
testing alignments.

Figure 2 summarizes the comparisons between Q.bac and NQ.bac with respect to align-
ment sizes (i.e., the number of sequences and the number of sites). The NQ.bac model
was significantly better than the Q.bac model on alignments with more than 100 sequences
(Figure 2a) or 600 sites (Figure 2b). The explanation is that the time-non-reversible model
consists of more parameters, so it fits well with large alignments.

Finally, we assessed the performance (BIC scores) of Q.bac, NQ.bac, and 31 available
reversible and non-reversible models (see supplementary Table 3) on 748 testing alignments.

Figure 3 shows that the NQ.bac and Q.bac models outperformed all other models on 252
(33.7%) and 172 (23.0%) testing alignments, respectively. The general reversible model LG
was the best model for 84 (11.2%) testing alignments. The Q.yeast model estimated from
yeasts was the best-fit model for 60 alignments (about 8%). The other models were selected
as the best models for several alignments. These results indicate the advantage of newly
estimated bacterial models over the existing models in analyzing bacterial protein data.



60 CUONG CAO DANG et al.

Figure 2: Comparisons between the time-reversible model Q.bac and the time-non-reversible
model NQ.bac on 748 test alignments. The NQ.bac model was significantly better than the
Q.bac model on alignments having more than 100 sequences (a) or 600 sites (b).

Figure 3: The percentage of testing alignments that each amino acid substitution model was
selected as the best-fit model.

3.2. Model analysis

We used the principal component analysis (PCA) to visualize the differences among
models. Each model was represented by one vector of 400 amino acid substitution rates in
the Q matrices. The objective of this PCA analysis is to show how much the new models
Q.bac and NQ.bac are similar to or different from existing models. Figure 4 illustrates the
PCA analysis of Q.bac, NQ.bac, and the existing models excluding models for mtDNA-
proteins and viruses because they are not highly correlated with the bacteria models. The
models are separated into two sides: the time-reversible models are on the left side and
the time-non-reversible models are on the right side. The Q.bac, Q.insect, and Q.yeast are
grouped together with general time-reversible models (e.g., WAG, LG, and Q.pfam) except
JTT model that was estimated a long time ago from a small dataset. These models are
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far away from clade-specific models for plants and animals (i.e., Q.plant, Q.mammal, and
Q.bird). The time-non-reversible model NQ.bac is not close to other time-non-reversible
models. The NQ.insect and NQ.yeast are the two closest models to NQ.bac. Interestingly,
the time-non-reversible model NQ.pfam is close to the NQ.bird, but far away from other
clade-specific time-non-reversible models (i.e., NQ.mammal, NQ.plant, NQ.insect, NQ.yeast,
and NQ.bac). In other words, the general time-non-reversible NQ.pfam might not be suitable
for analyzing clade-specific data.

Figure 4: Principal component analysis (PCA) of NQ.bac, Q.bac, and the existing models
(except models for mtDNA-proteins and viruses) based on their amino acid substitution
rates.

We also directly compared the substitution rates of Q.bac with those of NQ.bac, Q.yeast,
LG, and NQ.pfam to emphasize the differences between Q.bac, NQ.bac, and other models.
Notable differences between these models were identified and illustrated in Figure 5. For
example, 65 (104) substitution rates in Q.bac are at least two times smaller (larger) than
those in NQ.bac. Similarly, 75 (91) substitution rates in Q.bac are at least twice small (large)
than ones in the Q.yeast.

3.3. Topological impacts

The nRF distances between trees constructed with the time- reversible model Q.bac and
the time-non-reversible model NQ.bac is 0.1 (see detail in Table 2). Thus, on average, about
10% of splits appearing in one tree constructed with Q.bac will not appear in the correspond-
ing tree constructed with NQ.bac. The average nRF distances between 748 trees constructed
with Q.bac and those with general time-reversible models WAG, LG, and Q.pfam are 0.12,
0.09, and 0.08, respectively. Similarly, the average nRF distances between trees constructed
with the time-non-reversible model NQ.bac and those with the time-non-reversible model
NQ.pfam is 0.09. These results indicate that the amino acid substitution models have a
considerable impact on building tree topologies for bacterial alignments.
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Figure 5: The comparison between the coefficients of Q.bac (a), NQ.bac (b) with NQ.bac
(Q.bac), LG, Q.yeast and NQ.pfam models. Notations: 2x (5x) indicates two (five) times
difference.

Table 2: The average nRF distances between 748 trees constructed with six models NQ.bac,
Q.bac, NQ.pfam, Q.pfam, LG, and WAG.

