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Abstract. Barrier coverage is a well-known model within the Internet of Things Wireless Sensor
Networks (WSNs) domain, playing a vital role in various military and security applications. It is
particularly important for monitoring and detecting moving objects across a sensor field. This re-
search paper examines the fundamental aspect of barrier coverage in WSNs, with a specific focus on
the maximal exposure path (MaEP) problem, which is classified as NP-Hard. The MaEP problem
involves identifying an optimal coverage path that either conserves energy or minimizes energy usage
while maintaining a short traversal distance. Previous studies in this area primarily relied on prob-
lem formulations based on Euclidean distance metrics and were often addressed using computational
geometry techniques. However, these methods encounter significant difficulties when applied to large-
scale, complex, and highly sophisticated WSNs. To address this, our research reinterprets the MaEP
problem through the lens of the integral of sensing field intensity. We then introduce an improved
genetic algorithm, named MIGA, specifically tailored to efficiently solve the MaEP problem. The
polynomial complexity and convergence of the proposed MIGA are mathematically obtained. More-
over, to evaluate the effectiveness of this algorithm, we conduct a comprehensive series of experiments
and provide detailed experimental results.

Keywords. Wireless sensor networks, barrier coverage, maximal exposure path, improved genetic
algorithm.

1. INTRODUCTION

Barrier coverage in wireless sensor networks (WSNs) has gained attention as a model
that creates a virtual boundary using sensors to detect movement across designated areas,
such as borders or restricted zones [1-4]. Unlike full area coverage, which monitors every
point, barrier coverage forms a sensor line to detect intrusions, making it crucial for security,
surveillance, and environmental monitoring. Its effectiveness depends on sensor placement,
range, and energy use to maintain continuous detection while minimizing resource consump-
tion [1, 5, 6]. Heterogeneous directional wireless sensor networks (HeDWSNs) efficiently
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monitor large areas using sensors with directional capabilities [7]. These sensors focus on
specific regions, enhancing wide-area coverage and precision. However, their directional na-
ture presents challenges in optimizing coverage and ensuring critical areas receive sufficient
exposure [8]. A key barrier coverage issue in HeDWSNs is the Maximal Exposure Path
(MaEP) problem, which identifies a path maximizing sensor exposure [1]. This is vital for
applications such as surveillance, where optimal exposure enhances security by detecting
intruders, and search-and-rescue, where it improves the chances of locating individuals in
distress. In wildlife monitoring, maximizing exposure aids in tracking movements and study-
ing migration, underscoring the need for efficient MaEP solutions. The MaEP problem in
HeDWSNSs is challenging due to sensor heterogeneity in coverage range, energy use, and
orientation, creating a non-uniform coverage landscape. The directional nature of sensors
further complicates optimization, as coverage is limited to specific orientations. These fac-
tors make it difficult to find a path that maximizes exposure while addressing coverage gaps.
Additionally, the MaEP problem is NP-hard [9], making exhaustive search infeasible for
large networks, while metaheuristic approaches offer near-optimal solutions. Particle Swarm
Optimization (PSO) is a widely explored metaheuristic for solving MaEP [10], excelling in
balancing exploration and exploitation in large search spaces. However, PSO tends to con-
verge prematurely to local optima, especially in irregular search landscapes like HeDWSNs.
This issue is worsened when coverage distribution is highly non-uniform or when multiple
near-optimal solutions exist. Moreover, PSO’s performance is sensitive to parameter tuning,
requiring significant effort to optimize, reducing its robustness in critical applications.

This paper introduces an improved genetic algorithm, MIGA, to solve the MaEP problem
in HeDWSNs. Genetic algorithms (GAs) are effective for complex optimization problems as
they rely on the principles of evolution—selection, crossover, and mutation—to iteratively
improve potential solutions. However, standard GAs may struggle with convergence speed
and solution quality. To overcome these limitations, the proposed MIGA incorporates several
enhancements, including: adaptive crossover and mutation to maintain population diversity
and prevent premature convergence and local search integration to refine solutions further
and ensure optimal path discovery. Extensive simulations in various HeDWSN scenarios
demonstrate MIGA’s superiority in solution quality, convergence speed, and scalability. Our
improved GA-based approach not only addresses the limitations of traditional methods but
also provides a practical and efficient solution for real-world applications. By optimizing the
exposure path while considering the heterogeneous and directional nature of sensors, our
method enhances the network’s overall performance, ensuring reliable detection and efficient
resource utilization. This approach represents a significant step forward in solving the MaEP
problem and underscores the potential of advanced GA-based techniques in improving the
effectiveness of HeEDWSNs. To the end, our contributions are summarized as follows:

o We formulate the problem of finding the Maximal Exposure Path under the probabilis-
tic sensing coverage model within HeDWSNs.

e We propose an efficient algorithm, referred to as MIGA, that draws inspiration from
genetic algorithms with adaptive individual initialization, crossover and mutation op-
erators, and an enhancing local search technique.

e The convergence of our proposed algorithm is mathematically obtained. Furthermore,
numerical results demonstrate that the proposed method outperforms the existing lit-
erature in solution quality while requiring competitive computational resources.
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The rest of this paper is organized as follows Section 2 presents a survey of related liter-
ature. Preliminaries and problem formulation for the maximal exposure path are discussed
in Section 3. Section 4 introduces the proposed algorithm, while experimental results are
described and analyzed in Section 5. Finally, Section 6 draws the conclusions of the paper.

2. RELATED WORKS

This section presents an overview of relevant research on the barrier coverage problem in
WSNs, focusing on the MaEP with significant practical relevance and numerous applications.
In general terms, barrier coverage issues in WSNs are generally divided into two main do-
mains [1, 5]: constructing intrusion barriers and identifying penetration paths. For intrusion
barriers, a sensor network may have to ensure k-barrier coverage across a belt-shaped region,
meaning any crossing path must pass through at least k& different sensors. A crossing path is
a trajectory starting on one side of the sensor field and ending on the other. This topic has
received extensive attention [3, 4, 11, 12]. Fan et al. [11] addressed the barrier construction
problem in directional sensor networks with an efficient scheme utilizing adjustable sensing
ranges and combined detection from neighboring nodes. This minimizes costs and extends
network lifetime compared to mobile sensor-based systems. The studies in [3, 4, 12] examine
strategies for building strong barriers. Ma et al. [12] propose an exact algorithm to verify
barrier existence using feasible orientation ranges and an efficient selection method. Binh
et al. [4] develop a genetic algorithm-based metaheuristic for constructing k-strong barriers,
while [3] presents a polynomial-time exact method for k-strong coverage in HeWMSNs.

