
Journal of Computer Science and Cybernetics, V.41, N.2 (2025), 197-209

DOI no. 10.15625/1813-9663/21964

EXPLAINABILITY IN MEDICAL IMAGE RECONSTRUCTION
WITH LEARNING TO OPTIMIZE

SON PHAM1,2, HA TRUONG1,2, DUC NGUYEN1,2, BAC LE1,2,∗

1Faculty of Information Technology, University of Science, Ho Chi Minh City,
227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City, Viet Nam

2Vietnam National University, Ho Chi Minh City, Linh Trung Ward, Thu Duc City,
Ho Chi Minh City, Viet Nam

Abstract. Learning to Optimize (L2O) is an emerging research area in machine learning, focusing

on designing and training optimization algorithms that can learn to improve their own performance

through experience. Each inference solves a data-driven optimization problem. L2O models are

designed to be easy to deploy, incorporate prior knowledge and ensure correctness, such as satisfaction

of constraints. This paper applies L2O with the combination of certificates, achieving a higher level

of explainability for AI decisions than previous Explainable AI (XAI) methods on two low-dose CT

image reconstruction datasets, LoDoPab and Ellipses. The paper also introduces a method to reduce

the number of parameters and training time of the model while maintaining the same performance

and ensuring the constraints conditions.
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1. INTRODUCTION

Current image XAI methods have limitations in both implementation and explanation,
for example, Class Activation Mapping (CAM) method [1] can only apply to models that
have Global Average Pooling (GAP) layers, or Gradient-weighted Class Activation Mapping
(Grad-CAM) [2] is a gradient-based XAI method that can cost from gradient explosion and
cause overconfidence or underconfidence [3]. In sensitive areas, especially in medical imaging,
we need more reliable approaches.

In this article, we address this issue with the learning-to-optimize (L2O) approach tailored
for medical tasks. We developed a method that enhances user understanding and trust in
learning models. By combining optimization learning with certification, our approach enables
the model to not only deliver optimal results but also to provide clear, verifiable explanations
for its decisions.

This method is built based on the L2O method [4, 5] with the selected optimization al-
gorithm being L-ADMM [6, 7], achieving high performance in restoring low-dose CT images
and providing the ability to explain the output results. We have made improvements by ap-
plying additional Bayesian optimization in updating the training parameters of L-ADMM to
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reduce the number of parameters and training time while maintaining the same performance
as the original model.

The experiments show that combining Learning to Optimize (L2O) with certification
can achieve a higher level of interpretability for model decisions compared to traditional
explainable AI (XAI) methods. This approach not only opens up new avenues for research
but also contributes to the development of more explainable, controllable, and reliable AI
systems. Learning to Optimize (L2O) stands out compared to FFPN and Deep Unrolling
in several aspects. First, L2O uses memory-efficient implicit models, which optimize com-
putational resources compared to methods like FFPN and Deep Unrolling. L2O also offers
theoretical guarantees of feasibility and convergence, while FFPN and Deep Unrolling pri-
marily focus on optimization through iterative steps. Another strength of L2O is its ability
to integrated prior knowledge and data, leading to more interpretable and reliable models,
enhancing transparency and trustworthiness. Additionally, L2O includes trustworthiness
certificates to evaluate and trace inference errors, a feature that FFPN and Deep Unrolling
have not fully emphasized. Therefore, L2O stands out as a powerful framework for advancing
trustworthy AI.

Our paper is presented in 5 parts as follows: Section 1 introduces the research topic;
Section 2 covers the optimal learning and related works; Section 3 details the design of an
L2O model using the L-ADMM optimization algorithm integrated with certification methods.
We also propose to use Bayesian optimization for reducing the number of training parameters
and lowering the training time; Section 4 presents results of proposed method in comparison
with other models; Section 5 provides the conclusion and discusses future developments.

