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Abstract. This paper provides an overview of a novel efficient approach to study both qualitative
aspects and numerical solution of boundary value problems (BVPs) for high order nonlinear differen-
tial equations developed by the author Dang Quang A and his collaborators recently. This approach
is also extended from BVPs with two-point boundary conditions to integral BVPs, and from ordinary
differential equations (ODEs) to integral differential equations, functional differential equations and
partial differential equations. Our published works to date demonstrate the efficiency of the approach
in comparison with that of some existing methods. The approach is general and it can be applied to
other nonlinear BVPs.
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1. INTRODUCTION

Numerous problems in the fields of mechanics, physics, chemical engineering, biology,
environment, etc. are reduced to boundary value problems for second or high order linear
or nonlinear ordinary differential equations (ODEs) (see, e.g., [1, 2]), integro-differential
equations (IDE) (see, e.g., [3, 4]) and functional differential equations (FDE) (see, e.g.,
[5, 6]). One can find their exact solutions in a very small number of special cases. In general,
one needs to seek their approximations by approximate methods, mainly numerical methods.

It can be stated that among high order ODEs the fourth order and the third order
nonlinear differential equations are more attractive due to their wide range of applications.
These include the beam theory, modeling of the deflection of a curved beam having a constant
or varying cross-section, three-layer beam, electromagnetic wave incident on a system of
charges sets, the regulation of a steam turbine and so on.

Differential equations of higher orders also attract attention from researchers because
they arise from many physical problems. For examples, fifth order ODE arises in induction
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motor models [7], sixth order ODE models problems in astrophysics [8], seventh order ODE
arises in sculpturing electrical process of motors with two rotating mechanism circuit [9],
eighth order ODE is derived from governing bending and axial vibrations [10] and so on.

A general statement of a boundary value problem (BVP) for nth order nonlinear ODEs
is as follows:
Find a function u(z) satisfying the equation

Lpu=u™(2) = f(z,u(@),d'(z), ..., u" D(2)), z € (0,1), (1)

and the boundary conditions
Bilul| = ¢, (i=1,...,n), (2)

where B;,¢; (i =1,...,n) are linear boundary operators and real numbers, respectively.
Often met cases of the above general BVP are:
- BVP for third order ODE [11]

() = f(tu(t), W' (), W(t), 0 <t <1,

S

Bylu] = oxu(0) + By (0) + 1'(0) = 0, 5
Balu] = azu(0) + B2u(0) +2u”(0) = 0,
Bs[u] = asu(1) + Bsu/(1) +y3u” (1) = 0,

such that
ar B m 0 0 O
rank |ags B2 72 0 0 0| =3.

0 0 0 a3 B3 73
The problem (3) includes as particular cases the problems considered in [12, 13, 14, 15, 16].

- BVP for fourth order ODE [17]

u (@) = fla,u(@), o (z), v (2), 4" (2), 0 <z <1
By (@) =0, By(u) =0, (4)
Bs(a) =0, By(u) =0,

where Bj, By, B3, By are linear combinations of the components of arguments

U= (u(O) u(1),u'(0),u (1))
u= (u"(0),u"(1),u"(0),u"(1)).

The problem (4) includes particular cases previously studied in [18, 19, 20, 21, 22, 23].

A number of results are devoted to the existence, uniqueness and positivity of solutions
of the problems (3) and (4) with different specific boundary conditions. The methods for
investigating qualitative aspects of the problems are diverse, including the method of lower
and upper solutions and monotone technique (see, e.g., [21, 22, 23, 24, 25, 26, 27, 28]),
Schauder and Banach fixed point theorems [1], the fixed point index theory in cones [29],
the Leray-Schauder continuation principle [14], Fourier analysis [30], the reproducing kernel
theorem [31], and so on. It should be emphasized that in almost above works there is an
essential assumption that the function f(x,y,u,v) in (3) or f(x,y,u,v,w) in (4) satisfies
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a Nagumo-type condition on the last two variables, or linear growth at infinity, or some
complicated conditions including monotone increase in each of variables. These drawbacks
were overcome by our novel approach which will be presented later in the next section.

For the applied purpose, the finding the solution of the nonlinear BVPs plays very im-
portant role. There are many methods for solving nonlinear BVPs for ODEs including
analytical and numerical methods. Among the analytical methods there are variational iter-
ation method [32, 33, 34, 35], Picard iterative method [1], Adomian decomposition methods
(ADM) [36, 37, 38], combination of ADM with Green’s function [39], Differential Transform
Methods [40], and so on. In general, the analytical methods are efficiently applicable when
the right hand side function is simple so that the integrals containing it are easy to be cal-
culated. Therefore, in practice many numerical methods are developed for solving nonlinear
BVPs for high order ODEs. The main numerical methods used are the collocation methods
(see. e.g., [41, 42, 43, 44, 45, 46, 47]), finite difference methods [48, 49, 50], spectral-Galerkin
method [51]. These methods are applied directly to the nonlinear BVPs and result to non-
linear system of algebraic equations which need to be solved by approximate methods one of
them is the popular Newton method. The nonlinear system of algebraic equations in essence
is the result of the discretization of the original BVPs and in the above mentioned works some
error estimates of the methods were proved to be O(h?) or O(h*), where h is the grid size.
However, the estimate of the total error of the actual numerical solution was not obtained
because the error when using the Newton method was omitted. Besides, when constructing
numerical methods for solving BVPs the authors always assumed that the problems have
unique sufficiently smooth solutions or neglected this issue. In the next section we will re-
view our results of the movel approach to nonlinear BVPs which considers the existence and
uniqueness of solutions and the method for constructing approrimate solutions along with
the estimate of total error of the actually obtained numerical solutions.

Above we are concerned with two-point nonlinear BVPs. They are local ones. Recently,
many authors considered nonlocal problems, where the boundary conditions contain the
integral of the function to be sought or its derivatives. These problems are named integral
BVPs or BVPs with integral boundary conditions. This type of problems appears in applied
fields such as flexibility mechanics, chemical engineering, thermodynamics,... There have
been many publications on boundary value problems with integral boundary conditions such
as [52, 53, b4, 55, 56, 57, 58]. Using different versions of fixed point theory the authors
established the existence, nonexistence and multiplicity of solutions of the problems. A
limitation of these results is that sufficient conditions for the existence of solutions were
established with together some examples of satisfaction of these conditions but no solutions
were shown. The numerical solution of integral BVPs has not attracted yet attention from
researchers. To our best knowledge, only in [58] Pandey proposed the finite difference method
of the accuracy O(h?) for solving the third order BVP with integral boundary conditions.
In the next section we shall briefly touch the investigation of some integral BVPs in both
qualitative and quantitative aspects.

Alongside with ODEs integro-differential equations (IDEs) are mathematical models of
many phenomena in physics, biology, fluid mechanics, chemistry, epidemiology (see, e.g.,
[4, 59, 60]). To our best knowledge, there is only few works concerning the theoretical study
of qualitative aspects of IDEs and not litle works of analytical approximation and numerical
methods have been developed for these equations (see, e.g., [61, 62, 63, 64, 65, 66]) and
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bibliography therein. To investigate the existence and uniqueness of solution and numerical
method for finding the solution of a fourth order nonlinear IDE [67] we also successfully
applied our method developed in [18, 20, 68].

Except for the ODEs and IDEs mentioned above, in this overview we also concern with
functional differential equations (FDEs). They are equations of the form

u (@) = f(z,u(@),d (@), .., u* D (), u(p (), (5)

where f and ¢ is are given functions. FDEs appear in many application fields such as
electrodynamics, nonlinear dynamics systems, quantum mechanics, astrophysics, biology,...
(see [5]). When the function is a proportional delay function, that is, when p(z) = a=z,
0 < a < 1 the equation is called the pantograph equation. The name comes from the
paper by Ockendon and Tayler [69] when considering the motion of the jointed framework
conveying a current to an electric locomotive. So far, there have been many publications
on boundary value problems for functional differential equations. Numerical methods for
solving problems of this type are quite diverse such as projection and using polynomial
splines method [70], shooting method [71] , Picard and Mann iterative schemes based on
Green function [72], neural networks [73, 74]. Recently, for solving BVPs for FDEs Bica et
al. [75, 76] constructed successive approximations for the equivalent integral equation with
the use of cubic spline interpolation at each iterative step. They established maximal order
of convergence of the method on dependence of the order of the FDEs. For solving BVPs
for FDEs in [77, 18] we successfully applied the method which was used for solving ODEs
and IDEs.

Besides ODEs, IDEs and FDEs related to one-dimensional equations our approach was
used to two-dimensional elliptic equations, namely, to nonlinear biharmonic and triharmonic
equations which describe the static deflection of an elastic bending plate [67, 79, 80].

