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Abstract. Continual learning models encounter a significant challenge, namely catastrophic for-

getting. After training on a new task they forget previously learned knowledge, causing a significant

drop in models’ performance on previous tasks. Replay-based methods, the most efficient approach

for addressing catastrophic forgetting, select a small number of data (the coreset) from each learned

task to store into an episodic memory buffer for rehearsal during subsequent stages. This selection

significantly impacts the models’ ability to perform well on new tasks while maintaining performance

on previous tasks. In this paper, we propose a two-phase method to address catastrophic forgetting

in continual learning. The first phase utilizes the second-order influence function to select an effective

coreset from previously learned tasks. Even with this effective selection, there is still a problem that

the hidden feature space is unexpectedly transformed across each task, causing the model to forget

optimal hidden representations on previously learned tasks. To address this issue, the second phase

employs an Energy-based Latent aligner for Incremental learning (ELI) to re-align the hidden feature

representations of tasks towards the optimal region. Extensive experiments on three continual learn-

ing benchmark datasets, i.e. CIFAR-10, CIFAR-100, and Split miniImageNet, demonstrate that our

proposed method outperforms several existing state-of-the-art continual learning models.
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1. INTRODUCTION

Continual learning, also known as lifelong learning, is a crucial sub-field of study within
machine learning and artificial intelligence that mimics the human-being ability to learn
seamlessly throughout life, accumulating and integrating new knowledge without forgetting
past expertise. To this end, continual learning models are expected to continuously learn
and adapt to new task’s coming data without causing a loss of knowledge learned from
previously tasks [1]. However, deep neural networks based continual learning models are
susceptible to catastrophic forgetting phenomenon, first introduced by McCloskey and Co-
hen [2], in which learning new tasks can significantly deteriorate the model’s performance
on previously learned tasks. This catastrophic forgetting phenomenon occurs because the
continual learning model’s parameters are updated to accommodate the new coming task,
thus becoming ineffective for earlier tasks.
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Numerous studies have proposed methods to mitigate catastrophic forgetting in continual
learning scenarios. These methods can be broadly categorized into three types: (1) regular-
ization methods [3] that minimize changes in network weights when learning for new task’s
coming data to retain priorly learned knowledge; (2) dynamic architecture methods [4] that
involve adding or removing nodes or layers to adapt neural networks to new data; and (3)
memory-based methods [5] that store a subset of data samples from previously learned tasks
to be replayed during training on new tasks, preventing the model from forgetting previ-
ous knowledge. Sun et al., 2023 [6] introduced a novel continual learning approach called
second-order influence regularization, which significantly mitigates the issue of catastrophic
forgetting by leveraging data replay. However, when applying this method in continual learn-
ing scenarios, the latent feature space of the original model is susceptible to changes as new
tasks are learned.

In this paper, we propose a two-phase method that combines memory-based rehearsal
model (EBM) and latent space alignment to address catastrophic forgetting in continual
learning scenarios. In the first phase, we employ a memory replay approach using the
second-order influence function [7] to select an effective coreset of data points from previously
learned tasks. This coreset is stored in an episodic memory and replayed during training
on new tasks, enhancing the model’s performance while learning new task’s data. In the
second phase, we employ an energy-based latent aligner (ELI) [8] that learns an energy
manifold in the latent feature space of the model. ELI is used to re-align the hidden feature
representations of previously learned tasks, preventing the model from forgetting optimal
representations learned on prior tasks.

Our key contributions are as follows:
• We propose to enhance the second-order influence function based episodic memory
selection [6] for rehearsal during continual learning by utilizing an energy-based latent
aligner (ELI) [8], which learns an energy manifold in the latent feature space of the
model. ELI is used to re-align the hidden feature representations of previously learned
tasks, preventing the model from forgetting optimal representations learned on prior
tasks due to the feature space transformations that occur during continual learning.

• We conduct extensive experiments on three continual learning benchmark datasets,
CIFAR-10, CIFAR-100, and Split miniImageNet, demonstrating that our proposed
method outperforms several existing state-of-the-art continual learning approaches in
mitigating catastrophic forgetting and maintaining the model’s performance across
tasks.

