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Abstract. The demand for advanced driver behavior analysis systems to support car drivers has

arisen, leading to a reduction in accidents. The solutions have been researched and developed for a

long time, but the results have recently been acknowledged since some deep learning methods have

been published widely. Our paper proposes several modifications to one of the effective deep learn-

ing models, Contrastive Learning Framework (CLF), to improve understanding and overall impact.

However, it met a lot of challenges such as data imbalance and real-time predicting problems. In

more detail, we propose the CENCE loss function for computing comparable visual features both

positive and negative, and the Cross Stage Partial Technique (CSPNet and CSPResnet) to improve

the outcome in the base encoder. Our approach is evaluated on published datasets, and the obtained

results represent some positive performance in the analysis of driver behavior.
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1. INTRODUCTION

In recent years, with the emergence of new technologies and the rapid growth of hardware
computing, driver behavior analysis systems have gradually become important components
inside cars, playing a critical role in preventing accidents and ensuring road safety. In these
systems, accurately tracking and identifying the driver’s distracted behavior in real-time to
immediately alert the driver is a must-have feature for preventing potential accidents. The
reason is that if the prediction is inaccurate, any error could lead to devastating outcomes,
and if the inference speed is not fast enough, the system’s alert may come too late.

To address the driver behavior analysis problem effectively, many classical machine learn-
ing approaches and deep learning approaches were introduced and achieved remarkable re-
sults (details in Section 2). However, these approaches only focused on a handful number
of driver’s features including face, driving style, or vehicle conditions such as speed, steer-
ing wheel, etc. While lacking much information from other features in the context as a
whole, hence, they have not worked well in real scenarios. Recently, a deep learning method,
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namely Contrastive Learning Framework (CLF) [1] achieved prominent results on the Driver
Anomaly Detection (DAD) [1] dataset, at above 0.96 in the AUC metric.

Inspired by the success of the CLF, the paper researched and proposed some modifications
to CLF to better understand the impact of every component on the overall result and to try
to improve its performance. The final objective is to develop a better variant of CLF with
more accurate predictions while keeping the real-time inferencing speed, which is vital for
driver behavior analysis systems. To develop a reliable deep-learning model for analyzing
driver behavior, several challenges are addressed. The first one is data imbalance. Data
imbalance is a common issue in deep learning and machine learning, where one class of
data significantly outnumbers another. This can lead to models that perform well in the
majority class but poorly in the minority class. In driving scenarios, abnormal behaviors
such as drowsiness, eating, reading, etc, are rare compared with normal driving behaviors.
We did some experiments on imbalanced data. For example, in the DAD dataset [1], the
number of normal data recorded was 550 minutes, whereas the number of abnormal data
was only one-fifth of that at 100 minutes, although these abnormal behaviors may be more
important and must be focused on. Another imbalance problem is the unequal distribution
of recorded data between participants. For instance, the MPIIGaze dataset comprises over
213 thousand images from 15 participants, but the data distribution is skewed to only some
participants. A participant has only about 1.4 thousand images in the dataset, whereas there
are over 35 thousand images from another participant. These problems require efficient data
processing methods and sophisticated training techniques to address. Table 1 indicates the
data imbalance problems on several driver monitoring datasets.

Table 1: Some published driver monitoring datasets

Dataset Year Size Imbalanced description

DAD 2020 95 GB 550 minutes are recorded for normal driving

and 100 minutes for abnormal driving in the

training set.

DriverMVT 2022 5.119 million frames There are a total number of 5.119 million

frames, but only a small number of those

are the critical events (e.g., Fatigue is nearly

1 thousand frames, cellphone use is several

dozen frames, etc.)

DriveandAct 2019 9.6 million images Only 2% of the data is taking-off sunglasses

class, whereas the watch video class accounts

for 23%.

MPIIGaze 2017 213.000 images Images collected by participants varied from

over 1.400 to nearly 35.000.

