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Abstract. Mass eccentricity, the displacement of a robot’s center of mass, presents significant chal-

lenges for precise control and stability. This paper introduces a novel approach that combines fuzzy

adaptive control with dynamic surface control to improve trajectory tracking in omnidirectional four-

Mecanum-wheeled mobile robots, accounting for mass eccentricity. The proposed control strategy

tackles these challenges by leveraging fuzzy logic’s adaptability and dynamic surface control’s robust-

ness. Simulation results demonstrate that this approach substantially enhances trajectory tracking

accuracy and overall system stability.
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1. INTRODUCTION

The advancement of mobile robotics has greatly benefited from the development of var-
ious wheel configurations and control strategies aimed at improving maneuverability and
stability. Among these, omnidirectional robots equipped with Mecanum wheels have at-
tracted considerable attention due to their exceptional ability to execute complex trajectories
and navigate confined spaces with high precision. This versatility makes Mecanum-wheeled
robots particularly valuable in a wide range of applications, including smart wheelchairs,
forklifts, industrial material handling, and collaborative robots equipped with arms for tasks
in manufacturing environments and exploration.

The omnidirectional movement capability of Mecanum-wheeled robots stems from the
unique design of their wheels. Each wheel features passive rollers arranged at a 45-degree
angle relative to the wheel’s main axis. When the wheel rotates, part of the translational
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force is converted into lateral sliding force, enabling the wheel to move forward, backward,
and sideways simultaneously. A typical Mecanum robot is equipped with four independently
driven Mecanum wheels, each powered by a separate motor. By controlling the rotation of
each wheel in different directions, various movement vectors are achieved, allowing the robot
to navigate in multiple directions, as demonstrated in the study [1, 2]. Kinematic equations
and wheel configurations for Mecanum wheels, along with their various applications, are
outlined in studies [3–5]. The dynamic equations are discussed in papers [6–9], but these
studies only consider robots with constant mass and center of gravity. However, in some
applications, adding a payload alters both the total mass and the center of gravity, which
can affect stability and control performance. Therefore, our study introduces a more com-
prehensive model for a four-Mecanum-wheeled mobile robot, incorporating both kinematic
and dynamic equations that account for mass eccentricity.

Recently, robot motion control algorithms have been explored in studies [10–12], which
propose sliding mode control techniques for robots with uncertain parameters and external
disturbances. Among these, an adaptive terminal sliding mode control scheme has been
suggested for robots equipped with suction mechanisms. Furthermore, the authors in [13]
proposed a PID control algorithm combined with fuzzy logic for systems with variable loads.
Furthermore, the combination of PID and fast terminal sliding mode control, as proposed
in [14,15], incorporates a disturbance observer, where a sliding mode observer is used in the
feedback loop to address instability issues in the feedback channel. Studies [16–18] discuss
motion control methods for robots using fuzzy logic algorithms. Specifically, in [16] an IMU
sensor is used to determine the robot orientation angle, which informs the application of a
fuzzy logic control algorithm. This fuzzy controller consists of 25 rules, with the system’s
errors serving as input signals. The Sugeno model with Mamdani functions is employed for
the fuzzy logic system. The output of the control algorithm is a PWM signal sent to the
wheel motors.

Dynamic surface control has emerged as a robust method of managing non-linear systems,
effectively mitigating the computational complexity associated with traditional sliding mode
control techniques, as seen in typical studies [19–21]. Recent studies have applied dynamic
surface control to autonomous robots, demonstrating significant improvements in trajectory
tracking and disturbance rejection compared to traditional control methods [22–25]. The
simulation results indicate that these algorithms provide good control quality and reduce
oscillations. However, existing studies focus primarily on algorithms for omnidirectional
robots with a fixed center of mass. In studies [26, 27], the authors developed a compre-
hensive dynamic model for a four-wheeled Mecanum robot, emphasizing the effects of mass
eccentricity and friction uncertainty, and employed nonlinear adaptive control to enhance
system performance. Mass eccentricity, which refers to the displacement of the robot’s cen-
ter of mass from its geometric center, poses significant challenges for precise control and
trajectory tracking. Therefore, this study explores the application of fuzzy adaptive control
combined with dynamic surface control for trajectory tracking in mobile robots with mass
eccentricity.

