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Abstract. In rough set (RS) theory, the issues raised by attribute reduction are significant [1].

These issues currently garner widespread interest and extensive research from scientists worldwide.

To investigate the problem of incomplete decision tables (IDTs), Kryszkiewicz developed the notion of

relative relation (also known as tolerance relation) [2]. In this study, researchers address algorithmic

issues related to attribute reduction in IDTs using a relational database approach. In [3], the authors

proved that the result of the Sperner system (SS) is equivalent to the reduct set within the incomplete

decision table. Specifically, the set of reducts in an IDT is a Sperner system, and conversely, for a

given Sperner system K, there exists an IDT such that the set of its reducts is exactly K. In this

paper, we propose the concept of an irredundant incomplete decision table based on objects from

an IDT. This means that in an IDT, some rows are considered redundant and need to be removed.

We present an efficient algorithm with a worst-case complexity that is polynomial in the number of

columns and rows of the decision table. The algorithm allows us to find an irredundant incomplete

decision table from a given IDT.
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1. INTRODUCTION

A decision table (DT) is an case of an information system used to organize data. In a
decision table (DT), attribute reduction refers to eliminating redundant attributes from a
set of condition attributes without losing important information from the DT. In addition,
attribute reduction also brings ease of understanding to the rules and greatly improves the
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classification ability of machine learning models. Up to now, attribute reduction methods
following the approach of rough set theory have attracted a lot of attention from scientists
around the world. Nevertheless, these methods primarily rely on a heuristic approach to
identify a reduct within the complete decision table, based on specific evaluation criteria,
while maintaining polynomial computational complexity. Compared to solely searching for
a reduct, algorithms that identify reducts within the decision table can achieve an optimal
reduct and are highly efficient. Consequently, the investigation into these algorithms holds
considerable importance.

Today, decision tables frequently lack information, leading to their categorization as
IDTs. The challenge of identifying a reduct within an IDT is regarded as a general issue.
Some algorithms either eliminate objects with missing data or substitute missing values
with others to address the problem of IDTs in knowledge mining tasks. Nevertheless, these
methods lead to the loss of critical information or the substitution of data that may impact
the table’s consistency. As a result, these methods often fail to achieve high efficiency. To
address these challenges, Kryszkiewicz [2] presented the concept of a tolerance relation and
developed a tolerance rough set model to investigate the issue of IDTs. According to this
approach, the authors in [4] used Boolean reasoning methodology and proposed a method for
determining abbreviated attributes in an IDT (attributes involved in at least one reduction).
Based on the approach using the relational data model [5, 6], authors in [7, 8] proposed a
method with polynomial time for extracting all the reducts in the consistent decision table.
Through this strategy, we might decrease the number of columns (attributes) in the DT.
However, these methods still have computational limitations due to having to deal with
inconsistent objects. We suggested a polynomial technique in [9] that shortens the decision
table’s lines (or objects). Therefore, we may eliminate unnecessary columns and rows from
the DT using these two effective techniques. On the other side, it’s crucial to identify every
gap in the whole DT. The authors of [10] developed a technique for locating all shortenings
in a consistent and comprehensive DT. The authors showed that the difficulty of locating
every shortcut on this DT increases exponentially with the number of attributes. It implies
that the following must be demonstrated: There is an exponential algorithm that identifies
all these reductions, demonstrating that this problem’s complexity is at least exponential.

A polynomial algorithm can discover a reduction on a perfectly consistent DT, but it is
impossible to find a reduction with the smallest force. Therefore, there isn’t a polynomial
algorithm that handles this task yet. We showed in [11] that the set of reducts on a com-
plete consistent decision table is equivalent to the SS - a combinatorial system in which the
components do not comprise each other. In other words, studying the set of reductions can
lead to studying the Sperner system. Based on the relational database approach, this study
proposes an algorithm aimed at reducing the rows of a table. Specifically, our algorithm will
eliminate redundant objects and retain only those that play a significant role in improving
the effectiveness of classification models. The paper consists of four main sections. Section 2
will introduce basic concepts related to incomplete decision tables and Sperner systems,
along with their properties and interrelationships. Section 3 will present an object reduction
algorithm for incomplete decision tables, which results in an incomplete yet inconsistent de-
cision table. Several illustrative examples of the proposed algorithm will also be clarified.
Finally, Section 4 will discuss the issues raised by this research.
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2. PRELIMINARY