The second one is real-time prediction. In general, the average time the human brain
processes and responds to a stimulus is nearly 0.3 seconds. If a driver drives at a speed of
100km/h, it means that his car can move a distance of nearly 28m per second. Assuming
that the monitoring system can only detect the abnormal state of the driver and alert him
after 1 second, that means the driver can only be aware of the situation after 1.3 seconds or
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after a distance of 1.3×28 = 36.4m. In many cases, it may be too late for the driver to handle
if something unexpected happens. That is why real-time predicting of driver behaviors is
crucial for the proactive prevention of accidents, enabling vehicles and drivers to respond
dynamically to changing conditions. This requires developing an efficient model with low
latency while ensuring its predictions are reliable.

This paper proposed some improvements to the CLF model for the driver monitoring
problem. The main contributions of the paper include:

1. The paper presents another loss function, the combination of noise contrastive es-
timation (NCE) loss and cross-entropy (CE) loss. In addition, in cross-entropy loss, we
propose a separate projection head dedicated to it. The experiment results showed that the
combination of the two losses gave a significant improvement.

2. The paper proposed a modification to the base encoder in the CLF model by upgrading
the residual block to a Cross Stage partial residual block, which not only strengthened the
learning ability of the model but also reduced computational and memory costs.

3. The paper proposes a method to deal with the imbalanced dataset problem. We
evaluated the effectiveness of the data augmentation approach, and the obtained results
showed that a data sampling strategy focusing on abnormal data can alleviate the data
imbalance problem and improve the capabilities of the system.

The structure of the paper is organized as follows. Section 2 presents the related works
for driver behavior analysis. Section 3 impresses the CLF model and the contributions of the
paper. Section 4 evaluates the obtained experimental results. Conclusion and future works
are indicated in Section 5.

2. RELATED WORKS FOR DRIVER BEHAVIOR ANALYSIS

When analyzing a driver’s activities while driving, many aspects can be taken into ac-
count. It may include the driver’s distracted states, such as eating or drinking, talking to
another person or on the phone, or being drowsy. Another aspect is the driver’s health condi-
tion, such as brain activity, heart rate, and blood pressure. Besides, the working conditions of
the vehicle, such as speed, brake, and steering wheel movements, are also worth considering.
This information can be captured by cameras, from sensors placed in the cabin, or attached
to the driver. Generally, they can be categorized into two feature groups: non-visual feature
group and visual feature group. This section briefly introduces classical machine learning
and deep learning approaches for driver behavior analysis corresponding to each group.

2.1. Classical machine learning approaches

In the classical machine learning methods [2, 3, 4], the authors frequently focus on a
feature or a limited set of related features of drivers or vehicles and then train classical
machine learning classifiers to predict the drivers’ states. The common characteristics of
these methods are that the number of features is generally small (e.g. only use vehicle
speed, throttle, and acceleration signals from sensors for prediction) or local (e.g. only use
mouth region from the camera for prediction). The classifiers usually are SVM [5], Logistic
Regression [6], or Random Forest [7].
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There are two non-visual features that are usually used for driver behavior analysis,
driver health condition, and vehicle monitoring. The driver’s health condition is analyzed by
measuring brain activity using an electroencephalogram (EEG). Some researchers exploited
EEG information and achieved positive results. In [2], the EEG signals go through a multi-
stage system to extract low-dimensional features, and then these features are fed into an
extra trees classifier with the output of whether the driver is drowsy or not. The authors
conducted experiments on two EEG datasets, Physionet [8] and SVDD [9], reaching the F1

scores of 93.16% and 75.69%, respectively. However, this approach has some drawbacks.
First, personal factors such as age and gender may affect the accuracy of this method.
Another problem is the cumbersome nature of this technique. Since this method requires
the electrode sensor to come into contact with many points on the driver’s head, it may
make driving less safe.