2. RELATED WORKS

Algorithms relevant to this algorithm include Deep unrolling [8] and Feasibility-based
fixed point networks [9]. Of particular relevance to our work is Deep unrolling, a sub-branch
of L2O, in which models have a fixed number of iterations of a data-based optimization al-
gorithm. Deep unrolling has achieved great, success and provides an intuitive model design
but requires a large number of parameters and computational resources, making it diffi-
cult to apply to practical problems. The next related work is Feasibility-based fixed point
networks, a method that helps ensure the stability of the solution, easily controls the opti-
mization constraints, but also has the limitation of being complicated in design and requiring
high accuracy in the selection of parameters. The review papers [10, 11, 12] provide more
background information on L2O. Research work [13] is closely to our paper.

Related XAI works use labels/tags. For example, Model Card [14, 15] records the pur-
poses and appropriate uses of models. Care Label checks properties such as expressiveness,
running time, and memory usage. These works provide distribution statistics, which com-
plement this paper on the reliability of inferences.

We also referenced research works on hyperparameter optimization, which studies the
optimization of hyperparameters used to train a model, such as learning rate, momentum
decay factor, and regularization parameters. Most methods [16, 17, 18, 19, 20] are based
on Bayesian optimization with sequential model-based optimization [21, 22], while others
employ random search [23] or gradient-based optimization [24, 25, 26]. Since each hyperpa-
rameter setting corresponds to a specific implementation of an optimization algorithm, these
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methods can be seen as a way of searching through different implementations of the same
optimization algorithm. On the other hand, the proposed method can search through the
space of all possible optimization algorithms. Additionally, when faced with a new objective
function, hyperparameter optimization requires multiple trials with different hyperparame-
ter settings to find the optimal set. In contrast, after completing training, the algorithm
will automatically know how to select the hyperparameters immediately without needing to
try different settings, even when encountering an objective function it has not seen before
during training.

3. PROPOSED METHOD

The L2O model using the L-ADMM optimization algorithm combined with certificates
has advantages such as the ability to encode prior knowledge and data directly into the
problem, and then the ability to provide guarantees such as satisfying constraints. This
section also presents the limitation of the original method, which is the random initialization
for the learning parameters of L-ADMM (the most important parameters in the training
process) and our direction for the improvement.

3.1. Preliminaries

Consider an optimization problem minx f(x) with x ∈ Rd. A set of classical optimizer
usually updates x step by step based on a hand-crafted rule. For example, the Adam algo-
rithm, a popular optimization method in deep learning, performs an update at each iteration
t based on the gradient information and the estimates of the momentum and dispersion of
the gradient. The update at each step is given by the formula: xt+1 = xt − α m̂t√

v̂t+ϵ
, where

α is the step size, m̂t and v̂t are the estimates of the momentum and dispersion of the gra-
dient at iteration t, respectively, and ϵ is a small constant to avoid division by zero. Unlike
traditional methods, L2O has more flexibility in using available information. The informa-
tion zt available at time t may include the iterations x0, . . . , xt as well as their gradients
∇f(x0), . . . ,∇f(xt) and other factors. And then, the L2O method models the updating rule
by a function g of zt: xt+1 = xt − g(zt, ϕ), where the mapping function g is parameterized
by ϕ. Finding the optimal updating rule can be mathematically formalized as searching for
a good value of ϕ in the space of parameter g. To find a desired ϕ corresponding to a fast
optimizer, [27] proposed to minimize the sum of weight for the objective function f(xt) over
a period of time (called the expansion length) T given by

min
ϕ

Ef∈T

[
T∑
t=1

wtf(xt)

]
with xt+1 = xt − g(zt, ϕ), t = 1, . . . , T − 1, (1)

where Ef∈T denotes the expected value over all objective functions f in the set T , which
represents the task distribution for the target. The expected value, E, calculates the average
performance of the optimizer across multiple tasks, ensuring that the learned optimizer
generalizes well to unseen problems instead of being specialized for a single function. In
this expression, w1, . . . , wT are weights and f represents an objective function in a set T
of objective functions, which simulates the task distribution for the target. Note that the
parameter ϕ determines the objective value by determining the number of iterations xt.
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L2O solves the training problem (1) to find the desired ϕ and the update rule g(zt, ϕ). In
practice, the choice of wT varies from case to case and depends on the experimental setup.
For example, many L2O models for sparse coding are extended to a fixed length T for all
objective functions, and then only minimize the step-T function value [28, 29], i.e. wT = 1
and w1 = . . . = wT−1 = 0.