Model NQ.bac Q.bac NQ.pfam Q.pfam LG

Q.bac 0.10

NQ.pfam 0.09 0.10

Q.pfam 0.10 0.08 0.09

LG 0.11 0.09 0.10 0.08

WAG 0.12 0.12 0.12 0.11 0.12

3.4. Building rooted tree

Figure 6 shows that 361 (48%) out of 748 rooted trees reconstructed from testing align-
ments with the NQ.bac model have root branches with rootstrap values greater than 50%
and confirmed by the AU test (there is only one rooted tree whose root branch with root-
strap value greater than 50% but failed the AU test). Among these, 177 rooted trees have
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considerably reliable root branches with rootstrap values greater than or equal to 70%. Note
that 90 of the considerably reliable rooted trees were fit best with the NQ.bac model. The
results showed the capability of the time-non-reversible model NQ.bac in rooting bacterial
trees.

Figure 6: The distribution of rooted trees with the highest rootstrap values

4. CONCLUSIONS

The rapid evolution of Bacteria might make their nucleotide sequences saturated, so the
data of protein sequences is a proper alternative data source to study their evolutionary
relationships. To this end, amino acid substitution models must be specifically estimated for
Bacteria because using the existing amino acid substitution models constructed from Eu-
karyotes or viruses might lead to systematic errors in analyzing bacterial protein sequences.

We have estimated both the time-reversible model (Q.bac) and the time-non-reversible
model (NQ.bac) from a thousand bacterial alignments. Experiments showed that the bac-
terial models outperformed the existing models in reconstructing maximum likelihood trees
for bacterial species. The NQ.bac model consists of more parameters than the Q.bac model,
therefore, it is more suitable for analyzing large alignments than small alignments. Users
should use a model selection program such as ModelFinder [21] to select the best-fit model
for their alignments under the study.

To date, using outgroups is a widely used approach to root phylogenetic trees. However,
determining proper outgroups to root bacterial trees is problematic because of the long
distance between Bacteria and other kingdoms. The long branch between the outgroups
and other species in the bacterial trees might twist topological structures among bacterial
species. An alternative approach to building rooted trees is using the maximum likelihood
tree reconstruction methods with time-non-reversible models.

In this paper, we used the time-non-reversible model NQ.bac to reconstruct rooted trees
for Bacteria. Nearly half of the trees have root branches with support values greater than
50% and verified by the approximately unbiased statistical test. Among these trees, half of
them have root branches with high rootstrap values of greater or equal to 70%. These results
indicate that rooting trees by using the time-non-reversible amino acid substitution models
is a plausible and promising approach for Bacteria.
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This paper has two main contributions, and they meet our proposed objectives. Firstly,
it introduces two new amino acid substitution models Q.bac and NQ.bac for bacterial evo-
lutionary studies. The experiments show that the fit of the two new models is significantly
better than that of 31 existing models in reconstructing bacterial trees. Secondly, NQ.bac
helps reconstruct maximum likelihood bacterial trees with reliable roots without requiring
predefined outgroups for 177 (23.7%) out of 748 testing alignments.
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APPENDIX

Table 3: Existing amino acid substitution models

Matrix Genomic regions Time non-reversible or not

1 Blosum62 General Time reversible

2 Dayhoff General Time reversible

3 JTT General Time reversible

4 LG General Time reversible

5 PMB General Time reversible

6 VT General Time reversible

7 WAG General Time reversible

8 mtArt Mitochondrial Time reversible

9 mtMam Mitochondrial Time reversible

10 mtRev Mitochondrial Time reversible

11 mtZoa Mitochondrial Time reversible

12 mtMet Mitochondrial Time reversible

13 mtVer Mitochondrial Time reversible

14 mtInv Mitochondrial Time reversible

15 HIVb Viral Time reversible

16 HIVw Viral Time reversible

17 FLU Viral Time reversible

18 FLAVI Viral Time reversible

19 rtREV Viral Time reversible

20 Q.bird General Time reversible

21 Q.insect General Time reversible

22 Q.mammal General Time reversible

23 Q.pfam General Time reversible

24 Q.plant General Time reversible

25 Q.yeast General Time reversible

26 NQ.bird General Time non-reversible

27 NQ.insect General Time non-reversible

28 NQ.mammal General Time non-reversible

29 NQ.pfam General Time non-reversible

30 NQ.plant General Time non-reversible

31 NQ.yeast General Time non-reversible
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