Our primary contributions in this study are: (1) we conduct a comprehensive mathemat-
ical analysis of both the kinematic and dynamic models of four-Mecanum-wheeled mobile
robots (FMWR), incorporating the effects of mass eccentricity using Lagrange equations;
(2) we propose an adaptive fuzzy dynamic surface control (Fuzzy-DSC) algorithm that syn-
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ergizes the benefits of dynamic surface control and fuzzy logic, providing robust trajectory
tracking capabilities under mass eccentricity conditions; and (3) we perform extensive simu-
lations to demonstrate the superior performance of the proposed control algorithm compared
to conventional baseline controllers.

The remainder of this paper is organized as follows. Section 2 discusses the kinematic and
dynamic modeling of the FMWR, taking into account the eccentricity of the mass. Section 3
explains the design and implementation of the Fuzzy-DSC algorithm. Section 4 presents
simulation results and evaluates the performance of the proposed controller compared to the
baseline methods. Finally, Section 5 concludes the paper with a summary of the findings
and implications.

2. ROBOT MODEL WITH MASS ECCENTRICITY

The model of the four-Mecanum-wheeled mobile robot is illustrated in Figure 1. It
consists of four Mecanum wheels driven by independent motors, arranged symmetrically.
Each wheel has rollers angled at 45 degrees relative to the wheel’s main axis. As the wheel
moves, a portion of the translational force is converted into lateral sliding force, allowing the
robot to move simultaneously forward and sideways without altering its heading angle [28].

Figure 1: Robot model incorporating mass eccentricity

Here, the XOY coordinate system represents the inertial reference frame, while the
XMOMYM coordinate system is fixed to the robot’s center, with the robot’s heading angle

ϕ rotating around the ZM axis. The geometric center of the robot is P =
[
x y

]T
and the

center of mass position of the robot is represented as P ′ =
[
x− d1 y − d2

]T
with their

respective offsets given by d1 and d2.
The kinematic equations in the inertial coordinate system are described as follows [26]

η̇R = H(ϕ)η̇, (1)
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where

• η̇R =

ẋRẏR
ϕ̇R

 is the velocity vector in the robot’s frame,

• η̇ =

ẋẏ
ϕ̇

 is the velocity vector in the inertial frame,

• H(ϕ) is the coordinate transformation matrix,

H(ϕ) =

 cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1

 .
The total kinematic energy of the entire robot can be computed as

T =
1

2

[
mbṖ

T Ṗ + Jbϕ̇
2 +

4∑
1

mwi(rψ̇i)
2 +

4∑
1

Jwiψ̇i
2

]
, (2)

where mb and mwi is the mass of the robot and the i-th wheel, Jb and Jwi is the inertial
moment of the robot and the i-th wheel with respect to its axis, r is the wheel radius and ψi

is angular velocity of the i-th wheel. Assuming the robot moves on a flat surface, the total
potential energy V = 0. The Lagrangian function becomes L = T−V = T . According to the
Euler-Lagrange equations, the complete dynamic equations are determined as follows [26]

d

dt

(
∂L

∂η̇i

)
− ∂L

∂ηi
= Qi, i = 1, 2, 3, (3)

where ηi is the generalized coordinate for the i-th degree of freedom, Qi represents the force
or moment acting on the i-th degree of freedom.

Differentiating the Lagrangian function according to (3), we obtain

Q1 =
[
τ1 − r sgn

(
ψ̇1

)
ζ1

] [1
r
(sinϕ− cosϕ)

]
−
[
τ2 − r sgn

(
ψ̇2

)
ζ2

] [1
r
(cosϕ+ sinϕ)

]
+
[
τ3 − r sgn

(
ψ̇3

)
ζ3

] [1
r
(cosϕ− sinϕ)

]
+
[
τ4 − r sgn

(
ψ̇4

)
ζ4

] [1
r
(cosϕ+ sinϕ)

]
,

(4)

Q2 =
[
τ2 − r sgn

(
ψ̇2

)
ζ2

] [1
r
(cosϕ− sinϕ)