3.2. Algorithm

To illustrate the L2O model used in this paper, let us start with the following example
of the L2O model and algorithm [30]

min
x∈Rn

f(Kx) + h(x) s.t. ∥Mx− d∥ ≤ δ, (2)

where K and M are linear operators, δ ≥ 0 is a noise threshold, and f and h are approxi-
mation functions. By using the auxiliary variables w and p together with the dual variable
ν = (ν1, ν2), the linearized ADMM algorithm (L-ADMM) can be used to sequentially update
the set of variables (p, w, ν, x) via

pk+1 = proxλf (p
k + λ(νk1 + α(Kxk − pk))), (3)

wk+1 = projB(d,δ)(w
k + λ(νk2 + α(Mxk − wk))), (4)

νk+1
1 = νk1 + α(Kxk − pk+1), (5)

νk+1
2 = νk2 + α(Mxk − wk+1), (6)

rk = K⊤(2νk+1
1 − νk1 ) +M⊤(2νk+1

2 − νk2 ), (7)

xk+1 = proxβh(x
k − βrk), (8)

where projB(d,δ) is the Euclidean projection onto the Euclidean ball of radius δ centered at
d, proxf is the proximal operator for the function f , and the constants α, β, θ > 0 are the
appropriate steps. This paper notes that the updates are arranged so that xk+1 is the last
step to facilitate backpropagation over the last update of xk.

3.3. Implicit model training

The standard backpropagation method cannot be used for implicit models because it
requires memory capacity exceeding the capabilities of computing devices. Storing derivative
data for each loop step during forward propagation increases the memory during training
linearly with the number of loops. Since the limitation of x∞ solves a fixed-point equation,
implicit models can be trained by implicitly differentiating over the fixed point to obtain the
derivative. This implicit differentiation requires additional operations and coding.

Instead of using derivatives, this paper uses the Jacobian-Free Backpropagation (JFB)
[31] method to train the models. JFB simplifies training by performing backpropagation only
over the last loop, which has been proved to produce pretrained derivatives. JFB trains using
fixed memory (by the number of steps K used to estimate N⟨d⟩) and avoids the numerical
problems arising from computing exact derivatives, this makes JFB and its variants suitable
for training implicit models.
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Algorithm 1 L-ADMM Algorithm

1: Define the functions proxf (v, λ), projB(v, δ, d), proxh(v, β)
2: Initialize constants and variables
3: λ, α, β, δ,K,M, d
4: p← pinit
5: w ← winit

6: ν1 ← ν1,init
7: ν2 ← ν2,init
8: x← xinit
9: for k = 1 to num iterations do

10: p← proxλf (p+ λ(ν1 + α(Kx− p)))
11: w ← projB(w + λ(ν2 + α(Mx− w)), δ, d)
12: ν1 ← ν1 + α(Kx− p)
13: ν2 ← ν2 + α(Mx− w)
14: rk ← K⊤(2ν1 − ν1,prev) +M⊤(2ν2 − ν2,prev)
15: x← proxβh(x− βrk)
16: ν1,prev ← ν1
17: ν2,prev ← ν2
18: end for
19: Return x

Algorithm 2 Complexity of L-ADMM

1: Initialization: O(1)
2: for k = 1 to num iterations do
3: Update p: O(d)
4: Update w: O(d log d)
5: Update ν1 and ν2: O(d)
6: Compute rk: O(d)
7: Update x: O(d log d)
8: Store and update ν1,prev and ν2,prev: O(d)
9: end for

10: Return: O(1)

3.4. Model design

The use of a sparsifying transform is useful [32, 33] for low-dose CT image reconstruction.
This paper does this through a linear operatorK, which is applied and then the result will put
into a data-based regularizer fΩ based on parameters Ω. This paper also ensures compliance
with measurements from the transformation matrix Radon A, with an error of δ. In the
setting in this paper, all pixel values are also known to set in the range [0, 1]. Combining
the prior knowledge of this paper create the implicit L2O model.