In this paper we review our results of the existence, uniqueness and numerical methods
for solving ODEs, IDEs, FDEs and PDEs obtained by using a unified novel approach.

The structure of the paper is as follows. After the introduction, Section 2 briefly describes
the general methodology of our approach to investigate the existence of solution and iterative
method on continuous level for ODEs. In Section 3 we present the construction of high order
numerical methods for solving nonlinear ODEs based on the discretization of the continuous
iterative methods using trapezoidal formula with corrections. In Section 4 we review some
results of applications of the approach to IDEs. The applications of the approach to some
FDEs and PDEs are presented in Sections 5 and 6, respectively. Finally, in Section 7 we
conclude the paper.

2. NOVEL METHOD FOR INVESTIGATING NONLINEAR BVPs FOR
ODEs: EXISTENCE OF SOLUTION AND ITERATIVE METHOD
ON CONTINUOUS LEVEL

2.1. General methodology

We begin this section by stating the general idea of our approach to the BVP (1)-(2)
with homogeneous boundary conditions. For the purpose of easy tracking we rewrite the
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problem in the form

(6)

We shall associate this problem with an operator equation. For functions p(z) € C[0,1]
consider the nonlinear operator A defined by

(Ap) (@) = f(a,u(@), o' (@), ... "D (z)), (7)
where u(z) is the solution of the problem
u(z) = p(x), x € (0,1),
Biu]=0(i=1,..,n),
provided that it is uniquely solvable. It is easy to verify the following proposition.

Proposition 2.1. If the function ¢(x) is a fived point of the operator A, i.e., p(x) is a
solution of the operator equation

Ap =, (9)

then the function u(x) determined from the boundary value problem (8) solves the problem
(6). Conwversely, if u(x) is a solution of the boundary value problem (6) then the function

p(x) = f(z,u(@), v (z), ...,u"(z))
is a fized point of the operator A defined above by (7), (8).

Thus, the solution of the original problem (6) is reduced to the solution of the operator
equation (9).

This proposition plays a key role in our approach to nonlinear BVPs. It was proved and
used for the cases n =4 in [18, 20, 68, 81] and for n = 3 in [11], for n = 6 in [82].

Let Go(x,s) be the Green function [83] associated with the problem (8). Then the
solution of this problem is represented in the form

1
u(a;):/o Go(z, s)p(s)ds. (10)

By differentiation of both sides of the above formula we obtain

1
u® (z) = / Gr(z,s)p(s)ds, (k=1,..,n—1) (11)
0
where G (z,s) = %. Notice that Gi(z,s) (k=0,1,...,n—2) are functions continuous

in the square @ = [0,1]?> and G,,_1(z, s) is discontinuous in the square @ except for the line
T =s.
Further, let

1
0@32(1/0 |Gr(z,s)|ds = My, k=0,...,n—1. (12)
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Next, for each positive real number M > 0 introduce the domain
DM - {(x)y7y17 "'ayn—1)| 0 S xr S ]-7 ’y| S MOM) |yk| S MkMa k= 17 ey T — ]-}a

and as usual, by B[O, M] we denote the closed ball of radius M centered at 0 in the space
C[0, 1] of continuous in [0, 1] functions, namely,

B[O, M] = {p € C[0,1]] [|¢l| < M},

where

llell = (nax, lo(x)].

The existence of solutions is guarantied by the following theorem.

Theorem 2.2. [Existence of solutions] Suppose that there exists a number M > 0 such that
the function f(x,y1,...,Yn—1) s continuous and bounded by M in the domain Dy, i.e.,

‘f(%.%yla --wyn—l)’ < M (13)

fOT’ any (xayaylv ceey ynfl) S DM
Then, the problem (6) has a solution u(x) satisfying

ju(a)] < MoM, [ (z)| < MM, for any 0 <z < 1. (14)

The tool for proving the theorem is the Schauder Fixed Point Theorem [84] applied to
the operator A defined by (7) and (8) above.

Theorem 2.3. [Eristence and uniqueness of solution] Assume that there exist numbers
M >0,L,>0(k=0,1,....,n— 1) such that

|f(x7y7y17 '”7yn—1)’ S M7 \v/(xvyvyla ‘”7yn—1) € DM;

n—1

F @ s tt) — F@y” s un- )l <0 Loly' — o1 + D Lelyi, — wil  (15)
k=1
fOT any (xay,7yi7 "'7y7,171)7 ($7y//7y3/7 '"7y;{71) € DM and
n—1
qi=> LM <1 (16)
k=0

Then, the problem (6) has a unique solution u(x) such that |u(z)| < MoM, |u®(z)| <
MM, (k=1,...m—1) forany 0 <z <1.

The way to prove the theorem is to show that the operator A is a contraction mapping
from B[0, M| into itself and apply the Banach fixed theorem.

The the successive approximation of the fixed point of the operator A associated with
the problem (6) is reduced to the following iterative method for solving the problem:
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1. Given a starting approximation ¢y € B[0, M], say
¢o(z) = 0. (17)

2. Knowing ¢, (x) (m =0,1,...) compute

(18)
y/,(c / Gi(z, s)pm(s) ds, (k=1 n—1)
3. Update the new approximation
a1 (2) = F(t (), 9™ (), 0" (2)): (19)

Theorem 2.4. [Convergence] Under the assumptions of Theorem 2.3 the above iterative
method converges and there hold the estimates

[t — ul| < Mopm,  Jul) —u®|| < Mypp, k=1,...;n—1; m=1,2, ... (20)

where u is the exact solution of the problem (6), My (k = 0,1,....,n — 1) are given by (12)
and

1

Now consider some applications of the above theory for nth order nonlinear BVPs. It
is through specific problems for nonlinear ODEs of orders 3, 4, 5, 6 that the general theory
presented above is formed and developed.

qm
Pm = quwl — ol- (21)

2.2. Applications to third order BVPs

In [11] the above theory of the existence of solutions and the iterative method was ob-
tained for third order nonlinear BVPs. There, we also obtained results of the existence
of positive solutions and monotone solutions, too. Many examples showed that the results
obtained by using the above theory are better ones in [14, 12, 13, 15, 16].

2.3. Applications to fourth order BVPs
In [81] we considered the problem
uW (@) = flz,u(@), v (@), 4" (), v (@), a <z <b,
u(a) = u(b) =0, u'(a) =u'(b) =0,

which describes the deformations of an elastic beam with both fixed end-points. For this
problem the Green function has the form

(22)

2(b—z)(t —a)
(e = a)?(b— 12|t —a) + T ).
G(x,t) =

S=aP | (-2 - 02— 0+ 2052020
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and

k
M‘dt Crlb—a)*™*, k=0,1,2,3,

M = max
0<z<1 J,

where Cy = 1/384, Cy =1/72/3, Cy=1/12, C3=1/2.

As shown in [81] our theory described above gives results somewhat better than in [85] on
some examples.

In [17] when considering the problem (4) the operator A is defined as

(Ap)(x) = f(z, u(z), v (z), u"(x),u" (), (23)

where u(x) is the solution of the problem
(24)

with

|
Il

(u(O),u 1),4/(0),u (1))
l:L — (’LL”(O),U (1)’ ///( ) //1(1))‘

In this case we set v(z) = u”(z). Then it is decomposed into two second order problems

v"(z) (), O0<zx<1,
{ Bs(v) :ﬁ By(7) =0, (25)
u(z) =v(x), 0<z<l,
{ By(@) = 0, By(u) = 0, (26)

where o = (v(0),v(1),2'(0),7'(1)). Via these second order BVPs we established the exis-
tence, uniqueness, positivity and monotoncity of solutions. The obtained results were shown
on many examples are better than those in [21, 22, 23] and some other works.

Especially, when the boundary conditions for the fourth order equation which models a
cantilever beam in equilibrium state has the form

u(0) = 4/(0) = u"(1) =" (1) = 0, (27)

the problems (25), (26) become initial value problem and final value problem, respectively.
Therefore, at each step of the iterative method for the problem it is needed to solve an
initial value problem and a final value problem for second order equation. The problem was
investigated in [18].

The simplest case of (4) is the problem

uW(z) = f(z,u(z),u"(x)), 0 < 1,
)=

w(0) = u(1) = u"(0) = u"(1 (28)

where f : [0,1] x R? is continuous. This problem models the bending equilibrium of a beam
on an elastic foundation, whose two ends are simply supported. It was in [68] the idea of
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reducing the problem (28) to a sequence of second-order problems was formed by converting
the problem into an operator equation for the right-hand side (or nonlinear term). Somewhat
later the BVP for fully fourth order ODE with the Lidstone boundary conditions as in (28)
was considered in [19].