]
−
[
τ1 − r sgn

(
ψ̇1

)
ζ1

] [1
r
(sinϕ+ cosϕ)

]
+
[
τ3 − r sgn

(
ψ̇3

)
ζ3

] [1
r
(sinϕ+ cosϕ)

]
+
[
τ4 − r sgn

(
ψ̇4

)
ζ4

] [1
r
(sinϕ− cosϕ)

]
,

(5)

Q3 = (τ1 + τ2 + τ3 + τ4)

[
−
√
2

r
l sin

(π
4
− α

)]
+

[
sgn

(
ψ̇1

)
ζ1 + sgn

(
ψ̇2

)
ζ2 + sgn

(
ψ̇3

)
ζ3 + sgn

(
ψ̇4

)
ζ4

] [√
2l sin

(π
4
− α

)]
,

(6)
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where ζi is the frictional force of the i-th wheel with the floor.

From equation (4),(5) and (6), we can derive the complete dynamic equation in the
presence of center of mass offset P ′,

M(η)η̈ + C(η, η̇)η̇ +Dδ = Dτ + τd, (7)

where τ =
[
τ1 τ2 τ3 τ4

]T
is the moment applied to each wheel, τd is unknown general

external disturbances, r is the radius of the wheel, η̇ is the velocity vector of the robot, η̈ is
the acceleration vector of the robot,

ζ =
[
ζ1 ζ2 ζ3 ζ4

]T
, δ = rUζ, U = diag

[
sgn(ψ̇1) sgn(ψ̇2) sgn(ψ̇3) sgn(ψ̇4)

]
,

M =

m1 0 m3

0 m1 m4

m3 m4 m2

 , m1 = mb + 4

(
mw +

J

r2

)
,

m3 = mb (d1 sinϕ+ d2 cosϕ) , m4 = mb (−d1 cosϕ+ d2 sinϕ) ,

m2 = mb

(
d21 + d22

)
+ Jb + 8

(
mw +

J

r2

)
l2 sin2

(π
4
− α

)
,

C =

0 0 c1
0 0 c2
0 0 0

 , c1 = mbϕ̇ (d1 cosϕ− d2 sinϕ) , c2 = mbϕ̇ (d1 sinϕ+ d2 cosϕ) ,

D =
1

r


−(c− s) −(s+ c) −

√
2l sin

(
π
4 − α

)
−(c+ s) −(s− c) −

√
2l sin

(
π
4 − α

)
c− s s+ c −

√
2l sin

(
π
4 − α

)
c+ s s− c −

√
2l sin

(
π
4 − α

)

T

, s = sinϕ, c = cosϕ.

Within the scope of this paper, we assume that frictional forces are known and the
primary source of uncertainty arises from the eccentricity of the mass, without external
disturbances (τd = 0). Control systems addressing general uncertainties and disturbances
are discussed in [29].

3. CONTROL ALGORITHM DESIGN

3.1. Dynamic surface control algorithm

Dynamic Surface Control (DSC) is a nonlinear control technique designed to handle
uncertainties in system dynamics while reducing the complexity associated with traditional
back-stepping or sliding mode control. DSC involves defining a dynamic sliding surface
within the state space of the system [19]. The goal is to design a control law that drives
the system’s state to converge to this surface, ensuring both stability and performance. The
dynamic sliding surface is designed on the basis of the system’s nonlinear characteristics
and the desired trajectory. Subsequently, the control law is formulated to ensure that the
system’s trajectory remains on this surface.
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Consider a nonlinear dynamical system with the following form{
ẋ1 = x2,

ẋ2 = u+ f(x),
(8)

where f and ∂f
∂x1

are continuous functions. Our control objective is to use the control signal
u to drive x1 and x2 to track the desired trajectory x1d and x2d.