NΘ(d) = arg min
x∈[0,1]n

fΩ(Kx)) s.t. ∥Ax− d∥ ≤ δ, (9)

with N the weights are w = (Ω,K, α, β, θ) where α, β, and θ are the step sizes in L-ADMM.
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Using Algorithm 1 in Subsection 3.3 to update the weights in L-ADMM has two disad-
vantages. First, the initial values based on intuition can cause the model to a bad learning
(negative values for the parameters α, β make the model completely wrong). Second, learn-
ing based on the entire dataset is unnecessary, as this algorithm is computationally expensive
(see Algorithm 2 in Subsection 3.3). Through our experiments we found that learning from
only a small part of the dataset, the parameters have achieved optimal values.

The paper proposes using Bayesian optimization [18] to learn over 10% of the training
data set to update the parameters α, β, θ, δ. These parameters will then be used in the
training process as a constant. From there, the optimized learning model only needs to learn
other parameters of the convolutional layers, and when the parameters of L-ADMM reach
the optimal value, the convolutional layers in the model do not need to be as complex as
the original model but still learn enough features from the data to be able to reconstruct
the image. This is an updating direction that we have experimented with. The model then
achieves a fast convergence, avoiding errors from initialization and helping to minimize the
learning parameters of the model while still ensuring performance compared to the original
model.

3.5. Certificates

Table 1: Concepts, quantities and formulas

Concept Quantity Math formula

Sparsity Nonzeros ∥x∥0
Measurements Relative error ∥Ax−d∥

∥d∥
Constraints Distance to set C dC(x)

Smooth images Total variation ∥∇x∥1
Classifier confidence Probability short of one-hot label 1−maxi xi
Convergence Iterate residual ∥xk − xk−1∥
Regularization Proximal residual ∥x− proxf (x)∥

Here, this paper will set three properties to check the reliability, specifically as follows:
The pixels of the restored image must be in the range [0, 1]. The fidelity of the image is

evaluated by calculating the relative error using the formula ∥Ax−d∥
∥d∥ . At the same time,

the data-driven regularization (Proximal residual) is performed according to the formula
∥x− proxf (x)∥ with proxf (v) = argminx

(
f(x) + 1

2∥x− v∥2
)
.

Labels are generated via the flow: Inference → Property Value → Certificate Label.

3.6. Certificate labels

The classification of inferences is usually implemented according to a certain rule: reliable
inferences are labeled “pass”, uncertain inferences are labeled “warning”, and false inferences
are labeled “fail”. Suppose the samples of inference attribute values in the model α ∈ [0,∞)
come from the PA distribution. This paper chooses the selected attribute value functions such
that small values of α are desirable, while larger values belong to the tail of the distribution.
Intuitively, small values of α are similar to the attribute values of inferences from training
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and testing data. Therefore, the label is assigned according to the probability of observing
a value less than or equal to α, that is, this paper evaluates the cumulative distribution
function (CDF) defined for the PA probability measure as

CDF(α) =

∫ α

0
dPA.

The label is chosen according to the task which is being performed. Let pp, pw, and
pf = 1− pp− pw be the probabilities for the labels pass, warning, and fail, respectively. The
label is assigned to α through

Label(α) =


pass if CDF(α) < pp

warning if pp ≤ CDF(α) < (1− pf )

fail otherwise.