The remainder of this paper is organized as follows: Section 2 provides an overview of
related work in continual learning, influence functions, and energy-based models. Section 3
details our proposed method, including the second-order influence function for the coreset
selection and the energy-based latent aligner for feature space alignment. Next, Section 4
presents the experimental setup, results, and analysis, demonstrating the effectiveness of our
approach. Finally, Section 5 concludes the paper and discusses potential future research
directions.

2. RELATED WORK

In this section, we provide an overview of relevant concepts and related work in class
incremental continual learning, influence functions for memory selection, and energy-based
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models.

2.1. Class incremental learning

Class-incremental learning is a continual learning paradigm that aims to develop a cohe-
sive classifier by assimilating data from various classes sequentially [7]. In CIL, the model
learns a sequence of tasks 1, 2, ..., T , where each task k contains a dataset used for training
Dk = {(xik, yik)

nk
i=1}, with nk data samples. Here, xik ∈ χ is an input data sample, and

yik ∈ Yk ⊆ γ(=
⋃T
k=1 Yk) is the corresponding label or class. All Yk are distinct for each task

k, meaning Yk ∩ Yk′ = ∅.
The goal of CIL is to learn a prediction function f : χ→ Y that determines the label or

class y ∈ Yk for an input data sample x. To this end, a single model is constructed for all
tasks learned up to the current task. During inference, task identification is unnecessary, as
the model has learned to differentiate between classes from all previous tasks. However, this
characteristic poses a challenge in establishing decision boundaries between classes of new
tasks and those of previous tasks, known as inter-task class separation. It arises when the
model lacks access to the training set of previous tasks while learning new ones, causing a
decrease in classification accuracy of the model.

2.2. Influence functions for memory selection

Influence functions [9] offer a cost-effective approximation for addressing the corset selec-
tion problem in continual learning by adjusting data sample weights, eliminating the need for
costly leave-one-out retraining, which was required by previous exact solutions. A common
approach to mitigating the issue of catastrophic forgetting in continual learning is to use a
replay-based method, where a small set of previously trained data samples is stored into an
episodic memory for further training in subsequent stages. However, selecting which data
samples to store is a challenging problem that requires considering the interaction between
consecutive selections.

Previous continual learning research has typically treated each selection process as an
isolated event, focusing on optimizing performance within individual selections. However,
this approach neglects the crucial fact that in continual learning scenarios, each previous
selection directly impacts the input data for subsequent selections, thereby influencing future
decisions. Failing to account for this interaction can lead to a gradual deterioration of coreset
quality over prolonged selection procedures. Therefore, it is imperative to adopt a holistic
perspective that addresses the interdependence of selections to maintain the integrity and
effectiveness of the coreset throughout the continual learning process.

In 2023, Sun et al. [6] introduce an innovative method to regularize prior selections
in continual learning by leveraging the expected second-order influence of data samples.
This approach aims to maintain the model’s performance on the known dataset D1:t as it
progresses through subsequent learning stages. The authors propose a straightforward yet
effective solution involving the storage of a subset of data samples Mt in a buffer memory,
serving as a compact representation of the previously encountered data D1:t. To ensure
efficient memory utilization, the buffer size is limited to |Dt| ≤ m, where m is significantly
smaller than n, the total number of samples in the training set. The key innovation in this
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method lies in the use of the second-order influence function to carefully select the most
informative samples for inclusion in the coreset Dt.

2.3. Energy-based models

Energy-based models (EBMs) [10] are probabilistic models that rely on constructing an
energy function E(x) that maps each point x in the input space to a scalar energy value.
These energy values are then transformed into a probability density p(x) through the Gibbs
distribution, as shown in Equation (1)

p(y|x) = e−E(x,y)/T∫
y′ e

−E(x,y′)/T
=
e−E(x,y)/T

e−E(x)/T
· (1)

The temperature parameter T in the Gibbs distribution serves as a control for the smoothness
of the probability distribution. Higher values of T result in a more uniform distribution,
while lower values lead to a more concentrated distribution around the energy minima. The
denominator

∫
y′ e

−E(x,y′)/T is known as the partition function, which plays a crucial role in

normalizing the probability distribution. The concept of free energy E(x) encapsulates the
overall energy landscape of the model, providing a measure of the stability and likelihood
of different configurations. By minimizing the free energy, EBMs can learn to assign lower
energies to more probable configurations, effectively capturing the underlying patterns and
dependencies in the data.