Define the first sliding surface S1 = x1 − x1d.
Define the variables x̄2 = ẋ1d −K1S1, with the virtual control signal x2d tracked to x̄2

through a first-order inertia element acting as a filter with x2d(0) = x̄2(0) and τ ′ being a
designed time constant

τ ′ẋ2d + x2d = x̄2. (9)

Define the second sliding surface S2 = x2 − x2d.
The derivative of the sliding surface S2 is obtained as follows

Ṡ2 = −ẋ2d + u+ f(x). (10)

Define the variables based on the full dynamic equations (7) and (8) with the control
input τ {

u =M−1Dτ,

f(x) = −M−1 (Cη̇ −Dδ) ,
(11)

where we define η = x1, the generalized coordinate vector of the robotic system.
Combined with equation (9), the control signal can be designed as follows

τ = −DT
(
DDT

)−1
[
M

(
− x̄2 − x2d

τ
+K2S2

)
− Cη̇ −Dδ

]
. (12)

This controller works on the dynamical level, where the pose and velocity are feed-backed.
Using the first and second sliding surfaces, we determine

Ṡ1 = −K1S1 + S2, (13)

Ṡ2 = −K2S2. (14)

We choose a Lyapunov candidate function to prove the stability of the system

V =
ST
1 S1 + ST

2 S2
2

≥ 0. (15)

The derivative of the Lyapunov function

V̇ = ST
1 Ṡ1 + ST

2 Ṡ2. (16)

Substituting (13) and (14) into (16), we obtain the following

V̇ = −K1S
T
1 S1 −K2S

T
2 S2 + ST

1 S2. (17)

We use the following inequality
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ST
1 S1 + ST

2 S2
2

≥ ST
1 S2. (18)

Substituting into equation (17), we obtain

V̇ ≤ −(K1 −
1

2
I)ST

1 S1 − (K2 −
1

2
I)ST

2 S2. (19)

Here, K1 and K2 are control parameters to be designed such that V̇ is negative definite.
Therefore, if K1 >

1
2I and K2 >

1
2I element-wise, V̇ < 0 for all nonzero S1 and S2. Thus,

S1 → 0 and S2 → 0 as time t→∞, proving the asymptotic stability of the system according
to the Lyapunov stability theorem. In particular, if the errors are not zero, the DSC method
will damp the system’s energy (V̇ < 0), thereby regulating the errors. The states of the
system x1 and x2 track the desired trajectory x1d and x2d, respectively, over time t → ∞.
Therefore, we obtain the following theorem.

Theorem 1. The nonlinear system (7) under the Dynamic Surface Control law (12) is
guaranteed to track the desired trajectory asymptotically, ensuring that the tracking errors
S1 = x1 − x1d and S2 = x2 − x2d converge to zero as t→∞, provided that the control gains
K1 and K2 satisfy K1 >

1
2I and K2 >

1
2I.

The proposed DSC algorithm is summarized below.

Algorithm 1: Dynamic Surface Control (DSC)

Data: Desired trajectory (x1d, x2d), current state (x1, x2), control parameters
(K1,K2, τ

′)
Result: Control signal τ

1 Compute sliding surfaces:
2 S1 ← x1 − x1d;
3 S2 ← x2 − x2d;
4 Compute virtual control:
5 x̄2 ← ẋ1d −K1S1;

6 ẋ2d ← x̄2−x2d
τ ′ ;

7 Compute system matrices: D,M,C;
8 Compute control input:
9 η̇ = x2;

10 τ ← −DT (DDT )−1 [M(−x̄2 − x2d/τ +K2S2)− Cη̇ −Dδ];
11 return τ ;

3.2. A hybrid approach: fuzzy adaptive control and dynamic surface control

Dynamic surface control is recognized for its stability in managing uncertain parameters
that vary within certain limits. This stability is most effectively achieved when the state of
the system is on or near the sliding surface. To ensure the stability of the system, careful
selection of controller parameters is essential: k1 directly influences the quality of the robot’s
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trajectory tracking, while k2 affects both the rate of convergence to the sliding surface and
the maintenance of stability on it.

However, as the robot’s center of mass shifts during operation, it can alter the system’s
behavior and potentially compromise stability. Therefore, to optimize trajectory tracking
and maintain system stability, it is crucial to adjust the controller parameters based on
different operational conditions.