All considered fourth order problems so far are local, when the right-hand side or non-
linear term has the form f(z,u(z),u/(z),u”(z),u" (x)) and the approach of reducing BVPs
to operator equation works well. Furthermore, this approach works for nonlocal problems.
Namely, in [86] we applied it successfully to the problem which models the bending equilib-
rium of an extensible beam

L
u®(z) — M</O |u'(s)|2ds) W () = F(z,u(e),d (z),d" (z), 4" (z)), 0 <z < L,
u(0) = u(L) =0, v"(0) =u"(L) =0,

(29)

by setting
p(x) = M(|[u'3)u" () + f(z,u(@), o' (2),u" (), u" (2)),

and reduced the BVP to operator equation for ¢. Above ||.||2 denotes the norm of L2[0, L.

Extending the technique in [86] and using the Brouwer degree theory [87], in [88] we
established the existence of solutions of a nonlocal fourth order equation of Kirchhoff type
with nonlinear boundary conditions

u®(z) - M(/L |u'(s)|2ds)u”(x) = f(z,u(z),d(z)), 0 <z < L,

0
u”(0) =" (L) =0,

ul//(o) — —g(U(O)), ul//(L) — g(u(L)),

and proposed an iterative method for finding the solutions. Although the iterative method
for the problem is not justified but in practice it can be used for finding a solution of it.

The approach to nonlinear BVPs presented in the beginning of the section is not only
applied to BVPs but it can also be applied to systems of ODEs. In [89] we used this
approach to investigate the solvability and iterative solution of coupled beams equations
with fully nonlinear terms.

It must be said that the idea of reducing the high order BVPs to operator equations for
the right-hand sides for investigating the existence of solutions as well as building iterative
methods to solve them appeared in our earlier paper [90] when studying the Neumann
boundary value problem for linear biharmonic equation.

2.4. Applications to fifth and sixth order BVPs

Except for applying the unified methodology to third and fourth order nonlinear BVPs
we also used it for fifth and sixth order BVPs. Namely, recently in [91] we considered the
fifth order problem

S
C
&

= f(x,u(x)), T € (Oa 1)7
u(0) = ag,u'(0) = aq, u”(0) = ao, (30)

u(l) = By, u'(1) = Ba.
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The solution of the problem (30) was studied by different methods such variational iteration
method [92], finite difference method [93], B-spline collocation method [94], boundary value
method [95] and so on. In the work [91] we established the existence and uniqueness of
solution of the above problem and proposed the following iterative method for finding its
solution

1. Given

po(z) = f(x,0). (31)

2. Knowing ¢g(z) (k= 0,1,...) compute
1
ug(z) = P(x) +/ G(z, s)pr(s)ds. (32)
0

3. Update
pr1(z) = f (@, u(x)). (33)

Based on this iterative method and the general methodology of constructing high order
discrete methods, which will be presented in the next section, we constructed a numerical
method of O(h®) accuracy for the problem (30). This result is better than that in the
mentioned above and some other papers.

For sixth order nonlinear BVP of the special form, namely, for the problem

uO (2) = flz,u(z),u" (z),uP(z)), 0 <z <1,
(34)

by reduction of it to an operator equation for the right-hand side we also established results
on existence, uniqueness of solution and convergence of the iterative method which leads
the solution of the problem to the solution of three second order problems at each iteration.
To each second order BVP applying sixth order difference scheme we obtained the accuracy
O(hO) for the sixth order nonlinear BVP. This result was published in [82].

3. CONSTRUCTION OF HIGH ORDER NUMERICAL METHODS
FOR ODEs

3.1. General methodology

In the previous section have presented a novel unified approach to investigate nonlinear
BVPs for ODEs. It is based on the reduction of BVPs to operator equations for right-hand
sides or nonlinear terms while others authors usually reduced them to operator equation for
the functions to be searched. Except for the advantages in investigating qualitative aspects
of the BVPs this approach gives a unified method for constructing high order numerical
methods. The method is based on the design of formulas of high order accuracy for computing
the integrals fol Go(z, $)pm(s) ds and fol Gi(z,8)pm(s) ds in the step 2 of the iterative
method on continuous level (18). For the purpose we use the formula Euler-Maclaurin
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(see [96]) for computing the integral of functions having jumps on the uniform grid @, =
{;=(i—Vh, i=1,..,N+1; h=1/N}

1
| veas =1at Zf;l{ 2(1) — 3¢ (0)

— [@ D (#") — oD ()] |+ O(h),

where By are Bernoulli numbers, 1(t%) and 1(¢t~) are the one-sided limits of the function

W(s) at t,

N
h
Ta(h) = 5(®1+ By1) + > ho;.
=2

Using the above formula we propose discrete iterative method for solving the problem (6).

Denote by ®,,(z), Up, (), Yk(m) (x) the grid functions, which are defined on the grid @, and

approximate the functions @m(x),um(x),y,im)(x) on this grid, respectively. Consider the

following discrete iterative methods called p-Iterative Method for numerically realizing the
iterative method on continuous level (17)-(19):

1. Given
(I)(](l'i) = f(l’i,o, ...,,0), i=1,...,N+1.

2. Knowing ®,,(z;), m = 0,1,...; ¢ = 1,..., N + 1, compute approximately the definite
integrals (2) by the trapezoidal formulas with corrections

Um(xz) = L2p(G07 xz)q)m

(m) (35)
Yk (QZZ) = Lgp(Gk,Ii)(I)m, 1=1,...N+1,
where Loy (Go, ;) Pr, Lop(Gr, xi) Py, are the approximations of the intergrals
/ Gj(zi, 8)p(s)ds = Lay(Gy, z:)p + O(h*P),
7=0,1,...n—1;¢1=1,...N+1; p=2,3,4.
3. Update
Ppir (25) = i, Up(2:), Y (@), oo, (@), i = 1, )N +1. (36)

The convergence of the discrete iterative method is given by the following theorem.

Theorem 3.1. Under the assumptions of Theorem 2./ for the approximate solution of the
problem (6) obtained by the discrete p-Iterative Method (p = 2,3,4) on the uniform grid with
gridsize h we have the estimates

U — ul| < Mopmd + O(h?), [[Y™ = u®)|| < Mypd + O(h?%), p = 2,3, 4,

where My, My, are defined by (12) and p,, are defined by (21).



116 DANG QUANG A et al.

3.2. Application to third order nonlinear BVPs

Using the above general methodology, very recently in [97] we constructed numerical
methods of O(h*),O(h%) and O(h®) accuracy for the typical third order BVP

u® (z) = f(z,u(@),d (z),4"(z), 0<z <1,

u(0) = e1,0/(0) = ea, /(1) = . (37)

To the best of our knowledge it is the first time for the third order nonlinear BVP a method
having the errors O(h®) for both the solution and its derivatives has been constructed. In [98]
by two-step hybrid block method with fourth derivatives the authors constructed a method
of seventh order convergence (37) but the estimate was obtained only for the solution but
not for its derivatives.

Remark that in [99] using the trapezoidal formula (without corrections) with linear in-
terpolation we constructed a method of O(h3) accuracy for the problem (37).

As an application we used the sixth order method to solve numerically the third order
obstacle problem

u' = f(z,u), 0<z<1,
u(0) = u/(0) = u'(1) = 0, (38)
where Lo
0, 0<z<g 1Sz <1,
faw={ 0, §TrIyme 39

Until our work some authors such Khan and Sultana, Gao and Chi, Pandey and so on solved
this problem by different methods with accuracy not greater order 4.

3.3. Application to fourth order nonlinear BVPs

Using also the general methodology presented in Subsection 3.1 we constructed high
order numerical methods for solving fourth order nonlinear BVP

WM (1) = ft,ult), o/ (), u"(t),u"(t), 0<t <1, (10)

w(0) = a, u(l) =b, v (0) =¢, /(1) =d.
It is possible to say that the 4-Iterative method, i.e., the method with O(h®) accuracy is better
all existing numerical methods in the sense of accuracy of the solution and its derivatives
and its implementation. This result was published in the recent work [100].