EBMs offer a flexible and intuitive approach to model complex distributions by learning
an energy function that assigns low energies to desired configurations. The interplay between
the energy function, partition function, and free energy enables EBMs to capture intricate
relationships and dependencies in the data, making them a powerful tool for various machine
learning tasks.

3. METHOD

3.1. Problem formulation

Consider a continual learning scenario where a model encounters a stream of tasks T1..n
with corresponding data sets D1..n and at each time step t only current task data Dt is
accessible. The goal is to strategically select representative data samples from D1..t to store
into a memory buffer Mt where |Mt| ≤ k such that when replayed on Mt the model
maintains its performance across all encountered tasks T1:t in latter steps. Let L(x, θ) be
the loss of the model with parameters θ on training data sample x, the selection objective is
formulated in Equation (2)

min
Mt⊂Mt−1∪Dt

∑
x∈Mt−1∪Dt

L(x, θ̂)

s.t. θ̂ =θ

∑
x∈Mt

L(x, θ).
(2)
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Figure 1: Overall architecture of our proposed model

3.2. Proposed method

Based upon recent advances in continual learning, our proposed model consists of two
main phases, as depicted in Figure 1. The first phase involves continual learning based
on the InfluenceCL memory replay method [6], which utilizes the second-order influence
regularization approach to selectively replay important samples from previous tasks. This
phase aims to maintain the model’s performance on previously encountered tasks while
incorporating new knowledge from incoming tasks. In the second phase, we utilize the
Energy-based Latent Aligner (ELI) model [8] to tackle the changes in the latent feature
space that occur during continual learning. The ELI model is designed to align the latent
representations of the continually learned model with those of the original model, ensuring
that the latent feature space remains consistent across tasks. By maintaining the stability
of the latent space, the ELI model helps to preserve the previously acquired knowledge and
prevents catastrophic forgetting.

3.2.1. InfluenceCL based memory replay

The InfluenceCL based memory replay method provides an efficient approximation for
solving the good samples selection problem by perturbing sample weights, for which the
previous exact solution requires expensive leave-one-out retraining. Following Sun et al.,
2023 [6], we analyze both first-order and second-order influence of each candidate sample.
This is quantified through parameter perturbation analysis using the model’s loss gradient
and Hessian information. By adding a small weight ϵ to each candidate sample z, the
perturbed model parameters from the inner optimization in Equation (2) become

θ̂ϵ,z =θ

∑
x∈Mt

L(x, θ) + ϵL(z, θ). (3)

The initial optimal parameters of the model at step t is θ̂ϵ,z|ϵ=0, which is denoted by θ̂t.
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As a result, the sample’s first-order influence on the model’s performance is given by [6]

I(z) =
∑

x∈Mt−1∪Dt

dL(x, θ̂ϵ,z)

dϵ

∣∣∣
ϵ=0

= −
∑

x∈Mt−1∪Dt

∇θL(x, θ̂t)
⊤H−1

θ̂t
∇θL(x, θ̂t)

(4)

where Hθ̂t
=
∑

x∈Mt
∇2
θL(x, θ̂t) denotes the invertible Hessian matrix.

We could see that each selection at the prior step t − 1 impacts on the influence of
sample z at the current step t, thus determining the effectiveness of the current selection
process. Taking into account this impact from a previous sample z′, which is supposed to
be up-weighted by ϵ, the influence of z turns into as follows

Iϵ,z′(z) = −

( ∑
x∈Mt−1∪Dt

∇θL(x, θ̂t) + ϵ∇θL(z
′, θ̂t)

)⊤

(Hθ̂t
+ ϵHθ̂t,z′

)−1∇θL(z, θ̂t). (5)

To this end, taking the derivative w.r.t. ϵ yields the second-order influence of z′ and z,
which is given by

I(2)(z′, z) =
dIϵ,z′(z)

dϵ

∣∣∣
ϵ=0

= −(∇θL(z
′, θ̂t)−Hθ̂t,z′

st)
⊤H−1

θ̂t
∇θL(z, θ̂t),

(6)

where st = H−1

θ̂t

∑
x∈Mt−1∪Dt ∇θL(x, θ̂t) is the inverse Hessian-vector product.