Some fundamental ideas in rough set theory will be discussed in this part [9, 12, 13,
14, 15, 16, 17]. First, the decision table has four components KS = (U,C ∪D,V, f), in
which U = {u1, u2, . . . un} is a finite nonempty set of objects, C = {c1, c2, . . . .cm} is the
set of condition attributes, D is the decision attribute set, satisfying C ∩D = ∅. For each
attribute a ∈ A = C ∪ D, V{a} is the value set of the attribute a with V =

⋃
a∈A

V{a} and

f : U × (A) → V is called the information function, where f (u, a) ∈ V{a}, ∀u ∈ U . The
assumption is that D only consists of one decision attribute d, which can be reduced to a
single attribute by utilizing encryption ifD contains multiple attributes [10]. In consideration
of this, we evaluate the decision table KS = (U,C ∪ {d} , V, f), where d /∈ C.

Next, given a decision table KS = (U,C ∪D,V, f), each attribute subset P ⊆ C∪{d} de-
termines an indiscernibility relation IND (P ) = {(x, y) ∈ U × U : ∀c ∈ P, f (x, c) = f (y, c)}.
Then, IND (P ) creates a partition U/P = {P1, P2, . . . , Pm} on U , where an equivalence class
is an element in U/P .

The set RX is the upper approximation ofX, where RX = {u ∈ U : [u]R∩X ̸= ∅}, the set
RX is the lower approximation of X, where RX = {u ∈ U : [u]R ⊆ X}. From this, RX/RX
is the boundary of X and the positive region of {d} is the set POSR(d) =

⋃
X∈U/d(RX)

with R ⊆ C and X ⊆ U . It is evident that POSC(d) = U or the functional dependency
C → d is true, then KS is a consistent decision table. If KS is inconsistent, then POSC(d)
is the largest subset of U such that the functional dependency C → d is true.

Definition 1. Let KS = (U,C∪{d}, V, f) be a decision table. If P ⊆ C satisfies POSP (d) =
POSC(d), and ∀P ′ ⊂ P, POSP ′(d) ̸= POSC(d), then P is a reduct of C.

It is easy to see that if KS is a consistent decision table, Definition 1 demonstrates that
if P → d and ∀P ′ ⊂ P, P ′ ̸→ d, then P is a reduct of KS, and Pd denotes the set of all
reducts of KS.

Definition 2. Let r be a relation on A = {a1, ..., an}. Then, ∀ai ∈ A, there exists Dai such
that ∗ ∈ Dai , and hj : A → ∪Dai satisfies hj(ai) ∈ Dai .

Definition 3. Let r be a relation on A = {a1, ..., an}, B ⊆ A. If each a ∈ A in this case is a
member of B, we denote hi ∼ hj(B) as follows: hi(a) = hj(a), or hi(a) = ∗, or hj(a) = ∗.

Definition 4. Let r be a relation on A = {a1, ..., an}. Then, E,G ⊆ A and E tolerance

determines G, denoted by E
t→ G if: (∀hi, hj ∈ r) (hi ∼ hj(E) then hi ∼ hj(G)).

Set Tr = (E,G) : E,G ⊆ A and E
t→ G. It is possible to observe that

1) (E,G) ∈ Tr∀E ⊆ R.

2) (E,G) ∈ Tr, then E ⊆ C,D ⊆ G has (C,D) ∈ Tr.

3) (E,G) ∈ Tr, (G,C) ∈ Tr =⇒ (E,C) ∈ Tr.

Set E+ = a ∈ R : E
t→ a.

Definition 5. Given an IDT KS = (U,C ∪ {d}, V, f) with ∗ /∈ Dd, when it contains the
character ∗ in the decision attribute d, it is a consistent incomplete decision table, where C
is a set of condition attributes.
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For the method using the tolerance relation presented in [2], the author proposed that
the value of the decision attribute column d is unique in the consistent incomplete decision
table. However, for our study, Definition 4 does not require the decision value to be unique.
Therefore, our study is more general than the method proposed in [2]. If the KS is an
IDT, we can examine the components of U using a polynomial time approach to remove
components that don’t make the KS consistent. When anything is removed, we ontain the
set U

′
, and KS = (U

′
, C ∪ {d}, V, f) is consistent.