To address this issue, the paper proposes using fuzzy logic to tune the controller parame-
ters. This method enables the robot to adapt to changes in its model, thereby enhancing the
DSC controller’s ability to maintain stability and performance despite variations in system
parameters. The control structure diagram of the system is illustrated in Fig. 2

Figure 2: Schematic of the dynamic surface control system combined with fuzzy adaptation

The fuzzy tuning controller is constructed based on the Sugeno fuzzy model [30]. The
input signals for this controller are the trajectory tracking error and its time derivative. The
output signals, K1 and K2, are selected according to a rule-based inference system. The
structure of the input and output signals for the fuzzy rule is shown in Figure 3 where N
represents negative, P denotes positive, Z indicates zero, V S is very small, S stands for
small, M signifies medium, B refers to big, and V B is very big. For example, the values of
the outputs K1 = diag(k1, k1, k1) and K2 = diag(k2, k2, k2) (k1, k2 >

1
2) can be designed as

in Table 1.

Figure 3: The input and output signals for the fuzzy rule

Building on the preceding discussions and the definitions of the input and output mem-
bership functions, the rule base can be established as follows.
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Table 1: The values of the output variables

Values Meaning k1 k2
VS Very small 2 5
S Small 4 10
M Medium 10 15
B Big 13 20
VB Very big 20 30

IF (e is NB) and (ė is NB), THEN (k1 is M)(k2 is M)
IF (e is NS) and (ė is NB), THEN (k1 is S)(k2 is B)
IF (e is Z) and (ė is NB), THEN (k1 is VS)(k2 is VB)
IF (e is PS) and (ė is NB), THEN (k1 is S)(k2 is B)
IF (e is PB) and (ė is NB), THEN (k1 is M)(k2 is M)
IF (e is NB) and (ė is NS), THEN (k1 is B)(k2 is S)
IF (e is NS) and (ė is NS), THEN (k1 is M)(k2 is M)
IF (e is Z) and (ė is NS), THEN (k1 is S)(k2 is B)

IF (e is PS) and (ė is NS), THEN (k1 is M)(k2 is M)
IF (e is PB) and (ė is NS), THEN (k1 is B)(k2 is S)

IF (e is NB) and (ė is Z), THEN (k1 is VS)(K2 is VB)
IF (e is NS) and (ė is Z), THEN (k1 is B)(k2 is S)
IF (e is Z) and (ė is Z), THEN (k1 is M)(k2 is M)
IF (e is PS) and (ė is Z), THEN (k1 is B)(k2 is S)

IF (e is PB) and (ė is Z), THEN (k1 is VS)(k2 is VB)
IF (e is NB) and (ė is PS), THEN (k1 is B)(k2 is S)
IF (e is NS) and (ė is PS), THEN (k1 is M)(k2 is M)
IF (e is Z) and (ė is PS), THEN (k1 is S)(k2 is B)

IF (e is PS) and (ė is PS), THEN (k1 is M)(k2 is M)
IF (e is PB) and (ė is PS), THEN (k1 is B)(k2 is S)
IF (e is NB) and (ė is PB), THEN (k1 is M)(k2 is M)
IF (e is NS) and (ė is PB), THEN (k1 is S)(k2 is B)
IF (e is Z) and (ė is PB), THEN (k1 is VS)(k2 is VB)
IF (e is PB) and (ė is PB), THEN (k1 is M)(k2 is M)
IF (e is PS) and (ė is PB), THEN (k1 is S)(k2 is B)

Remark 1: In this paper, the fuzzy controller’s parameters are carefully designed offline to
ensure that the DSC loop achieves stability under all conditions. Specifically, our fuzzy rules
guarantee thatK1 andK2 are nonzero and large enough. On the other hand, there are several
online real-time adaptive tuning mechanisms that could further improve the performance of
the proposed method. This can be accomplished by incorporating self-tuning methods, such
as Neuro-Fuzzy Systems (NFIS), Genetic Algorithms (GA), or Reinforcement Learning (RL),
which allow for dynamic adjustment of fuzzy parameters based on real-time feedback. Our
paper instead focuses on the stability analysis of the proposed Fuzzy-DSC framework.
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4. SIMULATION RESULTS AND ANALYSIS

This section presents MATLAB/Simulink simulation results to illustrate the effectiveness
of the proposed control scheme. We conducted three different simulation experiments: figure-
eight trajectory tracking without mass eccentricity, figure-eight trajectory tracking with mass
eccentricity, and circular trajectory tracking with mass eccentricity.