Second-order influences have two drawbacks, such as compromised sample diversity and
amplified memory bias. To address this issue, we employ regularization techniques as in [6].
This regularization lessens the harmful effects of second-order influences without adding extra
memory overhead and leverages gradient matching and diversity connections for improved
results.

We note that the InfluenceCL based Memory Replay process suffers from the latent
feature space instability. As new tasks are learned, latent representations drift from their
optimal regions. To address this limitation, we integrate the InfluenceCL framework with
an energy-based latent aligner [8]. This integration provides stronger protection against
catastrophic forgetting by addressing both memory selection and feature space stability.

3.3. Energy-based latent aligner

In this proposed method, we perform energy-based modeling [8] in the latent space of
the method. Let x denote an image sampled from the data distribution of the current task
τt, i.e., x ∼ pτtdata. We obtain the latent representations of x from two different models

zTt−1 = F
Tt−1

θ (x), which represents the latent representation of x from the model trained till

the previous task Tt−1, and z
Tt = F Ttθ (x), which represents the latent representation of x from

the model trained till the current task Tt. Here, F
Tt−1

θ and F Ttθ denote the feature extraction
functions of the models trained till tasks Tt−1 and Tt, respectively, with parameters θ.

As illustrated in Figure 2, we first learn an energy manifold using three key components:
images from the current task: x ∼ pτtdata, z

Tt−1 = F
Tt−1

θ (x) and zTt = F Ttθ (x). We learn
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Figure 2: Energy-based Latent Aligner [8]

an energy-based model Eψ in the latent space, where ψ represents the parameters of the
energy model. The energy model learns to assign low energy values to latent representations
zTt−1 from the previous task’s model. Conversely, it assigns high energy values to latent
representations zTt from the current task’s model. This energy-based modeling helps capture
the desired characteristics of the latent space, where the representations from the previous
task’s model are considered more stable and preferred. Next, once the energy manifold
Eψ is learned, it is used to address the representational shift that occurs when instances
from previous tasks are passed through the current model. Specifically, for an instance x
belonging to a previous task Tt−1, its latent representation zTt = F θTt(x) obtained from the

current model F θTt may have undergone a representational shift. As a result, zTt is likely to
have higher energy values on the learned energy manifold Eψ.

To mitigate this representational shift, we align the latent representations zTt to alternate
locations in the latent space that minimize their energy on the manifold Eψ. This alignment
process involves finding the optimal latent representations ẑTt that minimize the energy
function

ẑTt = argmin
z
Eψ(z), (7)

where ẑTt represents the aligned latent representation of x from the current model.
The energy-based latent alignment step is performed in conjunction with the continual

learning process, where the model is trained on the current task while leveraging the energy
manifold to regularize the latent space. This integration allows the model to adapt to new
tasks while maintaining the integrity of the latent representations learned from previous
tasks.

3.3.1. Learning latent aligner

With a given latent feature vector z ∈ ZD in ELI [8], we learn an energy function
Eψ(z) : RD → R to map this to a scalar energy value. EBM is defined as a Gibbs distribution
pψ(z) over Eψ(z)

pψ(z) =
exp(−Eψ(z))∫

z exp(−Eψ(z)) dz
·

The derivative of the above objective is as follows
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∂ψL(ψ) = Ez∼ptrue [−∂ψEψ(z)] + Ez∼pψ [∂ψEψ(z)].

The term Ez∼ptrue [−∂ψEψ(z)] shows that the energy for a sample z from the true data dis-
tribution ptrue will be minimized, while the term Ez∼pψ [∂ψEψ(z)] ensures the higher energy
for model’s samples. In ELI, ptrue is easy to sample from, as it represents the latent repre-
sentations from the model trained on the previous tasks at any point in time. However, pψ
is intractable to sample due to the normalization in the Gibbs distribution as in Equation
(1). Therefore, we approximate samples with Langevin dynamics [11], which is a popular
MCMC algorithm

zi+1 = zi −
λ

2
∂zEψ(z) +

√
λωi, ωi ∼ N (0, I),

where λ is the step size (or the learning rate) and ω captures data uncertainty.