The remaining task is to estimate the CDF value for a given α value. Note that this paper
assumes accessing to {αi}Ni=1 attribute values from ground truth or inference on training data,
where N is the number of data points. To do this, for a given α value, this paper estimates
its CDF value using the experimental CDF

CDF(α) ≈ |{αi : αi ≤ α, 1 ≤ i ≤ N}|
N

=
# of αi ’s ≤ α

N
.

Here, an inference will fail if its attribute value is outside 95% of the attribute values
from the training data, i.e. this paper chooses pp = 0.95, pw = 0 and pf = 0.05. Choosing
a CDF threshold below 95% for assigning the pass label ensures that most inferences are
reliable (reflecting 95% of the data distribution) while detecting potential outliers. CDF
represents the cumulative probability P (A ≤ α), allowing the trustworthiness of inferences
to be quantified based on property values. This threshold balances sensitivity and specificity,
reduces false alarms, and is a common standard in statistical analysis [34], which enhances
the transparency and reliability of the system.

3.7. Certificate implementation

Trustworthiness certification is essentially evidence showing that a result has met certain
criteria. This is similar to product testing before it is released to the market, to ensure it
functions correctly.

When a model is called upon to generate an inference, it not only provides the result but
also returns certifications. These certifications indicate whether the result can be trusted,
meaning that it meets the predefined criteria, such as consistency with the data the model
has learned and the prior knowledge we already possess.

In summary, certification serves as a way to ensure that the model’s output is reasonable
and trustworthy, much like the quality assurance process in software development.

4. EXPERIMENTAL RESULTS

This section will present the results of comparing our method with the original TV-Min,
U-Net [35], FFPN [36], L2O [30] methods. The comparison model results are taken from
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previous research results (with LoDoPab set) and retrained by us (with Ellipses set). All are
run on Kaggle with P100 GPU. The libraries used are Pytorch [37], Adam optimizer [38].

LoDoPaB-CT dataset: LoDoPaB-CT [39] a benchmark dataset for low-dose integrated
CT reconstruction. The LoDoPaB-CT dataset is a dataset of computed tomography (CT)
images and simulated low-intensity measurements. It consists of more than 40,000 scan slices
from approximately 800 patients selected from the LIDC/IDRI database [40]. This dataset
is used to train low-intensity CT reconstruction methods and aims to create a benchmark for
fair comparison. The CT measurements are simulated with parallel ray geometry and set up
a sparse angle with only 30 angles and 183 projection rays, resulting in 5490 equations and
16,384 unknowns. With 1.5% Gaussian noise injected into each individual ray measurement.
The images have a resolution of 128 × 128. To make the errors easily comparable between
methods, the linear systems here are non-deterministic and have more noise. The used
training and testing datasets have 20000/2000 samples.

Ellipses dataset: Ellipses [41] is a typical synthetic CT dataset with ellipse shaped
images. This dataset uses the odl.phantom.ellipsoid_phantom() method to generate the
images. The images are normalized to have a range of values from [0., 1.] with a background
value of 0. With 1.5% Gaussian noise added to each image. The images have a resolution of
128 × 128. The used training and testing datasets have 10000/1000 samples.

Figure 1: LoDoPab illustration result

Figure 2: Ellipses illustration result

4.1. LoDoPaB-CT dataset

Reconstruction on dataset computes via TV-Min, U-Net, F-FPN, L2O and Scale L2O
minimization.

Table 3 shows the average PSNR and SSIM reconstructions. Three features: compliance
with measurements (Fidelity violation), valid pixel values (Pixel violation), and data-driven
regularization through Proximal residual (Data Reg. violation).
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Table 2: Overview of LoDoPaB-CT and Ellipses datasets

Feature LoDoPaB-CT Ellipses

Data Source LIDC/IDRI Synthetic

Image Type Computed Tomography (CT) Synthetic Ellipsoid Images

Image Resolution 128 x 128 128 x 128

Image Generation Method CT scans from real patients odl.phantom.ellipsoid phantom()