The goal of penetration path identification is to find a crossing path where every point
meets a predefined coverage requirement, differing from intrusion barrier construction, which
ensures certain points on all paths satisfy coverage criteria. Coverage requirements fall into
two categories: the best-case and worst-case coverage paths, also known as the maximal
and minimal exposure paths (MEP), widely studied for evaluating network monitoring ef-
fectiveness [10, 13-15]. MEPs have been thoroughly investigated [9, 16, 17], with studies
introducing efficient algorithms to complement maximal exposure solutions. The Maximal
Breach Path problem, enhancing network robustness, was addressed in [18], while [19] trans-
formed MEP into a high-dimensional optimization problem, proposing the HPSO-MMEP
algorithm. Extending this research, the authors in [17] introduce the MEP in real-world set-
tings with obstacles, proposing the Family System-based Evolutionary Algorithm to tackle
challenges posed by irregular network landscapes. For the maximal exposure path problem,
which respectively evaluates the network’s capacity to detect intruders or maximize monitor-
ing over a path [9, 10, 13]. The MaEP problem is proven as NP-Hard in [9], thus requiring
heuristic/metaheuristic or approximation techniques for feasible solutions. This foundational
study provided a benchmark for handling MaEP complexity, influencing subsequent research.
The authors in [13] examine best-case and worst-case coverage issues for homogeneous cam-
era sensor networks in complex areas, aiming to identify a maximal support path or breach
path within these regions. Using a polygon sensing model, they developed an efficient al-
gorithm with low time complexity for each problem, demonstrating that these algorithms
yield optimal solutions when the complex region has a known convex partition. The work in
[13] differs from that in [10], where Thien et al. define the best coverage path, or maximal
exposure path, as the integral of the sensing coverage intensity function. The authors then
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propose the MaEP-PSO, inspired by the PSO. However, the solution quality achieved by
MaEP-PSO could be further improved, as it tends to get trapped in local optima or suffer
from premature convergence. Accordingly, it is imperative to develop a novel method to
effectively address the MaEP problem in HeDWSNs. Although significant research has been
conducted on WSN coverage and the MaEP problem, few solutions have been specifically
developed for heterogeneous directional wireless sensor networks. This study addresses this
gap by introducing MIGA, a novel optimization approach tailored to MaEP in HWSNs.

3. PRELIMINARIES AND PROBLEM FORMULATION

3.1. Preliminaries
3.1.1. The attenuated directional sensing model

The sensing model describes the ability of a sensor node to detect or cover points or
objects. Various sensing models exist, and a shared characteristic among many is that the
quality or strength of the sensor’s detection decreases with increasing distance from the sensor
node. A fundamental example of such a model is the Boolean disk sensing model, which
assumes that a sensor, denoted as S, can detect an object, denoted as O, if the Euclidean
distance d(S, O) between the sensor’s position and the object’s location is within the sensor’s
sensing range r. However, this paper explores a more accurate and widely used sensing model
known as the “attenuated directional sensing model”. The mathematical formulation that
defines the sensing function of sensor s for the attenuated direction model is as follows

. c . 50.Wd
(5.0) = {mm{l, W}’ if d(S,0) <r and cosa < d(s,mo/) 1)

0, otherwise.

where C' is a constant that depends on the characteristics of the sensor, and p is the atten-
uation exponent, which is influenced by both the SGIE)I‘ and the surrounding environment,
« is half of the sensing angle of the sensor s, and Wd is the unit vector whose direction

—)
coincides with the bisector of the sensing angle. The condition cos a < ‘?S'Vg)d means that

—
is greater than the angle between 5@ and Wd, hence ensures that object O lies within the
sensing angle of sensor. In summary, the sensing model of sensor s can be characterized by
a 7-tuple of components

s:=(z,y,C, p,r,a, f), (2)

where (x,y) is of the coordinates of the sensor position, C, i, a, 7 are previously explained,
and g = Z(Wd, 57;3) is the angle between V[7c>l and the horizontal axis, also called the orien-
tation angle of the sensor. An example of this sensing model is depicted in Figure 1.

We further explore the ability to simultaneously sense or cover multiple sensor nodes
at a specific point within their sensing field, a concept commonly known as “the sensing
intensity model”. In a WSN, each sensor node is equipped with a maximum transmission
power, allowing it to communicate with all nodes within its transmission range. Therefore,
we consider a WSN consisting of a set of sensor nodes S = {s1,...,sn}, the total exposure of
an object within the sensing field, or at any specific point in the sensor field, can be defined
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Figure 1: The attenuated directional sensing model

as the sum of all individual exposure values, as expressed by the following equation

N

E(S,0) =) f(s1,0). (3)

=1

3.1.2. Exposure of a crossing path and the maximal exposure path

Exposure refers to the ability of the sensor network to detect an object as it moves
through the sensing field. It can be described as the expected average capability to observe
a target within the sensor field. Formally, exposure is the integral of a sensing function,
which usually depends on the distance from the sensors along a path that starts at an initial
point B = (zp,yp) and ends at a destination point D = (zp,yp). A path connecting these
points is described as a continuous function, denoted as P(t) = (z(t),y(t)), with boundary
conditions P(0) = B and P(T') = D. The exposure along it is defined in Definition 1.