4. EXPERIMENTS AND RESULTS

4.1. Experiment setup

Our proposed model utilizes the ResNet-18 architecture as the backbone for the original
model. The model is optimized using the Stochastic Gradient Descent (SGD) method over 50
epochs per task, with a fixed batch size and replay batch size set to 32. The learning rate is
set to 0.1 for both CIFAR-10 and CIFAR-100 datasets. During training, the model employs
the cross-entropy loss function for replayed samples. The replay buffer is only updated in
the last epoch of each task (i.e. epoch 50) to reduce computational complexity during model
training.

The Energy-based Model (EBM) is implemented as a compact three-layer neural network,
consisting of 64 neurons in the first two layers and a single neuron in the output layer.
The EBM undergoes training for 1500 iterations, with mini-batches of size 128 and the
learning rate of 0.0001 (following [8]). The sampling process from the EBM involves 30
Langevin iterations to ensure diverse and representative samples. The class-incremental
learning method is used to evaluate the model’s prediction results, requiring the model
to differentiate between all previously trained classes at inference time without relying on
task identification. To ensure the reliability and statistical significance of our findings, all
experimental results are averaged over five independent runs.

4.2. Results

Tables 1 and 2 showcase the performance of our proposed model on the CIFAR-10 dataset
with memory size settings of m = 300 and m = 500, respectively. The results consistently
demonstrate that, irrespective of the memory setting, our model achieves substantial im-
provements in average performance across tasks when augmented with the Energy-based
Latent Aligner (ELI). With m = 300, the average performance exhibits a notable improve-
ment of 5.66%, while with m = 500, the improvement further increases to an impressive
7.43%. These results clearly highlight the effectiveness and robustness of our model on
CIFAR-10.

To gain deeper insights into the performance of our model, we compare it with existing
continual learning methods that utilize Influence Functions (IF) and those that do not, as
summarized in Table 3 (data referenced from [6]). The results unequivocally demonstrate
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Table 1: Average accuracy (%) of the SOTA InfluenceCL [6] (a) and our ELASTIC (b)
models on the CIFAR-10 dataset with a memory size of m = 300.

a) InfluenceCL (SOTA)
Train Test on

T0 T1 T2 T3 T4

Task 0 (T0) 99.00 59.86 58.80 53.06 24.64
Task 1 (T1) 91.66 16.64 17.67 14.13
Task 2 (T2) 94.20 38.60 38.26
Task 3 (T3) 96.86 66.97
Task 4 (T4) 97.10
Average 99.00 75.76 56.55 51.55 48.22

b) InfluenceCL + ELI (Ours)
Train Test on

T0 T1 T2 T3 T4

Task 0 (T0) 99.00 93.88 56.31 57.93 47.24
Task 1 (T1) 91.66 85.01 10.55 15.36
Task 2 (T2) 94.20 89.93 24.96
Task 3 (T3) 96.86 84.73
Task 4 (T4) 97.10
Average 99.00 92.77 78.51 63.82 53.88

Table 2: Average accuracy (%) of the SOTA InfluenceCL [6] (a) and our ELASTIC (b)
models on the CIFAR-10 dataset with a memory size of m = 500.

a) InfluenceCL (SOTA)

Train Test on
T0 T1 T2 T3 T4

Task 0 (T0) 98.99 66.96 62.35 64.13 24.84

Task 1 (T1) 91.70 21.60 18.67 22.94

Task 2 (T2) 94.52 37.43 43.66

Task 3 (T3) 97.51 67.50

Task 4 (T4) 97.12

Average 98.99 79.33 59.49 54.44 51.21

b) InfluenceCL + ELI (Ours)

Train Test on
T0 T1 T2 T3 T4

Task 0 (T0) 98.99 93.31 58.07 56.76 52.80

Task 1 (T1) 91.70 86.32 10.28 20.88

Task 2 (T2) 94.52 89.60 31.82

Task 3 (T3) 97.63 90.57

Task 4 (T4) 97.12

Average 98.99 92.51 79.64 63.57 58.64

the superiority of methods employing IF over those without IF, underscoring the positive
impact of IF on data sample selection for subsequent continual learning stages. Notably,
our method surpasses all these methods, showcasing the significant benefit of the ELI in
synchronizing the latent feature space of the model after each task, thereby enabling more
effective continual learning.