Definition 6. Given an inconsistent IDT KS = (U,C ∪ {d}, V, f), B is a reduct of KS if:

B ⊆ C : B
t→ d and ̸ ∃B′ ⊂ B then B′ ̸→ d (meaning B′ is a true subset of B, then B′ is

not relative determination of d).

Set PREX(C) = {B is the set of reducts of KS}.

Definition 7. Assume that A = {a1, ..., an} and K = {K1, ...,Km} is a Sperner system (SS)
on R if: Ki ⊈ Kj , ∀j, i.

Definition 8. [18] Given a SS K = {K1, ...,Km} on R, we define K−1 is the set of antikeys
of K as follows

Set K−1 = {A ⊆ R : (B ∈ K) =⇒ B ⊈ K and B ⊆ C) then ∃A ∈ K : A ⊆ C},

K−1 = {A ⊆ R : (B ∈ K =⇒ B ⊈ A and A ⊆ C) then ∃B ∈ K : B ⊆ C}.

It is evident that K−1 as one of the subsets of R, excludes the elements of K, essentially
representing the largest non-key set. Notably, K−1 is also regarded as SS. If a minimum key
set exists, an anti-key set will also exist.

Remark 1. Let KS = (U,C ∪ {d}, V, f) be a consistent IDT. Set r = U = {r1, ..., rn}, R =

C ∪ {d}. As a result, PREX(C) = C. Kt
d = {A ⊆ C : A → d and ∀A′ :

t→ {d} and A′ ⊈ A}
and PREX(C) is the SS.

Theorem 1. [19] Let KS = (U,C ∪ {d}, V, f) be a consistent IDT. Set r = U = {r1, ..., rn}
and R = C ∪ {d}. We calculate the set of equals from r using εr = {Eij} with

Eij = {a ∈ R : a(ui) = a(uj) or a(ui) = ∗ or a(uj) = ∗}, i = 1, ...,m, j = 1, ...,m, i ≤ j.

From εR set Md = {B ∈ εr : B ̸= R, d /∈ B and ∄B′ ∈ εr : d /∈ B′ and B ⊂ B′}, then we
have Md = (Kt

d)
−1.

3. ALGORITHM TO FINDING IRREDUNDANT INCOMPLETE
DECISION TABLE

In this section, we present an approach to generate a consistent incomplete decision table
with a non-redundant attribute set.

Remark 2. Let KS = (U,C ∪ {d}, V, f) be a consistent IDT. Then, the calculation of Md

is a polynomial in terms of the size of U and C.
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For the decision table KS = (U,C ∪ {d}, V, f) is a consistent IDT, we call KS is an
irredundant consistent decision table if ∀u ∈ U set U

′
= U\{u} and KS ′

= (U
′
, C∪{d}, V, f),

we have PREXU ′ (C) ̸= PREXU (C). Based on Remark 2, we next construct an algorithm
to generate an irredundant consistent IDT from a consistent IDT. The method is designed
as Algorithm 1. In essence, Algorithm 1 consists of four steps, as illustrated in Figure 1. The
main steps of the algorithm include: determining the set of equal elements, determining the
set of maximal equivalence sets, eliminating objects, and returning the new decision table.

Algorithm 1: Determine an Irredundant Consistent IDT

Input: IDT KS = (U,C ∪ {d}, V, f), U = {u1, ..., um}, PREXU (C)
Output: U ′ is an irredundant IDT.
1: Step 1. Considering r = {r1, ..., rm}, r ∈ U and R = C ∪ {d}.
2: Set εr = {Eij} with Eij = {a ∈ R : a(uj) = a(ui) or a(ui) = ∗ or a(uj) = ∗}, where

1 ≤ i ≤ j ≤ m.
3: Set Md

U = {P ∈ εr : P ̸= R, d /∈ P and ∄P ′ ∈ εr : d /∈ P ′ and P ⊂ P ′}. Md
U is the

maximal equivalence set on U of d.
4: Step 2.
5: Set N0 = U = {r1, ..., rm}
6: Calculate: Ni+1 = Ni \ {ri+1} if Md

Ni
= Md

U

7: Otherwise, Ni+1 = Ni

8: Md
Ni\{ri+1} is the maximal equality set on Ni \ {ri+1} of d.

9: Last step. Set U ′ = Nm

Lemma 1. Given a consistent IDT KS = (U,C ∪ {d}, V, f) with U = {u1, ..., um}, and
PREXU (C) is the set of all reducts of KS, then KS = (U

′
, C ∪ {d}, V, f) is an irredundant

consistent IDT, where U
′
is the set of objects determined from Algorithm 1.