Definition 1. (Exposure of a path) Let P(t) = (x(t), y(t)) be a path connecting two points
B and D within a HeWDSN. The exposure along this path is defined as the total exposure
encountered by the sensor network as an object moves along this trajectory. This total
exposure can be mathematically represented as follows

\T/At] N

T 2 2
E(S,P)—/E(S,P(t))\/<ccl;> + <fi> dt ~ kz_o ;f(si,P(kAt))At, (4)
0 =U =

where E(S,P(t)) represents the exposure by the sensor network S at point P(t) = (z(t),y(t)),
as computed through Equation (3) and At is a sufficiently small time interval.

Definition 2. (The maximal exposure path) The maximal exposure path in a sensor network
is the path with the highest coverage, formally defined as the path connecting two prede-
termined points in the sensor field that maximizes exposure. i.e. maximizes the function
E(S,P) described in (4), subject to a predefined length constraint.
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3.2. The maximal exposure path optimization problem

Consider a region of interest @ with width W and height H, where N heterogeneous
multimedia sensors are randomly deployed, denoted as S = {s1, s2,...,sn}, and governed
by an exposure model. An intruder moves along a trajectory within this monitored region,
starting from the point B(xp,yp = 0) and ending at the point D(zp,yp = H), traveling
at a constant velocity V7. The concept of the “maximal exposure path” refers to a specific
route within the sensor network that connects the starting point B to the ending point D,
chosen to maximize the exposure experienced by the target as it moves along the path. The
problem of identifying this path is referred to as the MaEP problem in HWDSNs and is
mathematically formulated as follows.

Input:
e W, H: the width and the length of the sensing field Q; N: the number of sensors.
o S={s; = (wi,i,Ci, i, s, Bi) }|: the set of sensors in the field.
e V: the speed of intruder; yp,yp: the coordinates of the source B and destination D.
e /: the maximum length of the crossing path (¢ > BD).
Output: A path P in region Q connecting B and D, which is discretized as
P = {Pk = (wlmyk)};:ov (5)

where the travel time duration is divided into 7 interval, and Py = (xg, yx) is the location of
time step k.
Objective: The exposure of path P is maximized, which means

maximize _ Z Z min { CMC»} : g (6a)

P = {(xkvyk)}kzo k=0 i=1 (ajlwyk

subject to
d(Py, Pi—1) = d(Py, Pet1) Vk € {1,2,...,7}, (6b)
7—1
Zd(P’f7Pk+1) </, (6C)
k=0
Py=B,P- =D, (6d)

where the constraint (6b) is because of the unchanging speed, (6¢) is the length constraint,
and (6d) represents the beginning and ending point of the crossing path.

4. IMPROVED GENETIC ALGORITHM FOR MAXIMAL EXPOSURE
PATH OPTIMIZATION

Evolutionary algorithms are a class of optimization algorithms inspired by the process of
natural selection, which can surmount many optimization problems in various areas. Lever-
aging the discoveries and superiority of evolutionary algorithms in tackling complex prob-
lems within modern communication networks as discussed in [20] and references therein, we
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propose the MIGA algorithm, which evolves a population of candidate solutions through
processes such as mutation, crossover, local search and selection to solve the considered
MaEP problem. The flowchart of MIGA is illustrated in Figure 2, while the pseudo-code is
described in Algorithm 1.

e e Crossover Mutation Selection
Initialization =/ “x>px ™| AFM [ | Elistism Local-scarch STOP
Y l ’
NO YES
Termination? S

Figure 2: The flowchart of the proposed MIGA

4.1. Solution representation and population initialization
4.1.1. Solution representation

In MIGA, an individual represents a feasible solution and is described as an ordered
sequence of points, starting at B and ending at D. These points are commonly referred
to as the genes of the individual. The number of genes within an individual in MIGA is
predetermined and set by a parameter denoted as m. Figure 3 illustrates the path derived
from an individual with a sequence of m = 6 points, namely Pi,..., Fs, connected in the
specified order. Additionally, the individual must satisfy the constraint of the maximum
length of the problem.

Remark 1. It is noted that the points P; in an individual are not identical to the discretized
points used in the problem solution as shown in (5). To calculate the fitness of an individual,
MIGA does not consider the genes within the individual. Instead, it directly divides the
trajectory that connects these genes into 7 equal segments and calculates according to (6).

4.1.2. Solution repairing

It is inevitable that individuals represented as described in Section 4.1.1 may violate the
constraint that the path length must be less than or equal to £. Therefore, in MIGA, we
propose a repairing technique to make individuals valid if they violate the maximum length
constraint. The idea behind this technique is to first sort the points of the individual in
increasing order of their z-coordinates. After that, if the individual is still invalid, we adjust
the path connecting the genes to be closer to the straight-line segment BD. In particular,
whenever the individual is not valid, we find the genes Py _. = (Tk,..,Ykun.,) Whose the
largest distance to the line BD and perform the substitution

(7)

ykmax + yBD,Pkmax
($kmax7 ykmax) A <kaax7 2 ?

where ypp p, _is the y-coordinate of the point on the line BD that shares the same z-
coordinate with Py, . computed as ypp p, = (YD — YB)Tkpa/H + yp. An illustration of
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Algorithm 1: Maximal exposure path - improved genetic-based algorithm (MIGA)

Input: The list of sensors S, the beginning and ending points B and D.
Parameters: Population size Pop,., crossover and mutation rates pc, py,, maximum
number of generations Gpax, local search rate ~.

Output: The sub-optimal solution for the MaEP problem.

1 begin
2 Initialization: Generate a population with Popg,. random individuals
3 Main loop:
a while terminate condition not met do
5 Crossover and Mutation:
6 foreach individual indi in the population do
7 if U4(0,1) < pe; then
8 indi’ + a random individual in the population
9 Add A2PX(indi,indi’) to the population.
10 end
11 if 4(0,1) < ppy then
12 | Add AFM(indi) to the population.
13 end
14 end
15 Evaluate and select individuals.
16 Local search:
17 for i < 0 to I' = |y - Popg,.] do
18 indi < a random individual in the population.
19 indi’ < indi + v
20 if f(indi) < f(indi’) then
21 | Add indi’ to the population and eliminate indi
22 end
23 end
24 end
25 return the best individual of the population.
26 end

this method is described in Figure 3, where Py is replaced by the midpoint P,e,. We observe
that if this technique is applied repeatedly, the individual will converge to the straight line
BD as the number of iterations approaches infinity. Since the input requirement is ¢ > BD,
the mechanism is guaranteed to terminate.