Table 3: Performance comparison in terms of accuracy of our proposed model with continual
learning SOTA methods on three benchmark datasets, i.e. CIFAR-10, CIFAR-100 and Split
miniImageNet.

Method type Method
Cifar10 (%) Cifar100 (%) Split miniImageNet(%)

m = 300 m = 500 m = 500 m = 1000 m = 500 m = 1000

Non-IF

GEM [12] 37.51 36.95 15.91 22.79 - -

A-GEM [13] 20.02 20.01 9.31 9.27 10.69 10.69

ER [14] 34.19 40.45 13.75 17.56 11.00 11.35

GSS [15] 35.89 41.96 14.01 17.87 11.09 11.42

ER-MIR [16] 38.53 42.65 13.49 17.56 11.07 11.32

GDUMB [17] 36.92 44.27 11.11 15.75 6.22 7.15

HAL [18] 24.45 27.94 8.20 19.59 - -

GMED [19] 38.12 43.68 14.56 18.67 11.03 11.73

IF

Vanilla IF [6] 41.76 47.14 17.49 22.75 12.08 14.64

MetaSP [20] 43.76 50.10 19.28 25.72 12.74 14.54

InfluenceCL [6] 48.22 51.21 21.15 27.36 13.28 16.68

Ours 53.88 58.64 30.61 33.95 15.01 17.53

The continual learning model exhibits remarkably stable performance on the CIFAR-100
dataset, as evidenced by the results presented in Tables 4 and 5 with memory size settings of
m = 500 and m = 1000, respectively. The average performance across ten tasks significantly
improves by 9.68% and 6.59%, respectively, highlighting the model’s ability to effectively
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Table 4: Average accuracy (%) of the SOTA InfluenceCL (a) and our ELASTIC (b) models
across each task on the CIFAR-100 dataset with a memory size of m = 500.

a) InfluenceCL (SOTA)

Train
Test on

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9

Task 0 (T0) 87.12 46.30 35.54 29.22 23.76 18.96 20.36 17.54 13.22 16.44

Task 1 (T1) 82.11 38.74 20.87 21.80 21.62 20.66 20.36 13.10 13.10

Task 2 (T2) 86.28 37.96 20.50 21.34 19.42 14.42 13.06 14.40

Task 3 (T3) 85.54 32.71 17.68 18.12 15.10 10.42 8.30

Task 4 (T4) 86.28 32.76 19.78 15.26 13.70 12.76

Task 5 (T5) 88.36 40.54 26.00 17.96 11.42

Task 6 (T6) 87.62 18.80 14.66 9.04

Task 7 (T7) 86.36 26.18 9.40

Task 8 (T8) 90.04 23.04

Task 9 (T9) 91.42

Average 87.12 64.20 53.52 43.40 37.01 33.45 32.36 26.73 23.59 20.93

b) InfluenceCL + ELI (Ours)

Train
Test on

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9

Task 0 (T0) 87.12 81.46 41.35 31.97 28.35 20.76 20.86 20.66 23.56 22.22

Task 1 (T1) 81.89 75.46 23.64 20.05 20.48 24.68 23.80 25.16 18.70

Task 2 (T2) 86.28 78.12 31.86 17.28 21.30 18.30 20.46 19.64

Task 3 (T3) 85.54 74.79 22.67 17.52 16.44 18.06 14.34

Task 4 (T4) 86.28 75.12 25.08 16.80 21.50 17.62

Task 5 (T5) 87.98 73.16 36.66 27.70 22.22

Task 6 (T6) 87.62 62.20 21.78 18.88

Task 7 (T7) 87.32 55.06 20.10

Task 8 (T8) 90.04 60.98

Task 9 (T9) 91.42

Average 87.12 81.67 67.70 54.82 48.26 40.72 38.60 35.27 33.70 30.61

retain and utilize knowledge from previous tasks. These results further reinforce our model’s
strong performance on CIFAR-100. When compared to methods using and not using IF
(Table 3), our model achieves the highest performance, reaching an impressive 30.61% for
m = 500 and 33.95% for m = 1000, demonstrating its superiority in continual learning
scenarios.