Other approaches use vehicle conditions to monitor driver behavior. For example, by us-
ing information from the steering wheel, the authors may indirectly predict the concentration
level of the driver, whether the driver is distracted or focused on the road. A steering wheel
movement with an unexpectedly great angle of correction may be an indicator of the distrac-
tion. For instance, the authors in [3] categorized steering wheel features into three subsets:
time domain, frequency domain, and state space features. Then, every feature subset was
fed into an ensemble classifier which is a combination of five sophisticated machine learn-
ing methods: linear SVM, radial kernel SVM, nearest neighbor, decision tree, and logistic
regression. The final result is the averaged and dichotomized value from three classification
outputs of these subsets. Although this method got promising results (93.3% specificity on
sleepy driver detection on a private dataset), it and other vehicle features-based methods
are based heavily on the environment’s condition, such as road surfaces or crosswinds, to be
able to work properly.

Recently, the researchers tend to favor visual feature-based approaches over non-visual
ones since by analyzing visual data such as images or videos, the researchers can gain insights
into various aspects of driver behavior, including facial expressions, gaze patterns, head
movements, eye movements, and distracted actions such as using phones, eating, talking
with passengers, and so on. These approaches enable researchers to identify potential risks,
evaluate driver performance, and develop effective methods to improve road safety. Some
of the most remarkable studies were included in [10, 11, 4]. In [4], the authors used eye
features and suggested a drowsiness detection system comprising two main stages: face/eye
detection and tracking, and eye classification. The obtained accuracy of 96.9% over the
private dataset. However, the system’s performance depends on the light conditions, camera
quality, and whether you are wearing glasses.

Another visual feature is used, being mouth features. In [12], by using the differences
between two successive images, the driver’s face region can be extracted, and then the mouth
area would be determined by the region between nostrils and chin, if the mouth area is greater
than a predefined threshold, then the driver may be yawning, hence drowsy or in other word,
low level of concentration. Another method [13] used a multiple-stage system. Firstly, the
driver’s face is detected using a gravity-center template. The mouth corners are detected
and their features are extracted using Gabor wavelets. Finally, the yawning state of the
driver can be detected by applying the linear discriminant analysis classifier on the mouth’s
features. The accuracy of a multiple-stage system is 94.7% over their private dataset. One
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more worth mentioning method is [14], in which the authors also developed a lightweight
multi-stage system to predict if the driver is yawning. This system will detect the mouth
and try to segment it from the face using the color difference between face and lips (mouth);
then, based on the number of pixel differences between yawning mouth and mouth at normal
state as well as its location on the face, the system can predict yawning state and send the
alert. Although these mouth features-based methods may get promising results to some
extent, yawning may not be too far from talking or laughing in terms of mouth shape. As
a result, it makes the system less reliable in real-life scenarios when the driver may interact
with other people in the car.

2.2. Deep learning approaches

Given the fact that classical approaches were only able to focus on a limited group of
visual features in a region such as the mouth or face, it may lead to unsatisfactory results
due to false positives. Deep learning emerged as a potential direction that can address these
issues. By collecting information from features from many regions of the context instead
of focusing on one by one region, it can learn complex structures and combination features
under the hood that classical approaches could not do.

Similar to classical machine learning approaches, non-visual features such as vehicle and
driving features also affect directly deep learning approaches. Vehicle and driving features are
used in [15], in which authors used multiple signals from various aspects of vehicle driving,
including speed, throttle, acceleration, gravity, and Revolutions Per Minute (RPM ); and
transformed them into image signals using overlapped time windows and recurrence plot
technique. Then these image signals were fed into a deep CNN-based classifier with its
output as one of the five driving styles: normal (safe), aggressive, distracted, drowsy, and
drunk driving. The authors evaluated the performance of the proposed approach over the
dataset that comprised over 21 thousand samples, and the obtained result is high with an
accuracy of 99.99% and low computational cost.

On the other side, visual features such as emotion prediction are used in [16]. In [16],
firstly, a mixture of trees with a shared pool of parts model [17] is used to detect and extract
the facial Region of Interest (ROI) as well as the facial landmark points from the frame.
Next, the first VGG16 model used facial ROI to extract high-level features from it, and
the second VGG16 network used facial landmark points to extract corresponding high-level
features. Then, a weighted summation combines this information and predicts the driver’s
final emotional state. The system outperformed all previous state-of-the-art works with
97.3% and 89.7% accuracy on the JAFFE dataset and the MMI dataset, respectively.