Remark that for the BVP of the form

u (@) = fla,u(@),u"(x), 0 <z <1,
u(0) =0, u(1) =0, u"(0) =0, u"(1) =0,

by the conversion of it to an operator equation for the right-hand side and setting v(z) =
u”(z) the problem was reduced to the solution of a sequence of second order BVPs. In
[101] we designed O(h%) difference schemes for the latter second BVPs. So, in result we
constructed sixth order method for the above problem.
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3.4. Application to second order nonlinear BVPs
The second order nonlinear BVP of the general type

u'(t) = ft,u(t),d'(t), 0 <t <1,
au(0) — bu'(0) = «, cu(l) + du'(1) = B,

where the function f(t,u,y) is assumed to be sufficiently smooth, «, 3 are real constants,
a,b,c,d >0, p = ad+bc+ac > 0, is very often met in various fields of science and engineering.
Therefore, there are many analytical and numerical methods for solving it. But maximal
order of accuracy of the existing numerical methods is 7. Very recently, in [102] by the
general methodology described in Subsection 3.1 we have constructed a numerical method
which has the accuracy O(h®). The method is applied to solve the famous Bratu and Bratu-
type problems and the obstacle problems, showing the efficiency of the proposed method in
comparison with some existing methods.

4. INTEGRAL BVPs AND INTEGRO-DIFFERENTIAL EQUATIONS

4.1. Integral BVPs for ODEs

The general methodology for investigating nonlinear BVPs for ODEs presented in Sub-
section 2.1 can be extended to integral BVPs. In [103, 104, 105] we developed the method
to reduce the integral BVPs to operator equation for the right-hand side of the equations
and the integral in boundary conditions. For illustration of the method to integral BVPs
consider the problem (see [103])

W) = Fltut),d (t), W (), W (), 0 <t <1,
(41)

where f:[0,1] x R* = R, g:[0,1] — RT are continuous functions.
To investigate the problem (41) we associate it with an operator equation as follows.
First, we denote the space of pairs w = (¢, )T, where ¢ € C[0,1],n € R, by B, i.e., set
B = C0,1] x R, and equip it with the norm

[wlls = max([lell, 7|u]),

where r is a number r > 1 to be determined later for each specific problem and ||¢| =
maxo<i<1 |¢(t)]-

Further, define the operator A acting on elements w € B by the formula
/ " n
o = (SO0 )
fo g(s)u(s)ds

where u(t) is the solution of the problem
W) = p(t), 0 <t <1,
. 0 (13)
uw'(0) =u"(0) =u'(1) =0, u(0) = p.

Obviously, due to the continuity of the functions f and g we have Aw € B. It is easy to
verify the following.
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Lemma 4.1. If w = (¢, p)" is a fived point of the operator A in the space B, i.e., w is a
solution of the operator equation
Aw =w (44)

in B, then the function u(t) defined from the problem (43) solves the original problem (41).
Conversely, if u(t) is a solution of (41), then the pair (¢, p), where

(P(t) = f(t7 u(t)7 ul(t)v u//(t)7 um<t))7 (45)
1
= /0 o(s)u(s)ds, (46)

is a solution of the operator equation (44).

Thus, by this lemma, the problem (41) is reduced to the fixed point problem for A.

As in the case of ODEs in Section 2 via the study of the properties of the operator
A we established the existence, uniqueness and positivity of solution of the integral BVP
(41). Notice that our method for investigating IDE is completely different from the method
of other authors such as Benaicha and Haddouchi in [106], Zhang and Ge [107] where the
authors used the Green function of the IDE and the fixed point theory on cones.

After establishing the existence of unique solution we also proposed an iterative method
on continuous level for finding the solution:

1. Given
SOO(t) = f(t707070a O)a Ho = 0. (47)

2. Knowing ¢ (t) and pg (k- =0,1,...) compute

/ Go(t, s)pr(s)ds + pr,

/GltS(pk d

(48)
(t) = /0 Galt, 5)pi(s)ds,
(t) = /0 G (t, 5)ox (5)ds.
3. Update
rr1(t) = f(t ur(t), ye(t), vi(t), 2&(t)),
(49)

1
et = /0 o(syup(s)ds.

This iterative method was discretized by using the trapezoidal quadrature formula and the
total error is O(h?).

The technique used in [103] was developed for an problem with two integral boundary
conditions in [105] and for a third order integral BVP in [104]. The construction of high
order numerical methods for integral BVPs is needed and it is subject of our research in the
future.
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4.2. Integro-differential equations

The general methodology for investigating nonlinear BVPs of ODEs can be extended to
nonlinear integro-differential equations. Below for illustration we give an example. Namely,
we consider the problem [67]

1
W) = o ule). @), [ bl Ou)ar),
u(0) =0, u(1l) =0, v (0) =0, v"(1) =0,

(50)

where the function f(z,u,v,z) and k(z,t) are assumed to be continuous. We introduce the
operator A defined in the space of continuous functions C[0, 1] by the formula

1

(Ap)(z) = f(x, w(x), ' (z), / k(x,t)u(t)dt), (51)

0
where u(x) is the solution of the boundary value problem

"

u =p(x), 0 <z <1,

u(0) = u”(0) = u(1) = u"(1) = 0. (52)

Due to the following lemma the solution of the problem for IDE is reduced to finding fixed
point of the operator A.

Lemma 4.2. If the function ¢ is a fized point of the operator A, i.e., ¢ is the solution of
the operator equation

Ap = o, (53)

where A is defined by (51)-(52) then the function u(x) determined from the BVP (52) is a
solution of the BVP (50). Conversely, if the function u(z) is the solution of the BVP (50)

then the function
1

o(x) = fla,ulz), ' (z), / ke, tyu(t)dt)

0
satisfies the operator equation (53).

In [67] via the operator A we established the existence, uniqueness and positivity of
solution. And importantly, we proposed an iterative method for finding the solution of (50)
as follows:

1. Given

SOO(x) = f(JJ,0,0,0)

2. Knowing ¢, (x) (m =0,1,...) compute
1
(@) = [ Gole. om0,
0
1
(@) = [ Gl tpmlt)at,
0

1
zm(:c):/o k(z,t)umy,(t)dt.
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3. Update
(Pm-l—l(w) = f(xv um(x),vm(x), zm(x))

Discretizing the above iterative method by use of trapezoidal formula we obtained a numerical
method of accuracy O(h?). Of course, if using the trapezoidal formula with corrections as
in Subsection 3.1 we can construct higher order numerical methods.

5. FUNCTIONAL DIFFERENTIAL EQUATIONS (FDEs)

In recent years functional differential equations have attracted attention of some authors
since they provide realistic models for many phenomena and occupy a core and leading
role in a wide spectrum of application areas in engineering and sciences, particularly in the
biological sciences. Except for initial value problems, boundary value problems are of interest
of researchers. In [75] the authors considered the problem

(1) = f(t,ult), u(p(t)), t € (a,b),

) ) o 54
u(’)(a) = ai,u(’)(b) =b,1=0,p—1, (54)

where ¢ : [a,b] = R, a < ¢(t) < b,Vt € [a,b]. Neglecting the issue of existence and uniqueness

of solutions the authors proposed an iterative method with use of a cubic spline interpolation

procedure activated at each iteration. This indeed is the successive approximation method

applied to the equivalent integral equation. Some error estimates were obtained for the cases

p =1 and p = 2 but in the proof of these estimates there were some vital errors relating to

the derivatives of the Green function. These errors were overcome in corrigendum in [76].
Motivated by the work [75], in [77] we consider the FDE

W = f(ul),ule®), 0<t<a,

Biu] = by, Ba[u] = by, Bs[u] = bs, (55)

where ¢(t) is a continuous function mapping [0, a] into itself, Bi[u], Ba[u], Bs[u] are defined
as in (3). Analogously as in the case of ODEs and IDEs we introduce the nonlinear operator
A defined in the space of continuous functions C[0, a] by the formula

(AY)(t) = [t u(t), u(e(?))), (56)
where u(t) is the solution of the problem

u”(t) = Y(t), 0 <t <a,

Bilu] = by, Ba[u] = by, B3[u] = bs. (57)

We also proved that the solution of the problem (55) is equivalent to the solution of the
operator Ay = 1. It is due to this we obtained results on the existence, uniqueness of
solution and proposed the following iterative method:

1. Given g € B|0, M], for example,

1/’0@) = f(tv 0, 0)' (58)
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2. Knowing ¢ (t) (k =0,1,...) compute

w(®) =90+ [ Glt.9)in(s)ds,
0
lt) = 9(e(0) + [ Glolt).uls)ds.

3. Update Vrir (t) = F(E up(t), vp(t)). (60)

Above G(t, s) is the Green function of the corresponding third order BVP, ¢(¢) is the poly-
nomial of second degree satisfying the boundary conditions. Using the trapezoidal formula
for computing the integrals in the above iterative method we obtained a discrete iterative
method which was proved to have the accuracy O(h?).