Proof. Following the steps of the above algorithm by induction, we have Md
Nm

̸= Md
U . Ac-

cording to Theorem 1 and Definition 8, PREXNm(C) = PREXU (C). On the other hand,
according to the construction of the algorithm, we have

Nm ⊂ ... ⊂ N1 ⊂ N0. (1)

It can be easily seen that if the cardinality of Nm is equal to 1 (|Nm| = 1) then KS =
(Nm, C ∪ {d}, V, f) is non-redundant (or call it irredundant). Otherwise, if |Nm| > 1, then
ri ∈ Nm, according to (1) we have

Ni−1 \ {ri} ⊆ Nm \ {ri}. (2)

We have Md
Nj−1\{rj} ̸= Md

U that is consistent with the way the algorithm was constructed.

From 1 and 2, we have Md
Nj−1\{rj} ̸= Md

U . Let U1 = Nm \{rj}. According to Theorem 1 and

the definition of the antikey set we have PREXU1(C) ̸= PREXU (C). So KS = (Nm, C ∪
{d}, V, f) is non-redundant. Lemma 1 has been proven. ■
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Figure 1: The processing procedure of the algorithm

Remark 3. Two important remarks regarding the proposed algorithm.

1) As can be observed, Md
U is computed in polynomial time according to Algorithm 1. As

a result, it is simple to show that the approach’s computing complexity scales polynomial with
the number of rows and columns in the KS.

2) Permuting the order of the objects in U results in another irredundant consistent
decision table.

Example 1. Given a decision table KS = (U,C ∪ {d}, V, f) with five objects and C having
five condition attributes, consider the following.

Table 1: The consistent IDT in Example 1

U c1 c2 c3 c4 c5 d

r1 1 1 0 0 * 0

r2 1 0 0 0 0 0

r3 0 1 1 0 1 1

r4 1 0 1 0 0 1

r5 1 1 0 1 1 0

Step 1. According to the step 1 of Algorithm 1, we shall determine the maximal equivalence
set on U of d:

E12 = {c1, c3, c4, c5, d} , E13 = {c2, c4, c5} , E14 = {c1, c4, c5} , E15 = {c1, c2, c3, c5, d},
E23 = {c4} , E24 = {c1, c2, c4, c5} , E25 = {c1, c3, d},
E34 = {c3, c4, d} , E35 = {c2, c5},
E45 = {c1}.
To simplify the notation, we denote {c1, c2, . . . , cn} by {c1c2 . . . cn}. From this, we obtain:

εr = {c1c3c4c5d, c2c4c5, c1c4c5, c1c2c3c5d, c4, c1c2c4c5, c1c3d, c3c4d, c2c5, c1}. Set εr = EU is
the set of equal sets on U . Clearly, E24 ̸= C ∪ {d}, d /∈ E24 and ∄P ′ ∈ εr which satisfied
d /∈ P

′
and P ⊂ P

′
, so Md

U = {c1c2c4c5} is a maximal equivalence set.

Step 2. Set N0 = U = {r1, r2, r3, r4, r5}.
- ComputeN0\{r1} = {r2, r3, r4, r5} and EN0\{r1} = {c4, c1c2c4c5, c1c3d, c3c4d, c2c5, c1} ⇒

Md
N0\{r1} = {c1c2c4c5} = Md

U . Thus, r1 is considered a redundant object in the decision ta-

ble. Therefore, N1 = {r2, r3, r4, r5}.
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- Compute N1 \ {r2} = {r3, r4, r5} and EN1\{r2} = {c3c4d, c2c5, c1} ⇒ Md
N1\{r2} ̸= Md

U .
Hence, r2 is considered a irredundant object in the decision table. Therefore, N2 = N1 =
{r2, r3, r4, r5}.

- Compute N2 \ {r3} = {r2, r4, r5} and EN2\{r3} = {c1c2c4c5, c1c3d, c1} ⇒ Md
N2\{r3} =

Md
U . Thus, N3 = {r2, r4, r5}.
- Compute N3 \ {r4} = {r2, r5} and EN3\{r4} = {c1c3d} ⇒ Md

N3\{r4} ̸= Md
U . Therefore,

N4 = {r2, r4, r5}.
- Finally, we compute N4 \{r5} = {r2, r4} and EN4\{r5} = {c1c2c4c5} ⇒ Md

N4\{r5} = Md
U .