The position of the driver’s hands is used in [18]. In this method, a CNN model under-
went initial pre-training using an unsupervised feature learning technique known as sparse
filtering, followed by fine-tuning through a classification process to discern discriminative
features directly from raw image data. The effectiveness of this approach was assessed using
the Southeast University driving posture dataset, encompassing video clips illustrating four
distinct driving postures: normal driving, responding to a cell phone call, eating, and smok-
ing. Comparative analysis against alternative approaches employing diverse image descrip-
tors and classification methods revealed that this method achieved superior performance,
boasting an impressive overall accuracy of 99.78%.

In [19], the authors employ a CNN classifier to identify distraction categories. Given
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that the risk associated with different types of distractions varies, tailored interventions are
needed. To achieve this, an image captured from the vehicle dashboard is input into the
neural network, facilitating the recognition of the specific distraction category. To reduce
training time, the authors explored the utilization of pre-trained weights derived from train-
ing CNN models on the ImageNet dataset. This strategic use of pre-trained weights enhances
efficiency while maintaining the classifier’s precision. By adopting this strategy, using the
VGG19 architecture, an accuracy of 98.98% can be reached on the StateFarm dataset.

To accurately differentiate complex distraction behaviors such as talking on the phone,
drinking, reading, etc., from normal driving behavior, all information inside the cabin must
be considered. They include not only facial features such as mouth and eyes, or body features
such as hands, shoulders, and body posture, but viewing these features from different angles
and channels is also essential. However, aggregating information from many sources may be
challenging because large variances may have an adverse effect on the system’s performance.
Besides, it may make the system increasingly complex. To address these problems, the
Contrastive Learning Framework along with its fusion strategy was introduced [1]. In this
work, Okan et al. used many modalities and views from multiple cameras at once, and a
multi-3D-CNN-model system was adopted to aggregate these signals. Then, the novel deep
contrastive learning strategy was used to train the system on the robust DAD dataset. Based
on that, the system could differentiate between normal driving behavior and anomalous
driving patterns at a high AUC of 0.96%.

From the obtained results of the state-of-the-art driver behavior analysis, we can see
that by analyzing the whole context of the camera’s field of view instead of focusing on a
single region as introduced in the classical machine learning method, deep learning-based
methods can perform very well in many datasets and scenarios in terms of accuracy. More-
over, adopting the deep learning approach on visual features also makes the pipeline more
efficient since the approach mostly only requires a single analyzing stage between input data
(video/image) and output (e.g., driving state, driver behavior) instead of the multi-stage
analyzing approach employed in the classical methods. The contrastive learning approach
is the most prominent among these deep learning methods due to its novel architecture and
good performance. Therefore, we decided to use it as a baseline model for further studies in
the paper.

3. CONTRASTIVE LEARNING FRAMEWORK
AND ITS IMPROVEMENTS

This section details the main components of the contrastive learning framework (CLF),
analyzes its advantages and disadvantages, and proposes several improvements.

3.1. Contrastive learning framework

Contrastive learning framework consists of two stages: training and testing. In the
training stage, CLF consists of three main components: the 3D CNN Base Encoder, the
Projection Head, and the noise contrastive Estimation loss as shown in Figure 1.

The 3D CNN Base Encoder in CLF is a ResNet18 model [20], a robust architecture com-
monly employed in many studies as it stabilizes the training phase and yields better results.
When using the 3D variant of ResNet18, the data fed into the model are video clips of drivers
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Figure 1: Main components of CLF in training time

in normal and abnormal scenarios from a view-modality camera combination. These clips
are small windows with the duration of d = 16 consecutive frames with resolution 112× 112,
sliced from larger videos. Each window clip is called a sample, and every sample is labeled
as the normal or abnormal class. A downsampling method called temporal transformation
was applied to reduce the informational redundancy of consecutive frames in clips. Basi-
cally, given a skip coefficient k, frames in a large video are counted sequentially from 0, then
only valid frames satisfying FrameNumber mod k = 0 for sample data are kept, while all
other frames are excluded. By default, the authors set k = 2 for normal and abnormal data
creation in training time.