Developing the technique of [77], in [108] considered the boundary value problem for
fourth order nonlinear functional differential equation which contains all lower derivatives of
proportional delay arguments

o (t) = f(t,U(t)), 0 <t <1, (61)
u(0) = a,u(l) = b,u'(0) = ¢,u/(1) = d,

where
U(t) = (u(t), u(po(t), ' (), u'(1(t)), u” (£), u" (2(t)), " (1), u" (p3(1))), (62)

and f:[0,1] x R® — R and ¢; : [0,1] — [0,1] (i = 0, 3) are continuous functions. We estab-
lished the existence of a unique solution of the problem and constructed iterative methods
on both continuous and discrete levels.

It should be said that our work [77] was the motivation for Bica and his colleage to use
the technique of [75] for the third order FDE (55). In [109] the authors proved that the
maximal order of convergence of the their method for the third order FDE is three. In the
next work [110] Bica proved that the maximal order of convergence of the method for the
fourth order FDE is four. Besides they expected that the order convergence is O(h%) for
fifth order FDE if using quartic splines interpolation procedure combined with an O(h®)
quadrature rule.

In our preprint [78] using trapezoidal formula with corrections for the integrals in (59)
we constructed methods of O(h*), O(h%) and O(h®) of accuracy for BVPs for third, fourth
and fifth orders BVPs. From the results of experiments for solving the FDEs we observe
that the achieved accuracy is somewhat worse than the accuracy for ODEs in [97, 100]. The
reason of this may be in the computation of the values of the derivatives of ¥(t) at the point
& = ¢(t;) not coinciding with grid points ¢;.

6. PARTIAL DIFFERENTIAL EQUATIONS

The general methodology to the solution of nonlinear BVPs presented in Section 2 can be
applied to multidimensional elliptic BVPs. In this section we review some works concerning
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the study of existence and numerical solution of nonlinear biharmonic and triharmonic BVPs.
First we mention the work [79] of the problem

A%y = f(z,u,Au) in Q,

(63)
u=0, Au=0 onT,

where € is a connected bounded domain in R?, with a smooth boundary I', A is the Laplace
operator. The problem (63) describes the static deflection of an elastic bending plate with
hinged edges rested on nonlinear foundation. The existence of the problem was studied by
many authors by the method of upper and lower solutions and different methods of nonlinear
functional analysis.

To investigate the problem (63) we also associated it with a fixed point problem of the
operator A defined by

(Ap)(z) = f(z,u(z), Au()),
where u(x) is the solution of the problem
Ay = p(z), 2 €Q,
u=Au=0, zeTl.
Under some conditions imposed on the function f(z,u,v) we established the existence of
a unique fixed point of A, which corresponds a unique solution of the problem (63) The

successive approximation of this fixed point generates the following iterative method for
solving the problem (63):

1. Given a starting approximation g € B[0, M], for example,

vo(z) = f(z,0,0), z € Q.

2. Knowing ¢y in © (k= 0,1, ...) solve consecutively two second order problems

A'Uk:@lﬁ era
v, =0, zel,

Aup = v, x €€,
u, =0, zel.

3. Update the new approximation
k1 = [z, up, vg).

To numerically solve the BVPs for the Poisson equation on each iteration we constructed
fourth order difference schemes. In result we obtained a numerical method of fourth order
of accuracy which is better than the method of Wang in [111, 112].

Developing the above method, in [80] we considered the BVP for a nonlinear biharmonic
equation of Kirchhoff type

A%y = M(/ |Vu]2dx> Au+ fla,u), €9, o
Q

u=0, Au=0, x €T,
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where  is a connected bounded domain in R (K > 2) with a smooth boundary I, A is the
Laplace operator, Vu is the gradient of u, f : @ x R — R and M : R™ — R are continuous
functions. This problem describes the nonlinear static deflection of an elastic plate.

In a similar way as done in [79] we studied the problem via the finding the fixed point of

the operator A in C(€2) defined by

(Ap)(z) = M(/ \Vu]%lm)Au%— f(z,u),
Q
where u(x) is a solution of the problem
Ay = p(z), = €Q,
u=Au=0, zel.

The finding the fixed point of A or the solution of the problem (64) is carried out by the
iterative method:

i) Given a starting approximation ¢y € B[O, N], for example,

vo(z) = f(z,0), = € Q.
ii) Knowing ¢ (k= 0,1,2,...) solve successively two second order problems
Avy = Pk, T € Q7
vp =0, x €T,
Auy, = v, T € €,
up =0, x €l

iii) Compute the new approximation

or+1(z) = M(/Q |Vuk|2dx)vk + f(x,ug).

Extending the technique for nonlinear biharmonic equations in combination with the iterative
method for linear triharmonic equation [113], recently in [114] we considered the problem

A3y = f(z,u, Au, A%u), x € Q, (65)
u:bo,%:bl, Au=by, x €. (66)

Notice that when the domain 2 is a rectangle in R? and by = 0 then the boundary Au = by
is the same as the condition 2772‘ = by. Therefore, instead the boundary conditions (66) it is

possible consider the Dirichlet boundary conditions
ou 0%u
S
ov ov?
In order to reduce the problem (65)-(66) to an operator equation we reduced the space H of
pairs of functions ¢ € C'(2) and g € C(I") and denote

[

u = b(), = b2. (67)
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In the space H define the operator A by

fl u,v,w)
AZ = U ,
05 ‘bl)]

where u, v, w are the solutions of the problems

Aw = @, x €,

w=g, v,
Av =w, x €,
v="by, x €T,
Au=wv, x €9,
u=1by, x €T,

(70)

(71)

(72)

and T is a positive parameter. It was proved that the fixed point of the operator equation
AZ = Z generates the solution of the triharmonic problem and it can be found by the

iterative method
Zpy1 = AZk, k=0,1, ...

Z is given.

This iterative method is realized by the following iterative process:

i) Given an initial approximation ¢y, gg, for example,
900(56) = f(xaoaoao)v z € () go=0, zel.
ii) Knowing ¢, gr (k=0,1,2,...) solve sequentially three second order problems

Awg = ¢p, x €,
W =g, €T,
Avy = wg, T € €,
v =bo, x €T,
Auy = v, x € Q,
up, = by, x €T

iii) Calculate the new approximation

SOkJrl('r) = f(x,uk(x),vk(m), wk(x))v

0
9k+1 = Gk —T(% —b1).

When the domain € is a rectangle, on each iteration discretizing the second order problems
by difference schemes of fourth order of accuracy and computing the normal derivatives by
difference formula also of the same order accuracy we obtain an approximate solution with
convergence order of 4 although it was not proved theoretically. This result is much more

accurate than that in [115].
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7. DISCUSSION AND FUTURE RESEARCH DIRECTIONS

Some advantages of our approach

(i)

The unified approach was first proposed for solving BVPs for ODEs and then was
extended to IDEs, FDEs and PDEs. Its advantages over existing methods in investi-
gation of qualitative aspects of BVPs such as the relaxing conditions for existence of
solutions and the ease of verification of the conditions required. The approach is not
only effective in the establishment of existence and uniqueness of solutions but also
gives the way for constructing solution via iterations.

The construction of numerical methods for solving BVPs based on using trapezoidal
formula with corrections for discretization of the integrals containing Green functions
and their derivatives on each iteration of the continuous iterative methods gives high or-
der accuracy of solutions and their derivatives. It essentially differs from the numerical
methods of other authors based on discretization of differential equations and bound-
ary conditions or integration of initial value problems obtained after using shooting
methods.

The stability problem of our numerical methods does not arise because they are real-
ization of the iterative methods for finding fixed points of operator equations.

The computational complexity of numerical algorithms for solving one-dimensional
BVPs for ODEs, IDEs or FDEs on grid of N points is O(KN?), where K is the
number of iterations performed, meanwhile the numerical algorithms of other authors,
in general, require the computational cost O(N?3) for solving the nonlinear system of
N equations resulted from discretization of the BVPs.

Although we considered only ODEs of order not higher than 6, which are mathematical
models of many popular problems in physics and mechanics, the approach can be
applied to higher order BVPs (see, e.g., [116, 117, 118]).

Limitations of the approach

As our approach is Green function based, it fails to apply to equations with variable
coefficients, where it is difficult or even impossible to find Green functions, and is not directly
applied to BVPs with nonlinear boundary conditions.

Future research directions

(i)

(iii)
(iv)

Develop the approach in combination with other techniques to BVPs for ODEs as-
sociated with nonlinear boundary conditions. These problems arise, for example, in
nonlinear composite beams [119]. Some of our initial results concerning this topic was
obtained in [120], where we considered nonlinear beam equation subjected to nonlinear
boundary moment conditions.

Extend the application of the unified approach to singular BVPs, which arise in the
modelling of several phenomena in theoretical physics, astrophysics and chemistry. The
typical problems of this type are Lane-Emden BVPs, for which there many numerical
methods but their accuracy is not higher than 6.