The experimental results on the Split miniImageNet dataset demonstrate the superiority
of our proposed ELASTIC model over the state-of-the-art InfluenceCL model in continual
learning tasks. Tables 6 and 7 present the average accuracy of both models across each task
with memory sizes of m = 500 and m = 1000, respectively. These results illustrate the
evolution of average accuracy as the model progressively learns new tasks, offering a clear
visualization of our model’s superior performance and resilience on the Split miniImageNet
dataset. The consistent improvement in accuracy across tasks demonstrates the efficacy and
reliability of our approach in the continual learning setting.

From Table 6, it is evident that our ELASTIC model consistently outperforms the In-
fluenceCL model in terms of average accuracy across all tasks. With a memory size of
m = 500, our model achieves an average accuracy of 15.57% on the final task (Task 4),
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Table 5: Average accuracy (%) of the SOTA InfluenceCL (a) and our ELASTIC (b) models
on the CIFAR-100 dataset with a memory size of m = 1000.

a) InfluenceCL (SOTA)

Train
Test on

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9

Task 0 (T0) 86.72 57.10 44.68 42.00 34.62 33.80 29.70 24.14 19.72 21.70

Task 1 (T1) 79.70 47.88 32.86 30.34 26.46 26.24 23.80 23.22 16.74

Task 2 (T2) 83.40 41.78 28.70 29.76 26.06 21.28 21.04 19.64

Task 3 (T3) 83.78 27.42 19.92 16.00 13.66 17.04 15.14

Task 4 (T4) 86.54 32.34 29.42 25.34 21.08 19.10

Task 5 (T5) 86.42 41.76 28.88 24.92 17.84

Task 6 (T6) 85.26 24.26 22.08 16.60

Task 7 (T7) 85.82 27.24 25.24

Task 8 (T8) 89.62 29.98

Task 9 (T9) 91.60

Average 86.72 68.40 58.65 50.11 41.52 38.12 36.35 30.90 29.55 27.36

b) InfluenceCL + ELI (Ours)

Train
Test on

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9

Task 0 (T0) 86.72 81.86 39.86 37.42 40.86 37.40 29.42 30.38 27.54 25.94

Task 1 (T1) 79.70 73.82 41.04 30.04 27.94 27.30 29.92 28.16 24.12

Task 2 (T2) 83.42 64.42 38.52 26.70 26.32 23.60 23.94 22.14

Task 3 (T3) 83.78 61.28 23.96 15.82 17.00 20.80 18.72

Task 4 (T4) 86.54 60.80 28.72 27.72 23.58 23.02

Task 5 (T5) 86.42 69.92 34.98 31.62 28.44

Task 6 (T6) 85.26 56.42 29.56 20.32

Task 7 (T7) 85.82 54.94 18.84

Task 8 (T8) 89.62 66.40

Task 9 (T9) 91.60

Average 86.72 80.78 65.70 56.67 51.45 43.87 40.39 38.23 36.64 33.95

Table 6: Average accuracy (%) of the SOTA InfluenceCL (left) and our ELASTIC (right)
models cross each task on the Split miniImageNet dataset with a memory size of m = 500.

Train
Test on

T0 T1 T2 T3 T4

Task 0 (T0) 45.35 7.55 4.10 3.20 3.20

Task 1 (T1) 45.95 4.80 2.70 2.15

Task 2 (T2) 58.85 2.75 0.40

Task 3 (T3) 49.60 0.40

Task 4 (T4) 56.10

Average 45.35 26.75 22.58 14.56 13.45

Train
Test on

T0 T1 T2 T3 T4

Task 0 (T0) 45.35 22.30 10.75 6.70 6.20

Task 1 (T1) 45.95 21.40 5.70 4.40

Task 2 (T2) 58.85 11.70 2.50

Task 3 (T3) 49.60 3.65

Task 4 (T4) 56.10

Average 45.35 34.12 30.33 18.42 15.57

2.12% surpassing the SOTA InfluenceCL model’s average accuracy of 13.45%. Furthermore,
our model maintains higher average accuracy throughout the continual learning process,
with improvements of 7.37%, 7.75%, and 3.86% on Tasks 1, 2, and 3, respectively, compared
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Table 7: Average accuracy (%) of the SOTA InfluenceCL (left) and our ELASTIC (right)
models on the Split miniImageNet dataset with a memory size of m = 1000.