4.1.3. Population initialization

It is important to note that MaEP is a problem with constraints that make traditional
GA or other population-based algorithms impossible to apply directly. Hence, in this study,
we propose a method to initialize the individuals for the population of MIGA. To start,
the field is first divided into m equal segments, each with a height of H/m. Next, m — 1
points Pi, P, ..., Py,_1 are randomly generated, where each point P; has an x-coordinate of
i x H/m and a y-coordinate that is a random real number within the range yp, , £ Wm/H.
An individual is then formed by connecting the points (0,yg), P1, P2, ..., Pm-1, (H,yp) with
the lines z = jAx, where j ranges from 0 to n. The number of individuals in the population
is limited by the population size, denoted as Popsize.
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D(xp,yn) D(xn, un)

Po(s, )
Py, ya)

Py(xa. )
Pi(z1.1)

(a) The individual before repairing. (b) The individual after repairing

Figure 3: Illustration of the repairing technique applied to an individual with m = 6

4.2. Evolutionary operators: crossover and mutation

The crossover and mutation operators in GAs are fundamental mechanisms that greatly
enhance not only the quality but also the diversity within the population. These operators
introduce variability by combining and altering the genetic material of individuals, leading
to new offspring. This diversity is essential for the evolutionary process, as it helps pre-
vent premature convergence to suboptimal solutions and enables the algorithm to explore
a broader search space, thereby increasing the chances of finding optimal or near-optimal
solutions. In GAs, crossover operators combine two distinct individuals, called parents, to
produce one or more new individuals. Research on GAs has proposed and demonstrated
the effectiveness of several evolutionary operators with real number representation, such as
simulated binary crossover (SBX). However, for the MaEP problem, although the genotype
of individuals is equivalent to an array of real numbers, their phenotype represents a path
from B to D. Furthermore, this operator must satisfy the heritability property [21], meaning
that offspring should inherit highly-contribute-to-fitness segments from their parents. Based
on this, in this study, we propose a new crossover operator named the Adjusted 2-Point
Crossover (A2PX). The core concept of A2PX involves copying the initial and terminal
genes of the parents while exchanging the genetic information in the middle segments of the
parents’ chromosomes. Specifically, for two parent individuals, pr; = {Pi, P, ..., Py} and
pro = {Q1,Q2, ..., Qm }, the first offspring ofsy = {C1,Cy, ..., C),} inherits the segment from
Py to Ppoint, and from Pping, to Py, of pry, where point; and point, are randomly gener-
ated from {1, ..., m} with uniform distribution. The remaining genes of ofs; are determined
by recombining the earlier genes with the information from pry. This mean that we apply
C; < P; for i € {1,...,point1,pointy + 1,...,m}, and C; < midpoint of segment C;_1Q);
for i € {point, +1,...,points}. The second offspring ofs, is created in a similar manner by
reversing the roles of the two parents. The new individuals are repaired before other steps
of MIGA. The probability of parents to crossover is determined by the crossover rate pe;.

For the MaEP problem, we introduce a novel mutation operator called the Attractive
Force Mutation (AFM). The key idea behind the AFM is to enhance the exposure of each
gene within an individual by drawing it closer to the sensor with the highest exposure.
Specifically, the attractive force by a sensor s at S(z,y) on a point P is calculated by

?AFM(& P) = axpm PS. (8)
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This force is scaled by a parameter aary, after which it is added to the original point
if it results in an increase in exposure, i.e., when the exposure value is less than 1. The
scaling parameter aary is set to 0.5, balancing both the pulling efficiency and the potential
increase in the gene length of the individual. In AFM, for each gene P;, we find the sensor
s; with the largest exposure to I as s} < arg maxj:L—N{f(sj, P;)}. The key idea of AFM
is that if f (s;, P;) < 1, we can alter P; to be nearer to s;- to improve the solution quality as
P+ P+ F AFM(S;, P;), otherwise, P; stays the same. The number of individuals to mutation
is limited by the rate pyy, and they are repaired before adding into MIGA’s population.

4.3. Selection, local search and termination condition

After applying the crossover and mutation operators, each individual indi is evaluated and
assigned a fitness value, denoted as f(indi), which is calculated using the objective function
as explained in (6) in the previous section. The population is then sorted in ascending order
according to these fitness values. The top Popsize individuals, those with the largest fitness
values, are selected to continue evolving in the subsequent generations. This selection process
ensures that the fittest individuals are retained for further optimization.

We also observe that population-based optimization methods like GA, particle swarm
optimization (PSO), and differential evolution (DE) may cause their population to fall into
the local optimum. Hence, in this paper, after the selection process, MIGA chooses a number
of random individuals, denoted as I', to perform a local search. To move the individual indi
to a neighboring location, we generate a Gaussian vector v ~ N(0,5%I,,), where 2 is a
small variance, enabling effective exploration of the neighborhood. For an individual indi,
the neighboring individual is generated as indi’ = indi + v. In this scenario, indi serves as
a potential solution, and its fitness value is subsequently computed. If the fitness value of
indi’ is superior to that of indi, then indi’ is selected and takes the position of indi in the
population; otherwise, indi is retained.

MIGA will be terminated if one of the following two criteria is satisfied: (i) The number
of generations reaches the specified maximum Gk, (ii) the objective function remains
unchanged over a predetermined number of generations.

4.4. Complexity and convergence analysis

The complexity of the solution repairing is in the order of O(m). For each individual, the
initialization process also needs O(m), and therefore, the complexity of MIGA’s population
initialization in the order of O(mPopg,.). The crossover and local-search operators’ com-
plexity are both in the order of O(m), while the crossover operators’ complexity is O(mNN).
Hence, in summary, the complexity of MIGA is O (mPopg,e Gmax(Per + PmulN + 7))-

We proceed to analyze the convergence of MIGA using probabilistic methods. Over
successive generations, the population gradually converges towards an individual with ac-
ceptable quality. To begin, for small € > 0, we define the e-optimal set for (6) as.