After being created using the above technique, these samples are fed into the 3D-ResNet18
Base Encoder model, where they are transformed into 512-dimensional vectors before con-
tinuing to the Projection Head.

The projection head is a multilayer perceptron (MLP) [21], which maps the 512-dimensional
vectors from the output of the 3D-ResNet18 Base Encoder into an intermediate representa-
tion with 128 dimensions. The Algorithm 1 described every layer inside the projection head.
The projection head has 1 hidden layer and ReLU activation. The output 128-dimensional
vector is then L2-normalized before going into the loss function.

Algorithm 1 Multilayer Perceptron in the Projection Head for NCE loss

Input: vector x ∈ R512

Result: vector v ∈ R128

hidden← Linear(input← 512, output← 256)
output← Linear(input← 256, output← 128)
normalize← Normalize(p← 2, dim← 1)
x← hidden(x)
x← ReLU(x)
x← output(x)
v ← normalize(x)
return v

Contrastive representation learning aims to minimize the distances between similar sam-
ples and maximize the distances between dissimilar ones. Following works from [22], the
authors in [1] also used Noise Contrastive Estimation (NCE) to approximate the contrastive
loss in CLF since NCE reduces the computational cost while keeping comparable perfor-
mance, which is suitable for adapting into a training model. The NCE treats positive pairs
between normal samples as data and negative pairs between normal and abnormal samples
as noise and tries to distance data from noise. The Equation (1) shows the formula of NCE.
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Figure 2: The architecture of the CLF system in testing time

LNCE = −EPn [log(h(i, vn))]−mEPa [log(1− h(i, va))], (1)

here, EPn and EPa denote the expected values of the log-posterior distribution of data and
noises, respectively, andm is the number of negative pairs, h(i, vn) is the posterior probability
of the sample i with feature vn being in the distribution of data whereas h(i, va) is the
posterior probability of the sample i being in the distribution of noise

h(i, v) =
Pn(i|v)

Pn(i|v) +mPa(i)
. (2)

In Equation (2), Pn(i|vn) is the probability distribution of similarity between normal
samples, and Pa is the probability of similarity between normal and abnormal samples.

In the testing stage, a fusion strategy combines multiple camera view-modality, as indi-
cated in Figure 2.

The high-level architecture of the CLF system in the testing stage consists of four 3D
CNN Base Encoder branches dedicated to four different camera view-modality combinations.
The four CNN branches use the same architecture but are trained and evaluated separately
on every view-modality input. From every CNN branch k, clip i belonging to that camera
view-modality combination will be classified as normal or abnormal by calculating the cosine
similarity between its output embedding vector fk(xki) and the normal representation vector
vk as shown in Equation (3)

similarityki = vTk
fk(xki)

∥fk(xki)∥2
. (3)

After getting all similarity scores from testing data corresponding to every base encoder
branch, the output results on all four view-modality data will be aggregated together through
a fusion strategy to yield the final prediction. Basically, it is calculated by averaging the
similarity score of clips ith across all four view-modality combinations. If the similarity score
is greater than a γ classification threshold, the sample will be classified as a normal class;
otherwise, it will be classified as an abnormal class.
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3.2. Some proposed improvements on the contrastive learning framework

3.2.1. A proposed CENCE loss NCF loss in weighted combination with cross
entropy loss

Multi-loss training is a popular strategy used in cases where multiple objectives need to
be considered or to generalize the model better. Especially in re-ID problems, researchers
usually use multi-loss training strategies [23, 24] such as a combination of Cross Entropy (CE)
with Triplet or ArcFace loss to improve the performance of the encoder. The CLF adopted
a similar approach to the re-ID problem as the base encoder is treated as a Siamese neural
network to compute comparable compressed visual features from negative and positive input
images. Based on that, the paper proposes the same approach with the weighted combination
of NCE loss and CE loss, which we call CENCE loss. The proposed CENCE loss function
has the form as in Equation (4)