Construction of highly accurate numerical methods for solving IDEs.

BVPs on infinite intervals also will be the subject of our research in the future.
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8. CONCLUSION

In this overview we systematically presented a novel united approach to study nonlinear
BVPs for ODEs including two-point and integral boundary condition problems, integro-
differential, functional differential and partial differential equations. The common approach
is to reduce the BVPs to operator equations for right-hand sides (or nonlinear terms) and
use them to investigate the qualitative aspects of the problems and to construct iterative
methods for finding the solutions. This approach allows to relax the conditions imposed on
the nonlinear terms to ensure the existence of solutions. Thanks to this approach combined
with the use of the trapezoidal quadrature formula with corrections, we have built high or-
der numerical methods to solve BVPs for ODEs, and now we are constructing high order
numerical methods for IDEs and FDEs. Also, combining this approach with the bound-
ary operator method in [121] we established the existence and uniqueness of solutions for
nonlinear biharmonic and triharmonic problems and found their solutions with fourth order
of accuracy. The proposed approach can be applied to higher order equations of the three
above types and higher order numerical methods can be constructed.

REFERENCES

[1] R.P. Agarwal, Boundary Value Problems for Higher Order Differential Equations. World
Scientific Singapore, 1986.

[2] M. Gregus, Third Order Linear Differential Equations. D. Reidel Publishing Co. Dordrecht,
1987.

[3] V. Lakshmikantham and M. R. M. Rao, Theory of Integro-Differential Equations. Gordon
and Breach Science Publisher Switzerland, 1978.

[4] J. M. Cushing, Volterra Integro-differential Equations in Population Dynamics. Springer
Berlin/Heidelberg, 2010.

[5] J. K. Hale, Theory of Functional Differential Equations. Springer Verlag New York, 1977.

[6] J. Henderson, Ed., Boundary Value Problems for Functional Differential Equations.
World Scientific, 1995.

[7] I. Ahmad et al., “Intelligent computing to solve fifth-order boundary value problem arising in
induction motor models,” Neural Computing and Applications, vol. 29, pp. 449-466, 2018.

[8] J. Toomore, J. P. Zahn, J. Latour, and E. A. Spiegel, “Stellar convection theory ii: Single mode
study of the second convection zone in an a-type star,” Astrophysical Journal, vol. 207, pp.
545-563, 1976.

[9] A. Khalid, A. Rehan, K. S. Nisar, and M. S. Osman, “Splines solutions of boundary value
problems that arises in sculpturing electrical process of motors with two rotating mechanism
circuit,” Physica Scripta, vol. 96, no. 10, p. 104001, 2021.

[10] Y.I. Shen, “Hybrid damping through intelligent constrained layer treatments,” ASME Journal
of Vibration and Acoustics, vol. 116, pp. 341-349, 1994.



[11]

[15]

[16]

[21]

23]

[24]

A NOVEL EFFICIENT APPROACH TO THE SOLUTION OF NONLINEAR BVPs 127

Q. A Dang and Q. L. Dang, “A unified approach to fully third order nonlinear boundary value
problems,” Journal of Nonlinear Functional Analysis, vol. 2020, 2020, article ID 9.

Y. Feng and S. Liu, “Solvability of a third-order two-point boundary value problem,” Applied
Mathematics Letters, vol. 18, pp. 1034-1040, 2005.

Q. Yao and Y. Feng, “The existence of solutions for a third order two-point boundary value
problem,” Applied Mathematics Letters, vol. 15, pp. 227-232, 2002.

B. Hopkins and N. Kosmatov, “Third-order boundary value problems with sign changing solu-
tions,” Nonlinear Analysis, vol. 67, pp. 126-137, 2007.

Y. Li and Y. Li, “Positive solutions of a third-order boundary value problem with full nonlin-
earity,” Mediterranean Journal of Mathematics, vol. 14, p. 128, 2017.

Z. Bai, “Existence of solutions for some third-order boundary-value problems,” FElectronic
Journal of Differential Equations, vol. 2008, no. 25, pp. 1-6, 2008.

Q. A Dang, T. H. Nguyen, and H. H. Truong, “Unified approach to fully fourth order nonlinear
problems,” Azerbaijan Journal of Mathematics, vol. 9, no. 2, pp. 148-166, 2019.

Q. A Dang and T. K. Q. Ngo, “Existence results and iterative method for solving the cantilever
beam equation with fully nonlinear term,” Nonlinear Analysis: Real World Applications,
vol. 36, pp. 5668, 2017.

——, “New fixed point approach for a fully nonlinear fourth order boundary value problem,”
Boletim da Sociedade Paranaense de Matemdtica, vol. 36, no. 4, pp. 209-223, 2018.

Q. A Dang and T. H. Nguyen, “Existence results and numerical method for a fourth order
nonlinear problem,” International Journal of Applied and Computational Mathematics,
vol. 4, no. 6, 2018, article: 148.

R. Ma, J. Zhang, and S. Fu, “The method of lower and upper solutions for fourth order two-
point boundary value problems,” Journal of Mathematical Analysis and Applications, vol.
215, pp. 415422, 1997.

R. Ma, J. Wang, and D. Yan, “The method of lower and upper solutions for fourth order
equations with the navier condition,” Boundary Value Problems, vol. 2017, p. 152, 2017.

M. Wei and Q. Li, “Monotone iterative technique for a class of slanted cantilever beam equa-
tions,” Mathematical Problems in Engineering, vol. 2017, p. 5707623, 2017.

A. Cabada, “The method of lower and upper solutions for second, third, forth, and higher order
boundary value problems,” Journal of Mathematical Analysis and Applications, vol. 185,
pp. 302-320, 1994.

Y. Feng, “Solution and positive solution of a semilinear third-order equation,” Journal of
Computational and Applied Mathematics, vol. 29, pp. 153-161, 20009.

M. R. Grossinho and F. Minhos, “Existence result for some third order separated boundary
value problems,” Nonlinear Analysis, vol. 47, pp. 2407-2418, 2001.



128

[27]

[28]

[29]

[30]

[33]

[34]

[40]

[41]

DANG QUANG A et al.

J. Ehme, P. W. Eloe, and J. Henderson, “Upper and lower solution methods for fully nonlinear
boundary value problems,” Journal of Differential Equations, vol. 180, pp. 51-64, 2002.

Z. Bai, “The upper and lower solution method for some fourth-order boundary value problems,”
Nonlinear Analysis, vol. 67, pp. 1704-1709, 2007.

Y. Li, “Existence of positive solutions for the cantilever beam equations with fully nonlinear
terms,” Nonlinear Analysis: Real World Applications, vol. 27, pp. 221-237, 2016.

Y. Li and Q. Liang, “Existence results for a fourth-order boundary value problem,” Journal
of Function Spaces and Applications, vol. 2013, p. 641617, 2013.

J. Du and M. Cui, “Constructive proof of existence for a class of fourth-order nonlinear bvps,”
Computers and Mathematics with Applications, vol. 59, pp. 903-911, 2010.

M. A. Noor and S. T. Mohyud-Din, “Variational iteration technique for solving higher order
boundary value problems,” Applied Mathematics and Computation, vol. 189, pp. 1929-1942,
2007.

J. H. He, “Variational iteration method — a kind of non-linear analytical technique: some
examples,” International Journal of Non-Linear Mechanics, vol. 34, pp. 699-708, 1999.

M. A. Abdou and A. A. Soliman, “New applications of variational iteration method,” Physica
D, vol. 211, pp. 1-8, 2005.

A. M. Wazwaz, “The variational iteration method for analytic treatment for linear and nonlinear
odes,” Applied Mathematics and Computation, vol. 212, pp. 120-134, 2009.

J. S. Duan and R. Rach, “A new modification of the adomian decomposition method for
solving boundary value problems for higher order nonlinear differential equations,” Applied
Mathematics and Computation, vol. 218, no. 8, pp. 4090-4118, 2011.

R. Rach, “On the adomian (decomposition) method and comparisons with picard’s method,”
Journal of Mathematical Analysis and Applications, vol. 128, pp. 480-483, 1987.

M. Kumar and Umesh, “Recent development of adomian decomposition method for ordinary
and partial differential equations,” International Journal of Applied and Computational
Mathematics, vol. 8, p. 81, 2022.

R. Singh, J. Kumar, and G. Nelakanti, “Approximate series solution of fourth-order boundary
value problems using decomposition method with green’s function,” Journal of Mathematical
Chemistry, vol. 52, no. 4, pp. 1099-1118, 2014.