Noise Level 1.5% Gaussian 1.5% Gaussian

Number of Projection Angles 30 angles Not applicable

Number of Projection Rays 183 rays Not applicable

Number of Equations 5490 equations Not applicable

Number of Unknowns 16,384 unknowns Not applicable

(a) Target (b) TV-min (c) F-FPN (d) L2O (e) Scale L2O

Figure 3: Comparison results

Table 3: Comparison of methods in image reconstruction [30]

Method Avg. PSNR Avg. SSIM Pixel violation (%) Fidelity violation (%) Data Reg. violation (%) # Params

U-Net 27.32 dB 0.761 5.75 96.95 3.20 533,593

TV-Min 28.52 dB 0.765 0.00 0.00 25.40 4

F-FPN† 30.46 dB 0.832 47.15 0.40 5.05 96,307

Implicit L2O 31.73 dB 0.858 0.00 0.00 5.70 59,697

Scale L2O 31.74 dB 0.858 0.00 0.00 5.70 19,536

Compared to other methods, the original L2O method and our improved Scale L2O
method achieve higher performance, ensuring correctness with respect to the constraints.
Our method significantly reduces the number of training parameters and the training time,
as the training time per iteration is 0.5 hours instead of 2 hours as in the original model.

The comparison results illustrated by the output of the models in Figure 3 not only allow
us to evaluate the results based on the quality of the generated images, but also include
constraint labels, providing additional data points to determine which model’s output is
more reliable.

The F-FPN model requires 5.4GB of RAM and 4.7GB of GPU VRAM, while the original
L2O model uses 3.4GB of RAM and 3.5GB of GPU VRAM. In comparison, the Scale L2O
model consumes 3.3GB of RAM and 1.7GB of GPU VRAM.

4.2. Ellipses dataset

We have already examined the output of the Scale L2O model on the LoDoPaB-CT
dataset. This paper will present the results of applying the L2O model on another dataset,
the Ellipses dataset as below. This dataset is used to evaluate the performance of the model
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in recovering images from distorted elliptical circular images.
Here we reuse the parameter set of the L-ADMM algorithm learned from the LoDoPaB-

CT dataset to train on the Ellipses set. The results show that using Bayesian optimization
in parameter initialization, those parameters can be applied to similar problems and similar
datasets without training again from initialization.

(a) Target (b) TV-min (c) F-FPN (d) L2O (e) Scale L2O

Figure 4: Comparison results

Table 4: Comparison of Scale L2O and L2O

Method Avg. PSNR Avg. SSIM Pixel violation (%) Fidelity violation (%) Data Reg. violation (%) # Params

Implicit L2O 30.04 dB 0.846 0.00 0.00 4.0 59,697

Scale L2O 30.03 dB 0 .845 0.00 0.00 4.0 19,536

5. CONCLUSIONS AND DEVELOPMENT DIRECTION

Explainable machine learning models can be developed specifically by combining certifi-
cates with the L2O method. This helps to build AI models that are not only powerful in
performance but also transparent and understandable to users.

The implicit L2O method allows prior knowledge and knowledge about data to be em-
bedded directly into the models, thus providing a clear and understandable design. With
this method, the models are not only based on training data but also integrate specialized
knowledge, which significantly improves their explainability. The application of Bayesian
helps the model reduce the number of parameters, training time while maintaining the same
performance.

In the future, we will improve the performance of the model using optimal learning meth-
ods and enhance the explainability with multiple methods instead of only using certificates
that require expert knowledge to be understandable. The model processes grayscale images
of size 128x128, with 3 convolutional layers for the R part and 2 convolutional layers for the
K part. Each layer has 16 input and output channels, with kernel sizes of 5x5 and 3x3. The
training process uses a batch size of 64 and 10 epochs. With minimal computational resource
requirements, using only 1.7GB of GPU VRAM and 3.3GB of RAM for convolution oper-
ations, the model shows promising potential for scaling to tasks involving higher-resolution
images.
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