LCENCE = βLNCE + (1− β)LCE , with 0 ≤ β ≤ 1. (4)

Regarding the CE loss component, every sample only belongs to one of the two classes:
normal and abnormal, and the objective is to minimize the negative log-likelihood over the
training set as Equation (5) follows, in which f(zi) is the softmax function

LCE = −
N∑
i=1

yilog(
exp(zi)∑K
j=1 exp(zj)

). (5)

Besides the current projection head for NCE loss (see Algorithm 1), the paper proposes
to add a new head dedicated to CE loss to reduce the potential bottleneck problem in the
single projection head architecture. Detail of the projection head for CE loss is indicated in
Algorithm 2.

Algorithm 2 Proposed dedicated Projection Head for CE loss

Input: 512D vector x
Result: 2D vector v
hidden1← Linear(input← 512, output← 256)
hidden2← Linear(input← 256, output← 64)
output← Linear(input← 64, output← 2)
normalize← Normalize(p← 2, dim← 1)
x← hidden1(x)
x← ReLU(x)
x← hidden2(x)
x← ReLU(x)
x← output(x)
v ← normalize(x)
return v

The CE projection head maps the 512-dimensional vector space into a 2-dimensional
vector space as input of the CE loss. To avoid squeezing into 2D space too quickly, it has
two hidden layers instead of only one, as seen in the NCE projection head.
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3.2.2. Enhanced the 3D CNN base encoder with cross stage partial technique

Much research has been done to improve the capability of CNNs architecture. For ex-
ample, ResNeXt [25] introduced aggregated transformations to the residual block called
cardinalities, which can effectively increase accuracy while decreasing the complexity of the
original ResNet. Another work is CSPNet [26] in which researchers proposed partitioning
the feature map of a base layer into two parts, one part goes through traditional CNN blocks
such as Residual, ResNext, or Dense block, and then fused with the other part through a
cross-stage hierarchy. In this paper, we also adopt that idea into the ResNet backbone to
improve accuracy and speed simultaneously, instead of trading off accuracy for speed and
vice versa.

Figure 3 demonstrates three types of fusion strategies used in CSPNet. In d type: Fusion
last, the second gradient flow went through a residual block and a transition layer before
being fused with the first gradient flow in the later stage. In c type: Fusion first, two gradient
flows were concatenated together before going through a later transition layer. Finally, in b
type: CSPResnet strategy, a hybrid flow between c type and d type was adopted. We will
sequentially conduct experiments with these three fusion strategies in the experiment section
to better understand each strategy.

Figure 3: Three fusion strategies for the Cross Stage Partial technique
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3.2.3. Data imbalancing alleviation

There is a great imbalance between normal and abnormal labels in the dataset, with
the number of normal data nearly four times the number of abnormal data. Therefore,
alleviating this problem may positively impact the model’s performance.

Besides many spatial data augmentation techniques introduced in [1], such as rotating,
horizontal flipping, salty noise, and scaling. We focused more on the temporal transformation
of the data, which is a way to reduce redundancy in data clips. In the original setting, normal
and abnormal data were created using the same step size k = 2. To make the dataset more
balanced, we increase the step size for normal data by 1, and keep the step size for abnormal
data in the original setting as shown in Figure 4.

Figure 4: Improve temporal transformation for the data by using two different step sizes for
normal and abnormal data.