H. H. Mehne, “Differential transform method: A comprehensive review and analysis,” Iranian
Journal of Numerical Analysis and Optimization, vol. 12, no. 3 (Special Issue), pp. 629-657,
2022.

F. A. Costabile and A. Napoli, “Collocation for high order differential equations with two-points
hermite boundary conditions,” Applied Numerical Mathematics, vol. 87, pp. 157-167, 2015.



[42]

[44]

[46]

[49]

[51]

[52]

A NOVEL EFFICIENT APPROACH TO THE SOLUTION OF NONLINEAR BVPs 129

M. El-Gamel, A. Waleed, and M. S. El-Azab, “Bernoulli polynomial and the numerical solution
of high order boundary value problems,” Mathematics and Natural Sciences, vol. 4, pp.
4559, 2019.

A. Khan and S. Bisht, “Exponential spline solution of boundary value problems occurring in the
plate deflection theory,” Proceedings of the National Academy of Sciences, India Section
A: Physical Sciences, vol. 91, pp. 289-295, 2021.

J. Rashidinia and M. Ghasemi, “B-spline collocation for solution of two-point boundary value
problems,” Journal of Computational and Applied Mathematics, vol. 235, pp. 2325-2342,
2011.

S. Islam, I. A. Tirmizi, and S. Ashraf, “A class of methods based on non-polynomial spline
functions for the solution of a special fourth-order boundary-value problems with engineering
applications,” Applied Mathematics and Computation, vol. 174, pp. 1169-1180, 2006.

A. A. Moghadam, A. R. Soheili, and A. S. Bagherzadeh, “Numerical solution of fourth-order
bvps by using lidstone-collocation method,” Applied Mathematics and Computation, vol.
425, p. 127055, 2022.

S. S. Siddiqi and G. Akram, “Quintic spline solutions of fourth order boundary value problems,”
International Journal of Numerical Analysis and Modeling, vol. 8, no. 1, pp. 101-111, 2008.

P. K. Pandey, “Third order convergent finite difference method for the third order boundary
value problem in odes,” Turkish Journal of Mathematics and Computer Science, vol. 14,
no. 1, pp. 184-190, 2022.

M. A. Noor, E. Al-Said, and K. I. Noor, “Finite difference method for solving a system of third-
order boundary value problems,” Journal of Applied Mathematics, p. Article ID 351764,
2012.

R. K. Mohanty and S. M. Hasan, “A class of numerical methods for the solution of fourth
order nonlinear ordinary differential equations on a graded mesh with boundary conditions of
first kind,” International Journal of Computational Methods in Engineering Science and
Mechanics, vol. 20, no. 5, pp. 434-450, 2019.

E. H. Doha, A. H. Bhrawy, and M. A. Saker, “Integrals of bernstein polynomials: an application
for the solution of high even-order differential equations,” Applied Mathematics Letters,
vol. 24, no. 4, pp. 559-565, 2011.

X. Zhang and W. Ge, “Positive solutions for a class of boundary-value problems with integral
boundary conditions,” Computers & Mathematics with Applications, vol. 58, pp. 203-215,
20009.

A.Y. Lepin and L. A. Lepin, “On a boundary value problem with integral boundary conditions,”
Differential Equations, vol. 51, no. 12, pp. 1666-1668, 2015.

X. Lv, L. Wang, and M. Pei, “Monotone positive solution of a fourth-order bvp with integral
boundary conditions,” Boundary Value Problems, pp. 1-12, 2015.



130

[55]

[56]

[65]

[66]

DANG QUANG A et al.

S. Smirnov, “Green’s function and existence of solutions for a third order boundary value
problem involving integral condition,” Lithuanian Mathematical Journal, vol. 62, pp. 509
518, 2022.

C. Guendouz, F. Haddouchi, and S. Benaicha, “Existence of positive solutions for a nonlin-
ear third-order integral boundary value problem,” Annals of the Academy of Romanian
Scientists, Series on Mathematics and its Applications, vol. 10, pp. 314-328, 2018.

A. Boucherif, “Second-order boundary value problems with integral boundary conditions,”
Nonlinear Analysis: Theory, Methods & Applications, Series A, vol. 70, pp. 364-371,
2009.

P. K. Pandey, “The numerical solution of third-order non-local boundary value problems in
odes by the finite difference method,” ROMAI Journal, vol. 15, pp. 73-82, 2019.

N. Rodriguez, “On an integro-differential model for pest control in a heterogeneous environ-
ment,” Journal of Mathematical Biology, vol. 70, pp. 1177-1206, 2015.

C. Itzykson and J. B. Zuber, Quantum Field Theory. Mineola, New York: Dover Publica-
tions, 2005.

M. R. A. Sakran, “Numerical solutions of integral and integro-differential equations using cheby-
shev polynomials of the third kind,” Applied Mathematics and Computation, vol. 351, pp.
66-82, 2019.

Q. Zhuang and Q. Ren, “Numerical approximation of a nonlinear fourth-order integro-
differential equation by spectral method,” Applied Mathematics and Computation, vol. 232,
pp. 775-783, 2014.

M. Dehghan and A. Saadatmandi, “Chebyshev finite difference method for fredholm integro-
differential equation,” International Journal of Computer Mathematics, vol. 85, pp. 123
130, 2008.

A. M. Wazwaz, “A reliable algorithm for solving boundary value problems for higher-order
integro-differential equation,” Applied Mathematics and Computation, vol. 118, pp. 327—
342, 2001.

T. Tahernezhad and R. Jalilian, “Exponential spline for the numerical solutions of linear fred-
holm integro-differential equations,” Advances in Difference Equations, vol. 2020, p. 141,
2020.

R. Singh and A. M. Wazwaz, “Numerical solutions of fourth-order volterra integro-differential
equations by the green’s function and decomposition method,” Mathematics in Science,
vol. 10, pp. 159-166, 2016.

Q. L. Dang and Q. A Dang, “Existence results and numerical method for solving a fourth-order
nonlinear integro-differential equation,” Numerical Algorithms, vol. 90, pp. 563-576, 2022.

Q. A Dang, Q. L. Dang, and T. K. Q. Ngo, “A novel efficient method for nonlinear boundary
value problems,” Numerical Algorithms, vol. 76, pp. 427-439, 2017.



[69]

[70]

[71]

[72]

[81]

[82]

A NOVEL EFFICIENT APPROACH TO THE SOLUTION OF NONLINEAR BVPs 131

J. R. Ockendon and A. B. Taylor, “The dynamics of a current collection system for an electric
locomotive,” Proceedings of the Royal Society A, vol. 322, pp. 447-486, 1971.

Z. Bartoszewski, “A new approach to numerical solution of fixed point problems and its appli-
cations to delay differential equations,” Applied Mathematics and Computation, vol. 215,
pp- 4320-4331, 2010.

M. T. Rashed, “Numerical solution of functional differential, integral and integro-differential
equations,” Applied Mathematics and Computation, vol. 156, pp. 485-492, 2004.

S. A. Khuri and A. Sayfy, “Numerical solution of functional differential equations: a green’s
function-based iterative approach,” International Journal of Computer Mathematics,
vol. 95, pp. 1937-1949, 2018.

M. A. Z. Raja, “Numerical treatment for boundary value problems of pantograph functional
differential equation using computational intelligence algorithms,” Applied Soft Computing,
vol. 24, pp. 806-821, 2014.

C. C. Hou, T. E. Simos, and I. T. Famelis, “Neural network solution of pantograph type
differential equations,” Mathematical Methods in the Applied Sciences, pp. 1-6, 2020.

A. M. Bica, M. Curila, and S. Curila, “Two-point boundary value problems associated to
functional differential equations of even order solved by iterated splines,” Applied Numerical
Mathematics, vol. 110, pp. 128-147, 2016.

A. M. Bica, “Corrigendum to two-point boundary value problems associated to functional dif-
ferential equations of even order solved by iterated splines,” Applied Numerical Mathematics,
vol. 165, pp. 620-621, 2021.

Q. A Dang and Q. L. Dang, “A unified approach to study the existence and numerical solution
of functional differential equation,” Applied Numerical Mathematics, vol. 170, pp. 208-218,
2021.

——, “High order numerical methods for solving high orders functional differential equations,”
2024, arXiv:2411.01874.

Q. A Dang, H. H. Truong, T. H. Nguyen, and T. K. Q. Ngo, “Solving a nonlinear biharmonic
boundary value problem,” Journal of Computer Science and Cybernetics, vol. 33, no. 4,
pp- 308-324, 2017.

Q. A Dang and T. H. Nguyen, “Existence results and iterative method for solving a nonlinear
biharmonic equation of kirchhoff type,” Computers and Mathematics with Applications,
vol. 76, pp. 11-22, 2018.