Definition 3. (The ec-optimal set for problem (6)) The e-optimal set for problem (6),
denoted as S}, is defined as follows

St = {P = {(@nm)}iy €8 | ES, P) —E(S,P) <, ©)
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where E(+,-) and S is respectively the objective function and the feasible set of problem (6),
P* € S denotes the global optimum solution and ¢ is a small positive value.

Following a similar methodology as in [22], for a population P with Popsi,e individuals,
the probability of the population converging to an individual in S} by exploiting MIGA is

m r
Pr(PNS:#2)>1—(1- ulpmu)POPSize (1- ,u,zpcr)Pc’psize (1 — 3 <~ L > e?) , (10)
G\/2m
where pmy, per € [0, 1] are respectively the mutation probability and the crossover probability
of each individual defined in the previous section, 1, e, and us are the measures to the
space S! regarding the mutation, the crossover and the local search, respectively, m is the
gene length, and I" as the number of individuals perform local search step in this generation.
This result reveals that MIGA with local search exhibits a higher convergence probability
compared to the standard GA. Specifically, it shows that the local search enhances the
lower bound of the convergence probability. The probability that none of the individuals in
the G-th population after performing reproduction and local search (let Q(“) denote this
population), belong to S? can be expressed as Pr (Q(G) NS; = @) <1 - k&), where (@) is
defined for the G-th population as

. . 1 m —2m r
K/(G) _ 1 . (1 . Mlpmu)POPS,Ze (1 o ,UzQPCI‘)POPSIZe (1 _ Mg <&m> (& 52 ) . (11)

Given that MIGA utilizes an elitist selection mechanism, the best individual is guaranteed
to remain across generations. Consequently, the probability that the population P does
not contain the e-optimal solution to problem (6) is expressed as

Q

-1

(PO s = o) = [[Pr(@nsi=o) < [[ (1-49). (2
i=1 )

=1

We further observe that Y o, k(&) diverges as G — oo, therefore, we get the following
limg_ oo HZG:_ll (1 — H(i)) = 0. Consequently, we obtain the following results

G-1
lim Pr (P<G> NS+ @) =1 lim Pr (P<G> ns: = @) >1- lim [ (1 - M) =1
G—oo G—o0 G—oo Py
(13)
The evaluation in (13) validates MIGA’s convergence probability to S* from an initial.

5. NUMERICAL RESULTS

To assess the efficiency and accuracy of the proposed algorithms, a series of experi-
ments were carried out across various experimental scenarios for comparative purposes [23].
These experiments were subjected to thorough evaluations and analyses to derive detailed
insights from the resulting data. The numerical computations were performed using Java
on a computing system powered by an Intel®) Xeon®) CPU E5-2660 2.20GHz processor,
which includes 16 logical cores (8 physical cores), and 16 GB of RAM. The experiments were
conducted within an Ubuntu 18.04.5 LTS operating environment.
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Figure 4: Demonstration of the examination of the optimal crossover rate, mutation rate,
and local search rate for MIGA.

5.1. Experimental settings

We conducted simulations across five distinct network scales, each corresponding to a
different number of sensor nodes within the target region. These simulations were organized
into five separate datasets. For each network scale, we considered three sensor distribu-
tions: uniform, Gaussian, and exponential. For each distribution, ten random instances
were generated, labeled as S_n_i, where S represents one of the distributions (UNI for uni-
form, GAU for Gaussian, EXP for exponential), n indicates the number of sensors in that
instance (n € {10, 20,50, 100,200}), and ¢ denotes the instance index (i € 1,10). The sensor
field dimensions were specified as W = 500 and H = 100. The source point, B(0,yp), and
the destination point, D(100,yp), were defined with yp and yp values drawn from U (0, W),
meaning they were uniformly sampled from the interval [0, W]. The maximum feasible path
length was drawn from U(d(B, D), 2d(B, D)). The intruder’s velocity, V;, was set at 5, and
the time step At, used to approximate the exposure of the solution path, was set to 0.1.

5.2. Evaluating the best parameters for the proposed algorithm

To identify and fine-tune the best parameters for the proposed algorithm, MIGA, inspired
by evolutionary algorithms, extensive experiments were conducted. Observations in Figure
4 highlight that MIGA is particularly sensitive to certain hyperparameters, such as the
crossover and mutation rates. To determine the optimal parameters, we evaluated MIGA’s
performance on networks covered by 50 sensors. With a population size of 200 individuals
evolving over 500 generations and a gene length of m = 1000, we tested crossover rates in
{0.7,0.75,0.8,0.85,0.9} and both mutation and local search rates in {0.01,0.05,0.1,0.2,0.3}.
Each parameter directly impacts the exposure value of the solution, which reflects its quality,
as well as the runtime, indicating the computational effort required.

For the crossover rate (pe), Figure 4a shows that higher values generally improve expo-
sure by enhancing genetic material exchange, promoting convergence. However, increased
Per raises runtime due to the computational cost of evaluating complex offspring. The opti-
mal rate, po, = 0.8, balances high exposure and manageable runtime. Figure 4b illustrates
that the mutation rate (ppy) affects solution quality and runtime. While mutation prevents
premature convergence by introducing diversity, excessive values cause stochastic behavior
and inefficiency. The optimal rate, pyy, = 0.1, ensures exploration while maintaining effi-
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Figure 5: Demonstration of the convergence of MIEA, the standard GA for real variables
[24] and MaEP [10] across different instances with varying sensor counts and distributions.

ciency. The local search rate (vy) refines solutions, improving exposure at the cost of higher
runtime, as shown in Figure 4c. The optimal value, v = 0.2, achieves a trade-off between
performance and computational cost. The selected parameters, per = 0.8, pmu = 0.1, and
v = 0.2, ensure MIGA efficiently balances exploration and exploitation. These values enable
a careful balance between exploration (via crossover and mutation) and exploitation (via
local search and mutation), allowing the algorithm to navigate the solution space effectively.