We assumed that in a normal driving state, consecutive frames usually do not contain
too much valuable information. Hence, reducing the number of normal clips by increasing
the step size will not harm the data’s quality. Instead, the model’s performance may benefit
due to a more balanced ratio between normal and abnormal clips.
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4. EXPERIMENTS AND EVALUATION

4.1. Dataset

In this section, we conducted some experiments for our proposals on a subset of the
Driver Anomaly Detection dataset. The reason we chose the sub-DAD dataset instead of
the whole dataset is that we do not have many resources to conduct experiments on the
whole DAD dataset. As a result, we only took a part of this DAD dataset, which we called
the sub-DAD dataset, including 35GiB/95GiB videos on the DAD dataset chosen randomly
and with the same distribution as the DAD dataset. In more detail, the statistics of video
duration between normal and abnormal classes in the DAD and sub-DAD datasets indicated
that the number of normal data is nearly four times that of abnormal data. Furthermore, in
the training data, the normal data is nearly five times the abnormal data.

4.2. Measures

The paper uses the Area Under the ROC curve (AUC) metric for all experiment and eval-
uation. The AUC serves as a metric gauging the binary classifier’s proficiency in discriminat-
ing between classes, providing a concise summary of the Receiver Operator Characteristic
(ROC) curve. A higher AUC value indicates a better model.

4.3. Experimental settings

We use the following experimental strategy to reduce the number of experiments while
still sufficiently evaluating the impact of every modification on the model’s performance.

1. The model is trained with the best settings suggested in [1] and used as the baseline
model. In the baseline model, ResNet18 model is the encoder because of the lightweight
and robust characteristics, the number of epochs being 100, and the minibatch gradient
descent optimizer is used with a batch size of 160 (150 for abnormal clips, and 10 for
normal clips), a momentum of 0.9, and a learning rate of 0.01 for the first 50 epochs
and 0.001 for the later 50 epochs. This came from several trials initially with 250
epochs, but they exceeded 24 hours of training on the Colab environment, which had
NVIDIA Tesla T4 16GB GPU.

2. Next, we developed the proposed improvement directly to the baseline model. The
purpose is to compare the model performance before and after applying the new tech-
nique and compare various hyper-parameter settings within the proposed technique.
Then, we will have the best settings using every proposed technique that will become
our candidates for the final model.

3. At the end, after getting numerous combinations of proposed techniques from the
previous steps, we assessed them one by one till the end to find out the most prominent.

To see the impact of the additional CE loss, the paper started with a dominant value of
NCE loss (β = 0.9 in proportion to the loss combination, and then gradually increased the β
value). Results corresponding to every β value are shown in Table 2, β = 1 indicates that it
is the baseline model (there is only NCE loss being used).



EFFECTIVE OF CONTRASTIVE LEARNING FRAMEWORK 193

Table 2: AUC results with various β value settings in CENCE loss function

Value of β 0.4 0.5 0.6 0.9 1

AUC 0.92 0.94 0.93 0.89 0.92

Interestingly, an equal contribution of the CE and NCE functions to the combined loss
function yielded the best results, while a small proportion of CE in the combined loss de-
graded the model’s performance. An explanation for this is that adding a small amount of
signal from another source may act as noise, and confuse the model, therefore it harms the
model’s capability. However, when the amount of this signal is more significant, its signal
becomes more comprehensive, which benefits the model’s performance.

Furthermore, we studied the influence of the cross-stage partial (CSP) technique by ex-
perimenting sequentially with all three strategies mentioned in [26] to see how they perform,
and the results are shown in Table 3.

Table 3: Results of three CSP fusion strategies on the Base encoder

Fusion Strategy Evaluating time (s) AUC

No fusion (Original gradient flow ) 2132 0.921

Mix fusion (b type) 2110 0.934
Fusion first (c type) 2045 0.909

Fusion last (d type) 2148 0.887

In three fusion strategies, CSPResnet demonstrated a more remarkable ability to increase
the model’s accuracy in the AUC metric and outperformed the baseline by a wide margin
of over 0.012 points. In contrast, fusion first and fusion last fell short after it. These results
were expected, as observed in [26], although the computational cost advantage represented
by evaluation time was still unclear in all of these fusion strategies.