Train
Test on

T0 T1 T2 T3 T4

Task 0 (T0) 46.35 17.45 10.65 9.45 8.25

Task 1 (T1) 44.85 4.95 7.25 6.15

Task 2 (T2) 59.15 8.15 5.41

Task 3 (T3) 46.45 5.42

Task 4 (T4) 58.21

Average 46.35 31.15 24.92 17.83 16.68

Train
Test on

T0 T1 T2 T3 T4

Task 0 (T0) 46.35 29.95 20.45 15.35 9.23

Task 1 (T1) 44.85 15.55 6.43 7.24

Task 2 (T2) 59.15 14.25 6.52

Task 3 (T3) 46.45 6.45

Task 4 (T4) 58.21

Average 46.35 37.40 31.72 20.62 17.53

to the InfluenceCL model. Similar trends can be observed in Table 7, where our ELASTIC
model consistently outperforms the InfluenceCL model with a memory size of m = 1000.
Our model achieves an average accuracy of 17.53% on Task 4, compared to 16.68% for the
InfluenceCL model. Moreover, our model exhibits higher average accuracy across all tasks,
with improvements of 6.25%, 6.80%, and 2.79% on Tasks 1, 2, and 3, respectively. Fur-
thermore, the results demonstrate the scalability of our ELASTIC model. As evident from
Tables 6 and 7, our model maintains its superior performance even when the memory size is
increased from m = 500 to m = 1000. This indicates that our model can effectively utilize
additional memory resources to enhance its continual learning capabilities.

The superior performance of our ELASTIC model can be attributed to the incorporation
of the Energy-based Latent Aligner (ELI) component. The ELI component effectively aligns
the latent feature space of the model after learning each new task, mitigating the forgetting
of previous knowledge. By maintaining a more stable and consistent latent space, our model
can better retain and utilize the information learned from earlier tasks, leading to improved
accuracy and reduced catastrophic forgetting. It is worth noting that the performance gain
of our ELASTIC model becomes more pronounced as the number of tasks increases. This
highlights the effectiveness of our approach in handling the challenges of continual learning,
particularly in scenarios with a larger number of sequential tasks.

5. CONCLUSION

Catastrophic forgetting poses a significant challenge in deep continual learning models.
This issue arises because the model is trained on a sequence of tasks. When learning a new
task, the parameter updates optimized for the new task render the model parameters inef-
fective for previous tasks. Another reason is that learning multiple tasks with different data
distributions leads to changes in the hidden feature space over time, making these features
ineffective for prediction. To address catastrophic forgetting, we employ two techniques to
tackle these two causes. Firstly, we store a buffer of some data points from previous tasks
to retrain when learning new tasks. We utilize the second-order influence function to se-
lect effective data points for this retraining. Secondly, we train an energy-based model to
align the hidden feature space during model testing, enhancing model performance across
tasks. Our comprehensive experiments on three continual learning benchmark datasets, i.e.
CIFAR-10, CIFAR-100 and Split-miniImageNet datasets, provide compelling evidence for
the effectiveness of our proposed model in continual learning tasks. The synergistic com-
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bination of the InfluenceCL memory replay method and the Energy-based Latent Aligner
(ELI) model yields significant improvements in average performance across tasks, consis-
tently outperforming state-of-the-art continual learning methods. These results underscore
the critical importance of addressing changes in the latent feature space during continual
learning to effectively mitigate catastrophic forgetting and achieve superior performance.
Our model’s ability to maintain stable and high performance across diverse datasets and
memory settings highlights its robustness and potential for real-world applications.
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