5.3. Performance of MIGA through various network topologies
5.3.1. Comparison of the convergence of MIGA with previous algorithms

Many parameters affect the convergence speed for the MaEP problem, such as the sensor
count, distributed sensors, generations/iterations, and so on. Based on observations from
Figure 5, we can explain the obtained results regarding convergence speed, solution quality,
and stability. As the sensor count increases from 10 to 100, convergence speed generally de-
creases due to the growing complexity of the problem space. When there are 10 sensors, all
algorithms converge quickly, with MIGA variants achieving the highest exposure. At 20 and
50 sensors, convergence slows compared to 10 sensors, but MIGA variants still outperform
other algorithms. At 100 and 200 sensors, convergence becomes significantly slower, and
while MIGA variants continue to outperform, the performance gap narrows. Sensor position
distributions also affect performance. A uniform distribution allows broader exploration,
helping GA achieve optimal solutions faster. The exponential distribution, while less varied,
still enables relatively fast convergence. In contrast, the Gaussian distribution, where values
are concentrated around the mean, may limit the GA’s ability to explore the solution space
effectively, leading to slower convergence. The results indicate that sensor value distribution
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Figure 6: Illustration of the results obtained by MIGA, GA, MaEP-PSO under different
distribution network topologies.

significantly impacts both convergence speed and maximum exposure. Uniform distributions
generally lead to faster convergence than Gaussian and exponential distributions, as their
broader range facilitates better exploration. However, they also tend to produce lower max-
imum exposure values. Overall, the results shown in Figure 5 demonstrate that the MIGA
generally outperforms the standard GA [24] and MaEP-PSO [10] variants regarding conver-
gence speed and maximum exposure value. This is likely due to MIGA’s ability to explore
the solution space more efficiently by utilizing sophisticated evolution operators.

5.3.2. The solution quality and stability of MIGA against prior algorithms

In terms of solution quality or the achieved maximum exposure value, the number of
sensors is a key factor that impacts the solution. Moreover, computational time serves as an
important metric for assessing the performance of algorithms.

From observation, Figure 6a shows the solution quality and stability of MIGA, GA,
MaEP-PSO. Regarding solution quality, MIGA shows the highest maximal exposure value
among the four algorithms across different numbers of sensors. This indicates that MIGA
consistently provides the best solution in terms of maximizing exposure. While not as high
as MIGA, GA still demonstrates relatively good performance. It is consistently better than
MaEP-PSO, especially when the number of sensors is low. MaEP-PSO exhibits a lower
maximal exposure value compared to MIGA and GA, particularly for larger numbers of
sensors. Regarding stability 6a, the error bars for MIGA are generally smaller than those of
other algorithms, indicating that it produces more consistent results across multiple runs.
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This suggests that MIGA is more stable. GA shows moderate stability. The error bars
are larger than those of MIGA but smaller than those of MaEP-PSO, suggesting that it
has a reasonable level of stability. MaEP-PSO has larger error bars than MIGA and GA,
indicating that it produces less consistent results. This suggests that MaEP-PSO is less
stable. Figure 6d illustrates the computational time for MIGA, GA, and MaEP-PSO. Among
the three algorithms, MIGA consistently takes the longest computational time, making it
the most resource-intensive. GA exhibits a moderate computational time, generally lower
than MIGA but higher than MaEP-PSO, particularly as the number of sensors increases.
In contrast, MaEP-PSO consistently shows the shortest computational time, making it the
most computationally efficient. In general, as shown in Figure 6d, MaEP-PSO is the most
efficient algorithm, requiring the least time across different sensor configurations. MIGA,
however, proves to be the least efficient, taking considerably more time than both GA and
MaEP-PSO. In conclusion, if computational efficiency is the primary concern, MaEP-PSO is
the preferred choice. However, if solution quality is the most important factor, the additional
computational time of MIGA may be justified by its superior performance.

Figure 6b shows the maximal exposure values for different sensor counts in Gaussian-
distributed networks. MIGA consistently achieves the highest exposure values, demonstrat-
ing its superiority in solution quality. GA performs well, surpassing MaEP-PSO, especially
with fewer sensors. MaEP-PSO shows the lowest maximal exposure values, particularly
for larger sensor networks. In terms of stability, MIGA has the smallest error bars, indi-
cating consistent performance across multiple runs. GA exhibits moderate stability, with
error bars larger than MIGA but smaller than MaEP-PSO. MaEP-PSO is the least stable,
with the largest error bars, reflecting higher variability in results. Overall, MIGA proves
to be the most reliable and robust algorithm. Figure 6e presents the computational time
analysis. MIGA requires the longest runtime, making it the most computationally expen-
sive algorithm. GA has moderate runtime, lower than MIGA but higher than MaEP-PSO,
especially for larger sensor counts. MaEP-PSO is the most efficient, consistently requiring
the least computational time. In summary, for optimal solution quality, MIGA’s additional
computational cost is justified by its superior exposure values and stability.

Figure 6¢ illustrates that MIGA consistently achieves the highest maximum exposure
values across different sensor counts in uniformly distributed networks. This confirms that
MIGA is the most effective algorithm for maximizing exposure in this distribution. Com-
pared to other methods, MIGA not only provides superior coverage but also demonstrates
remarkable consistency. The error bars for MIGA remain consistently small, indicating that
it produces highly stable results across multiple runs. This stability suggests that MIGA is
less susceptible to variations in sensor placements, making it a robust choice for uniform dis-
tributions. In contrast, the computational time analysis in Figure 6f reveals that MIGA is the
most resource-intensive among the evaluated algorithms. Despite this, the trade-off between
computational time and solution quality is well justified, as MIGA consistently outperforms
alternative methods in achieving the highest exposure values while maintaining reliability.
Overall, MIGA emerges as the most effective approach in uniform sensor distributions. It not
only maximizes exposure but also ensures stable and reliable performance across different
scenarios. While its computational cost is higher, the significant improvement in coverage
quality makes it the preferred choice for applications prioritizing robust intrusion detection
and monitoring.
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Table 1: The maximal exposure value, the standard deviation, and the average running time
for 30 independent runs of MIGA, standard GA and MaEP-PSO (PSO).