The next experiment will evaluate the technique used to deal with imbalanced data.
Given that the number of normal clips several times exceeds the number of abnormal clips
and the larger the stepsize value is, the fewer clips are created, we proposed using the dif-
ferent stepsize values for normal and abnormal data separately. We tried to increase the
stepsize value for normal clips and keep or decrease the stepsize value for abnormal clips to
alleviate the imbalance problem in the dataset. Table 4 illustrated the AUC results with
various stepsize values for creating normal and abnormal data. There was clear evidence
that downsampling normal data by increasing the stepsize value benefited the model’s per-
formance.

Table 4: Results of data sampling strategies on the model

Sampling Strategy AUC

The Baseline (Normal stepsize = Abnormal stepsize = 2 ) 0.921

Normal stepsize = 3, Abnormal stepsize = 2 0.924
Normal stepsize = 3, Abnormal stepsize = 1 0.906

After conducting separate experiments for each proposal, the paper combined all pro-
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posals with the best settings into a single model to evaluate its capability on the DAD
sub-dataset. The result is shown in Table 5.

Table 5: Results of combining all proposed techniques in baseline model

Model AUC

The Baseline 0.921

Best CENCE loss setting (β = 0.5) 0.940
Best CSP setting (Table 3) 0.934

Best sampling setting (Table 4) 0.924

Combination of CENCE + CSP 0.938

Combination of CENCE + proposed data sampling 0.920

Combination of CENCE + CSP + proposed data sampling 0.940

Interestingly, although both CENCE loss and CSP technique got better AUC results
compared with the baseline, combining these two only made the new combined model better
than the baseline at 0.938 but still fell short in the model with only CENCE loss at 0.940.
Combining all three techniques, including CENCE loss, CSP and proposed data sampling
only improved the result slightly from 0.938 to 0.940 but it still does not overcome the result
of the model with only CENCE loss.

5. CONCLUSION

The paper proposed several improvements to the Contrastive Learning Framework and
analyzed the impact of these proposals through extensive experiments. These experiments
focus on three main factors of the CLF framework: the objective function, the base encoder,
and data imbalance. On the objective function, the paper proposed a weighted combination
between the CE function and the NCE function. By applying weighting to these two loss
functions, the CLF’s capacity improved significantly. On the base encoder, the paper pro-
posed a gradient flow splitting technique called cross-stage partial in which the feature map
is partitioned into two parts, one of which goes through the Residual block, then they are
fused into a new feature map through a cross-stage hierarchy manner. By implementing the
CLF model along with three fusion strategies at the base encoder stage, the paper indicated
that the b type variant strengthened the model’s learning ability by a gain of over 1% on
the AUC metric whereas, in the other two variants, the model’s performance was degraded
significantly. The final factor was the data imbalance problem, which was also dealt with
in this paper by applying temporal transformation using different step sizes for normal and
abnormal data, in which the step size for normal data was greater. The experimental results
showed that all three proposed techniques helped to improve marginal performance in driver
behavior analysis. In the future, we aim to conduct further studies in this field to evaluate
performance in terms of accuracy and resource utilization. Additionally, data quality and
relevance warrant more attention. The most critical features in driver monitoring are found
in the driver’s body and gestures, while the background information inside the car generally
contains fewer valuable features.



EFFECTIVE OF CONTRASTIVE LEARNING FRAMEWORK 195

REFERENCES

[1] O. Kopuklu, J. Zheng, H. Xu, and G. Rigoll, “Driver anomaly detection: A dataset and con-

trastive learning approach,” in Proceedings of the IEEE/CVF Winter Conference on Ap-
plications of Computer Vision, 2021, pp. 91–100.

[2] V. P. B and S. Chinara, “Automatic classification methods for detecting drowsiness using wavelet

packet transform extracted time-domain features from single-channel eeg signal,” Journal of
Neuroscience Methods, vol. 347, p. 108927, 2021.

[3] J. Krajewski, D. Sommer, U. Trutschel, D. Edwards, and M. Golz, “Steering wheel behavior

based estimation of fatigue,” in Fifth International Driving Symposium on Human Factors
in Driver Assessment, Training and Vehicle Design, 01 2009, pp. 118–124.
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