The parameters of the four-Mecanum-wheeled mobile robot are obtained from our real
system and are as follows

m = 30 (kg), mw = 0.9 (kg),
J = 5 (kg.m2), Jw = 0.1 (kg.m2), g = 0.2 (m), h = 0.3 (m), l = 0.25 (m), r = 0.075 (m),

G = 9.8 (m/s2), µ = 0.01, τ ′ = 0.02, ζ =
[
0.05 0.05 0.05 0.05

]T
(N).

We compare the performances of three different controllers:

1. Dynamic Surface Control (DSC) with fixed parameters

K1 = diag
(
10 10 10

)
, K2 = diag

(
20 20 20

)
.

2. Fuzzy and sliding mode control (Fuzzy-SMC) as formulated in [31] with our own fuzzy
rule, later included in the last scenario.

3. Our Fuzzy-DSC as designed in Section 3.

The control algorithms are simulated using MATLAB/Simulink, with our architecture illus-
trated as a block diagram in Fig. 4.

Figure 4: Block diagram of the simulation setup

4.1. Figure-8 trajectory tracking without mass eccentricity

In the first simulation scenario, the mass of the robot and its center of gravity remain
constant d1 = d2 = 0 and ∆m = 0. The reference trajectory for the robot to follow is defined
as follows

x = 10 sin(t), y = 10 sin(2t), ϕr =
π

4
.
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As shown in the simulation results in Fig. 5, both control algorithms allow the robot to
closely and stably follow the reference trajectory. Furthermore, the Fuzzy-DSC algorithm
achieves a faster tracking speed. Fig. 6 illustrates the pose tracking error (a), velocity

Figure 5: Visualization of figure-8 trajectory without mass eccentricity

tracking error (b), and adaptive parameters (c). Table 2 presents the deviations observed in
the calculated trajectory of the robot. The DSC algorithm exhibits larger trajectory tracking
errors, particularly at the orbital curves, with a y-axis error is 0.22 (m), the tracking error
of the Fuzzy-DSC algorithm is 0.09 (m).

Figure 6: Figure-8 tracking performance without mass eccentricity

Table 2: Deviations in robot trajectory during movement with d1 = d2 = 0 and ∆m = 0

Times (s) DSC Error (%) Fuzzy-DSC Error (%) x-axis y-axis

0 100.00% 0.00% 100.00% 0.00%
1 0.97% 3.03% 0.27% 1.34%
2 0.78% 1.40% 0.32% 0.99%
2.5 0.60% 3.05% 0.23% 1.37%
3 0.27% 1.90% 0.09% 0.73%
4 0.49% 2.98% 0.24% 1.39%
5 0.80% 0.60% 0.33% 0.59%
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4.2. Figure-8 trajectory tracking with mass eccentricity

In the second simulation scenario, we change the total mass of the robot and its center
of gravity d1 = d2 = 0.1 (m) and ∆m = 5 (kg). Fig. 7 shows that when the robot’s mass

Figure 7: Visualization of figure-8 trajectory with mass eccentricity

and center of gravity change, both algorithms can still control the robot to move along
the reference trajectory while maintaining stable operation. However, there is a noticeable
deviation, as illustrated in Fig. 8(a), where the DSC algorithm exhibits a larger trajectory
tracking error of 0.33 (m). Fig. 8(b) demonstrates that the Fuzzy-DSC algorithm achieves
better velocity tracking performance. Furthermore, the Fuzzy-DSC algorithm adjusts the
controller parameters K1, K2, as shown in Fig. 8(c), to adapt to the model changes, resulting
in improved control quality with a smaller tracking error is 0.11 (m).

Figure 8: Figure-8 tracking performance with mass eccentricity

Table 3 presents the deviations observed in the calculated trajectory of the robot, con-
sidering the eccentricity of the mass. The results indicate an improvement in control quality
using the Fuzzy-DSC algorithm.