Best exposure value Std. dev. (%) Running time (ms)
MIGA GA PSO | MIGA GA PSO MIGA GA PSO

GAU10 161.45 103.16 58.19 5.75 1046 16.64 | 100.41 157.10 131.57
GAU20 248.24 142.84 90.99 4.45 11.60 18.61 224.00 241.31  190.27
GAUS50 328.83 172.03 122.38 | 4.48 1248 2246 472.80  422.64  331.52
GAU100 576.02 367.28 269.75 | 5.66 14.83 16.22 | 1189.17 812.12  669.90
GAU200 | 1133.74 599.47 479.25 | 6.57 1530 17.67 | 2456.26 1525.74 1222.36

UNI10 142.38  96.99  58.70 5.91 1214 22.30 83.44  161.70 127.44
UNI20 197.84 12580 79.84 5.30 1235 21.35 | 149.73 224.82 185.57
UNI50 301.41 168.93 11543 | 6.63 1044 16.79 452.50  412.12  328.66
UNI100 483.21 292.47 21528 | 4.66 1144 16.66 | 1013.53 795.57 631.88
UNI200 710.89 414.23 336.15 | 6.19 1445 21.92 | 2249.59 1416.60 1121.49

EXP10 137.90 85.65 55.51 4.02 10.87 17.62 | 102.41 150.42 121.59

EXP20 255.83 14736 111.44 | 5.76 10.28 15.22 19544  226.43 181.53
EXP50 273.20 145.93 102.37 | 4.28 16.13 24.15 356.67  407.94  330.39
EXP100 633.12 373.87 31891 | 6.28 10.30 17.19 | 1183.63 814.39 667.20
EXP200 | 1285.33 643.76 580.27 | 4.46 15.53 23.18 | 2545.15 1470.82 1147.50

Topology

Table 1 compares the performance of three algorithms—MIGA, standard GA and MaEP-
PSO across various network topologies (GAU, UNI, EXP) of increasing size (10 to 200 sensor
nodes). The results highlight MIGA’s superior ability to maintain diversity during the search
process, as evidenced by its consistently lower standard deviations across various network
topologies and sizes. A low standard deviation indicates that MIGA consistently finds so-
lutions close to the best solution across multiple runs, demonstrating robust exploration of
the search space and reduced susceptibility to getting stuck in local optima. In contrast,
standard GA and MaEP-PSO exhibit significantly higher standard deviations, indicating
reduced diversity, less consistent performance, and a higher likelihood of premature con-
vergence. Although the standard deviations increase with larger problem sizes across all
algorithms, MIGA maintains a clear advantage, reflecting its ability to handle the increasing
complexity of larger search spaces effectively. The diversity of MIGA, as implicitly captured
through convergence behavior and stability across 30 runs, is a key factor behind its ability
to achieve better and more reliable solutions compared to GA and PSO.

6. CONCLUSIONS

In conclusion, this paper has presented a highly efficient method called MIGA to solve
the challenging MaEP problem in HeDWSNSs, specifically focusing on finding the best cov-
erage path. The quest for an optimal coverage path in sensor networks is crucial for a
wide range of applications, including environmental monitoring, surveillance, and more. By
leveraging the inherent strengths of GAs, we achieved a balance between exploration and
exploitation, allowing our algorithm to efficiently search for near-optimal paths while en-
hancing both network performance and energy efficiency—two critical factors in the context
of sensor networks. Through extensive experimentation and evaluation, we demonstrated
the superiority of our improved GA-based approach in delivering high-quality solutions for
the MaEP problem. While MIGA shows promising results, several limitations remain. The
algorithm may face scalability issues in large networks due to increased computational costs.
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Additionally, MIGA assumes a static and secure network topology, so incorporating adapt-
ability would improve its robustness. Lastly, although the local search operator has the
potential to enhance the probability of escaping local optimum traps, the risk of convergence
to local optima is still a challenge in GA-based approaches. Addressing these limitations
would further improve the algorithm’s effectiveness and scalability in real-world sensor net-
work applications and represent a potential direction for future research to meet evolving
requirements in emerging applications.

1]

REFERENCES

A. Maheshwari and N. Chand, “A survey on wireless sensor networks coverage problems,” in
Proceedings of 2nd International Conference on Communication, Computing and Networking:
ICCCN 2018, NITTTR Chandigarh, India. Springer, 2019, pp. 153-164.

R. Elhabyan, W. Shi, and M. St-Hilaire, “Coverage protocols for wireless sensor networks: Re-
view and future directions,” Journal of Communications and Networks, vol. 21, no. 1, pp. 45-60,
2019.

N. T. M. Binh, H. T. T. Binh, H. V. D. Luong, N. T. Long, and T. Van Chien, “An efficient exact
method with polynomial time-complexity to achieve k-strong barrier coverage in heterogeneous
wireless multimedia sensor networks,” Journal of Network and Computer Applications, p. 103985,
2024.

N. T. M. Binh, N. V. Thien, H. V. D. Luong, and D. T. Ngoc, “An efficient approach to the
k-strong barrier coverage problem under the probabilistic sensing model in wireless multimedia
sensor networks,” in International Conference on Ad Hoc Networks. Springer, 2023, pp. 167-180.

A. Tripathi, H. P. Gupta, T. Dutta, R. Mishra, K. Shukla, and S. Jit, “Coverage and connectivity
in wsns: A survey, research issues and challenges,” IFEFE Access, vol. 6, pp. 26 971-26 992, 2018.

N. T. My Binh, H. V. D. Luong, M. D. Q. Anh, and L. N. Khanh, “An efficient discretization
and transformation scheme for maximizing secure lifetime problem in heterogeneous wireless
rotatable camera sensor networks with barrier coverage,” Cluster Computing, 2025.