Thus, N5 = {r2, r4}.
Step 3. Set U ′ = N5 = {r2, r4} and so we have KS ′

= (U
′
, C ∪ {d}, V, f) is an irredundant

consistent IDT.

To see the effectiveness of Algorithm 1, we will next present a comprehensive example.
Specifically, the decision table includes multiple missing information values. These values
are present not only in the condition attributes but also in the decision attributes of the
table.

Example 2. Given a decision table KS = (U,C ∪ {d}, V, f) with six objects and C having
six condition attributes, consider the following.

Table 2: The consistent IDT in Example 2

U c1 c2 c3 c4 c5 c6 d

r1 1 1 0 0 2 * 1

r2 0 1 0 0 * 1 0

r3 0 0 1 * 2 1 *

r4 2 0 0 2 * * 2

r5 3 2 * 0 2 0 1

r6 2 * 1 0 0 2 0

Step 1. Based on the step 1 of Algorithm 1, we shall determine the maximal equivalence
set on U of d:

E12 = {c2, c3, c4, c5, c6} , E13 = {c4, c5, c6, d} , E14 = {c3, c5, c6} , E15 = {c3, c4, c5, c6, d},
E16 = {c2, c4, c6},
E23 = {c1, c4, c5, c6, d} , E24 = {c3, c5, c6} , E25 = {c3, c4, c5} , E26 = {c2, c3, c4, d},
E34 = {c2, c4, c5, c6, d} , E35 = {c3, c4, c5, d} , E36 = {c2, c4, c5, d},
E45 = {c1, c2, c5, c6} , E46 = {c2, c4, c5, d},
E56 = {c2, c3, c4}.
Therefore, we obtain Md

U = {E12, E45}. It is easy to see that, for each P ∈ Md
U , we can

determine a different irredundant incomplete decision table from P . Therefore, Algorithm 1
can generate multiple different results.

Step 2. With Md
U = E45, similarly to step 2 of Example 1, we can easily obtain the set

U
′
1 = {r4, r5} and Md

U = E12 we have U
′
2 = {r1, r2}.

Step 3. From the obtained results, set U
′
1 = {r4, r5}, we obtain the first irredundant

consistent IDT KS ′
1 = (U

′
1, C ∪ {d}, V, f) and with U

′
2 = {r1, r2}, we obtain the second

irredundant consistent IDT KS ′
2 = (U

′
2, C ∪ {d}, V, f).
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As a result, we can use the previous method to reduce the number of rows in any consis-
tent decision table. By using the technique to identify the reduct [19], we can also reduce the
columns of any consistent decision table. In other words, we can reduce the two-dimensional
size of any consistent decision table by utilizing both approaches. However, the proposed
method still has some drawbacks, as clearly demonstrated in Example 2 of this paper. First,
it can be observed that with high-dimensional datasets containing a significant amount of
missing data, the proposed algorithm may generate a large number of maximal equivalence
sets. In this case, the algorithm’s complexity increases when attempting to determine ir-
redundant consistent incomplete decision tables. Second, for datasets with a wide range of
values, determining maximal equivalence sets becomes infeasible. To address this issue, the
initial decision table may need to undergo a data discretization process, which could result
in the loss of important information. As a consequence, the final results may be affected.

4. CONCLUSIONS

Attribute reduction is one of the effective applications to improve the performance of ma-
chine learning models. In the context of big data, attribute reduction methods have played
an indispensable role in the fields of knowledge discovery. However, methods for reducing
objects in inconsistent decision tables are not widely known.In this study, we have gener-
alized the basic properties of decision tables and designed an algorithm that transforms an
inconsistent incomplete decision table into an irredundant incomplete decision table. Based
on this result, decision tables or information systems can eliminate unnecessary objects,
improving database efficiency in storage and optimizing computational space for machine
learning models. Moreover, removing redundant objects in the data is also crucial. Intu-
itively, these objects may be generated due to noise from data entry errors or some sensor
faults during the measurement process. Storing these objects can significantly impact the
performance of machine learning models. Therefore, this study can be considered a promis-
ing tool that can be applied to knowledge discovery technologies. Hence, it can be asserted
that the irredundant decision table is a highly effective and versatile tool for representing
information.
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