4.3. Circular trajectory tracking with mass eccentricity

In the third simulation scenario, we attempt to track a circular trajectory defined as xr =
10 sin(2π15 t), yr = 10 cos(2π15 t), ϕr = π

4 to evaluate the Fuzzy-DSC algorithm. Moreover, we
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Table 3: Deviations in robot trajectory during movement with d1 = d2 = 0.1 (m) and
∆m = 5 (kg)

Times (s) DSC Error (%) Fuzzy-DSC Error (%) x-axis y-axis

0 100.00% 0.00% 100.00% 0.00%
1 1.35% 3.30% 0.28% 1.42%
2 0.87% 1.41% 0.33% 1.00%
2.5 0.67% 3.33% 0.25% 1.39%
3 0.31% 2.18% 0.08% 0.74%
4 0.50% 3.23% 0.25% 1.44%
5 0.89% 0.62% 0.34% 0.61%

compare it with a Fuzzy-SMC baseline, inspired by adaptive sliding mode control algorithms
in [10–12]. The results demonstrate that the Fuzzy-DSC algorithm effectively tracks the
circular trajectory, demonstrating its robustness and versatility in handling diverse trajectory
profiles (Fig. 9). The trajectory errors recorded at various time points in Table 4 indicate
that the Fuzzy-DSC algorithm offers better control quality compared to both conventional
DSC and Fuzzy-SMC. Meanwhile, in Fig. 9(c), Fuzzy-SMC exhibits significant chattering
in velocity tracking. By analyzing the errors between the desired and actual trajectories
over time, it becomes evident that the Fuzzy-DSC approach achieves more accurate and
consistent path tracking, highlighting its effectiveness in enhancing control performance.

Figure 9: Circular trajectory tracking performance with mass eccentricity

Table 4: Movement error of the robot along a circular trajectory with d1 = d2 = 0.1 (m),
∆m = 5 (kg)

Times (s) DSC Error (%) Fuzzy-DSC Error (%) Fuzzy-SMC Error (%)

x-axis y-axis x-axis y-axis x-axis y-axis

0 100.00% 0.00% 100.00% 0.00% 100.00% 0.00%
1 0.61% 0.04% 0.06% 0.03% 0.58% 0.05%
2 0.11% 0.11% 0.05% 0.05% 0.13% 0.11%
2.5 0.09% 0.13% 0.04% 0.06% 0.09% 0.11%
3 0.06% 0.15% 0.02% 0.06% 0.07% 0.16%
4 0.04% 0.16% 0.02% 0.07% 0.05% 0.17%
5 0.07% 0.14% 0.03% 0.06% 0.06% 0.16%
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Remark 2: Similarly to other controller design methods [10–12], it is essential to tune
parameters, such as fuzzy rules in our case, to achieve optimal performance. If the system
dynamics becomes more complex (e.g., adding more states or inputs), the fuzzy controller
might require a significantly larger rule base, complicating the design and tuning process. A
possible direction for further research is the development of self-tuning adaptive mechanisms
that could potentially guarantee the stability of the entire system.

Remark 3: In this paper, we do not consider skidding or sliding effects on the movement of
four-Mecanum-wheeled robots [32]. These effects are often treated as lumped disturbances
and handled using an observer [28]. Instead, we focus on analyzing the stability of the entire
dynamical system in the context of challenges such as mass eccentricity. The principles that
enable a fuzzy controller to adjust in real-time based on sensor inputs (e.g., wheel speed,
surface roughness) and dynamically modify the control inputs are of great interest.

5. CONCLUSION

This paper demonstrates the effectiveness of combining fuzzy adaptive control with dy-
namic surface control in addressing the challenges of trajectory tracking for four-Mecanum-
wheeled mobile robots with mass eccentricity. The proposed approach provides a robust
solution for managing the complexities introduced by mass eccentricity, resulting in provable
improved stability and accuracy in trajectory tracking, as evidenced by extensive simula-
tions. Future work will focus on refining the proposed control methodology and conducting
experiments in real-world robotic systems.
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