X. Deng, Y. Jiang, L. T. Yang, M. Lin, L. Yi, and M. Wang, “Data fusion based coverage
optimization in heterogeneous sensor networks: A survey,” Information Fusion, vol. 52, pp.
90-105, 2019.

R. Chiwariro and T. . N, “Quality of service aware routing protocols in wireless multimedia
sensor networks: survey,” International Journal of Information Technology, vol. 14, no. 2, pp.
789-800, 2022.

C. Lee, D. Shin, S. W. Bae, and S. Choi, “Best and worst-case coverage problems for arbitrary
paths in wireless sensor networks,” Ad hoc networks, vol. 11, no. 6, pp. 1699-1714, 2013.

N. Van Thien, N. T. M. Binh, and D. T. Hop, “An efficient method for solving the best coverage
path problem in homogeneous wireless ad-hoc sensor networks,” in International Conference on
Ad Hoc Networks. Springer, 2023, pp. 181-195.

X. Fan, F. Hu, T. Liu, K. Chi, and J. Xu, “Cost effective directional barrier construction based on
zooming and united probabilistic detection,” IEEE Transactions on Mobile Computing, vol. 19,
no. 7, pp- 1555-1569, 2019.



180 NGUYEN THI MY BINH et al.

[12] Z. Ma, S. Li, and D. Huang, “Exact algorithms for barrier coverage with line-based deployed
rotatable directional sensors,” in 2020 IEEE Wireless Communications and Networking Confer-
ence (WCNC). IEEE, 2020, pp. 1-7.

[13] Y. Hong, R. Yan, Y. Zhu, D. Li, and W. Chen, “Finding best and worst-case coverage paths in
camera sensor networks for complex regions,” Ad Hoc Networks, vol. 56, pp. 202-213, 2017.

[14] W. Wang, H. Huang, Q. Li, F. He, and C. Sha, “Generalized intrusion detection mechanism for
empowered intruders in wireless sensor networks,” IEEFE Access, vol. 8, pp. 25 170-25 183, 2020.

[15] N. Thi My Binh, A. Mellouk, H. Thi Thanh Binh, L. Vu Loi, D. Lam San, and T. Hai Anh, “An
elite hybrid particle swarm optimization for solving minimal exposure path problem in mobile
wireless sensor networks,” Sensors, vol. 20, no. 9, p. 2586, 2020.

[16] B.N.T. My, B. H. T. Thanh, S. Yu et al., “Efficient meta-heuristic approaches in solving minimal
exposure path problem for heterogeneous wireless multimedia sensor networks in internet of
things,” Applied Intelligence, vol. 50, no. 6, pp. 1889-1907, 2020.

[17] B. N. T. My, N. H. Ngoc, H. T. T. Binh, N. K. Van, and S. Yu, “A family system based evo-
lutionary algorithm for obstacle-evasion minimal exposure path problem in internet of things,”
Expert Systems with Applications, vol. 200, p. 116943, 2022.

[18] H. T. T. Binh, N. T. M. Binh, N. H. Hoang, and P. A. Tu, “Heuristic algorithm for finding
maximal breach path in wireless sensor network with omnidirectional sensors,” in 2016 IEEE
Region 10 Humanitarian Technology Conference (R10-HTC). I1EEE, 2016, pp. 1-6.

[19] T. M. B. Nguyen, C. M. Thang, D. N. Nguyen, and T. T. B. Huynh, “Genetic algorithm for
solving minimal exposure path in mobile sensor networks,” in 2017 IEEE Symposium Series on
Computational Intelligence (SSCI). TEEE, 2017, pp. 1-8.

[20] T. Van Chien, B. T. Duc, H. V. D. Luong, H. T. T. Binh, N. Q. Hien, and S. Chatzinotas,
“Solving indefinite communication reliability optimization for ris-aided mobile systems by an
improved differential evolution,” in Proceedings of the Genetic and Evolutionary Computation
Conference Companion, 2024, pp. 651-654.

[21] G. R. Raidl and J. Gottlieb, “Empirical analysis of locality, heritability and heuristic bias in
evolutionary algorithms: A case study for the multidimensional knapsack problem,” Evolutionary
computation, vol. 13, no. 4, pp. 441-475, 2005.

[22] T. Van Chien, B. T. Duc, H. V. D. Luong, H. T. T. Binh, H. Q. Ngo, and S. Chatzinotas,
“Active and passive beamforming designs for ser minimization in ris-assisted mimo systems,”
IEEFE Transactions on Wireless Communications, vol. 23, no. 12, pp. 18 838-18 854, 2024.

[23] J. Campos, Y. Ge, G. Fraser, M. Eler, and A. Arcuri, “An empirical evaluation of evolutionary
algorithms for test suite generation,” in Search Based Software Engineering: 9th International
Symposium, SSBSE 2017, Paderborn, Germany, September 9-11, 2017, Proceedings 9. Springer,
2017, pp. 33-48.

[24] T. Van Chien, N. T. A. Thu, L. Nguyen, N. Binh, and H. Binh, “On the performance of
user association in space-ground communications with integer-coded genetic algorithms,” in
Proceedings of the Genetic and Evolutionary Computation Conference, 2024, pp. 1373-1380.

Received on November 13, 202
Accepted on February 24, 2025



	INTRODUCTION
	RELATED WORKS
	PRELIMINARIES AND PROBLEM FORMULATION
	Preliminaries
	The attenuated directional sensing model
	Exposure of a crossing path and the maximal exposure path

	The maximal exposure path optimization problem

	IMPROVED GENETIC ALGORITHM FOR MAXIMAL EXPOSURE PATH OPTIMIZATION
	Solution representation and population initialization
	Solution representation
	Solution repairing
	Population initialization

	Evolutionary operators: crossover and mutation
	Selection, local search and termination condition
	Complexity and convergence analysis

	NUMERICAL RESULTS
	Experimental settings
	Evaluating the best parameters for the proposed algorithm
	Performance of MIGA through various network topologies
	Comparison of the convergence of MIGA with previous algorithms
	The solution quality and stability of MIGA against prior algorithms


	CONCLUSIONS