——, “Solving the dirichlet problem for fully fourth order nonlinear differential equation,”
Afrika Matematika, vol. 30, pp. 623-641, 2019.

Q. A Dang and Q. L. Dang, “A simple efficient method for solving sixth-order nonlinear bound-
ary value problems,” Computational and Applied Mathematics, vol. 37, no. Suppl 1, p. 16,
2018.



132

[83]

[89]

[90]

[91]

[92]

[93]

[96]

DANG QUANG A et al.

Y. A. Melnikov and M. Y. Melnikov, Green’s Functions Construction and Applications.
De Gruyter, 2012.

E. Zeidler, Nonlinear Functional Analysis: I: Fixed-Point Theorems. Springer, 1986.

R. P. Agarwal and Y. M. Chow, “Iterative methods for a fourth order boundary value problem,”
Journal of Computational and Applied Mathematics, vol. 10, pp. 203-217, 1984.

Q. A Dang and T. H. Nguyen, “The unique solvability and approximation of bvp for a nonlinear
fourth order kirchhoff type equation,” Fast Asian Journal on Applied Mathematics, vol. 8,
no. 2, pp. 323-335, 2018.

P. Drdbek and J. Milota, Methods of Nonlinear Analysis: Applications to Differential
Equations. Birkhauser, 2007.

Q. A Dang and T. H. Nguyen, “Existence results for a nonlocal fourth order equation of
kirchhoff type with nonlinear boundary conditions,” Journal of Mathematical Applications,
vol. XVIII, no. 1, pp. 5-18, 2020.

Q. A Dang and T. K. Q. Ngo, “Existence results and iterative method for solving systems of
beams equations,” Fast- West Journal of Mathematics, vol. 22, no. 1, pp. 30-51, 2020.

Q. A Dang, “Iterative method for solving the neumann boundary value problem for biharmonic
type equation,” Journal of Computational and Applied Mathematics, vol. 196, pp. 634—643,
2006.

Q. A Dang and Q. L. Dang, “If intelligent computing for solving differential equations is better
than traditional numerical methods?” in Proceedings of XVII National Scientific Confer-
ence FAIR, Ha Noi, August 2024, (in Vietnamese).

J. Zhang, “The numerical solution of fifth-order boundary value problems by the variational
iteration method,” Computers and Mathematics with Applications, vol. 58, pp. 2347-2350,
20009.

P. K. Pandey, “A numerical method for the solution of fifth order boundary value problem
in ordinary differential equations,” Viadikavkaz Mathematical Journal, vol. 19, pp. 50-57,
2017.

F. G. Lang and X. P. Xu, “Quartic b-spline collocation method for fifth order boundary value
problems,” Computing, vol. 92, pp. 365-378, 2011.

M. I. Modebei and R. B. Adeniyi, “Boundary value method for numerically solving fifth-order
boundary value problems,” Asian Research Journal of Mathematics, vol. 12, no. 2, pp. 1-14,
2019, article no. ARJOM.46477.

A. Sidi and J. Pennline, “Improving the accuracy of quadrature method solutions of fredholm
integral equations that arise from nonlinear two-point boundary value problems,” Journal of
Integral Equations and Applications, vol. 11, pp. 103-139, 1999.



[97]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

A NOVEL EFFICIENT APPROACH TO THE SOLUTION OF NONLINEAR BVPs 133

Q. A Dang, Q. L. Dang, and T. K. Q. Ngo, “Numerical methods of fourth, sixth and eighth
orders convergence for solving third order nonlinear odes,” Mathematics and Computers in
Simulation, vol. 221, pp. 397414, 2024.

H. Ramos and M. A. Rufai, “A two-step hybrid block method with fourth derivatives for solving
third-order boundary value problems,” Journal of Computational and Applied Mathemat-
ics, vol. 404, p. 113419, 2022.

Q. A Dang and Q. L. Dang, “Simple numerical methods of second- and third-order convergence
for solving a fully third-order nonlinear boundary value problem,” Numerical Algorithms,
vol. 87, pp. 1479-1499, 2021.

Q. A Dang, T. H. Nguyen, and V. Q. Vu, “Construction of high order numerical methods for
solving fourth order nonlinear boundary value problems,” Numerical Algorithms, vol. 99, pp.
323-354, 2025.

Q. A Dang and T. T. H. Nguyen, “Numerical method of sixth order convergence for solving a
fourth order nonlinear boundary value problem,” Applied Mathematics Letters, vol. 146, p.
108813, 2023.

Q. A Dang, T. H. Nguyen, and V. Q. Vu, “Eighth order numerical method for solving second
order nonlinear bvps and applications,” Journal of Applied Mathematics and Computing,
2025, published: 15 January 2025.

Q. A Dang and Q. L. Dang, “Existence results and iterative method for a fully fourth-order
nonlinear integral boundary value problem,” Numerical Algorithms, vol. 85, pp. 887-907,
2020.

——, “Existence results and iterative method for fully third order nonlinear integral boundary
value problems,” Applications of Mathematics, vol. 66, no. 5, pp. 657672, 2021.

——, “Existence results and numerical solution of a fourth-order nonlinear differential equation
with two integral boundary conditions,” Palestine Journal of Mathematics, vol. 12, no. 4,
pp. 174-186, 2023.

S. Benaicha and F. Haddouchi, “Positive solutions of a nonlinear fourth-order integral
boundary value problem,” vol. 54, 01 2016. [Online]. Available: Doi:10.1515/awutm-2016-0005

X. Zhang and W. Ge, “Positive solutions for a class of boundary-value problems with integral
boundary conditions,” Computers and Mathematics with Applications, vol. 58, pp. 203-215,
2009.

Q. A Dang and T. H. Nguyen, “Existence results and numerical solution of fully fourth-order
nonlinear functional differential equations,” Journal of Computer Science and Cybernetics,
vol. 39, no. 4, pp. 393-406, 2023.

A. M. Bica and D. Curila, “The convergence properties of the green’s function method for third
order functional differential equations,” Computational and Applied Mathematics, vol. 41,
p. 352, 2022.


Doi: 10.1515/awutm-2016-0005

134

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

DANG QUANG A et al.

A. M. Bica, “On the maximal order of convergence of green’s function method for solving two-
point boundary value problems with deviating argument,” Numerical Algorithms, vol. 95, pp.
943978, 2024.

Y. M. Wang, “Convergence analysis of a monotone method for fourth-order semilinear elliptic
boundary value problems,” Applied Mathematics Letters, vol. 19, pp. 332-339, 2006.

——, “Monotone iterative technique for numerical solutions of fourth-order nonlinear elliptic
boundary value problems,” Applied Numerical Mathematics, vol. 57, pp. 1081-1096, 2007.

Q. A Dang, “Iterative method for solving a boundary value problem for triharmonic equation,”
Vietnam Journal of Mathematics, vol. 30, no. 1, pp. 71-78, 2002.

Q. A Dang, Q. H. Nguyen, and V. Q. Vu, “Numerical method for solving the dirichlet bound-
ary value problem for nonlinear triharmonic equation,” Journal of Computer Science and
Cybernetics, vol. 38, no. 2, pp. 181-191, 2022.

T. Gudi and M. Neilan, “An interior penalty method for a sixth-order elliptic equation,” IMA
Journal of Numerical Analysis, vol. 31, pp. 1734-1753, 2011.

A. Khalid et al., “Splines solutions of boundary value problems that arises in sculpturing
electrical process of motors with two rotating mechanism circuit,” Physica Scripta, vol. 96, p.
104001, 2021.

P. K. Pandey, “Numerical solution of a seventh order boundary value problem by splitting
coupled finite difference method,” Palestine Journal of Mathematics, vol. 11, no. 1, pp.
370-377, 2022.

A. Khalid et al., “Cubic splines solutions of the higher order boundary value problems arise in
sandwich panel theory,” Results in Physics, vol. 39, p. 105726, 2022.

C. S. Liu, “A boundary shape function method for analyzing nonlinear composite beams, sub-
jecting to nonlinear boundary moment conditions,” Composite Structures, vol. 262, p. 113636,
2021.

Q. A Dang and T. H. Nguyen, “Iterative method for solving a beam equation with nonlinear
boundary conditions,” Advances in Numerical Analysis, p. ID 470258, 2013.

Q. A Dang, “Mixed boundary-domain operator in approximate solution of biharmonic type
equation,” Vietnam Journal of Mathematics, vol. 26, no. 3, pp. 243-252, 1998.

Received on January 02, 2025
Accepted on February 19, 2025



	INTRODUCTION
	NOVEL METHOD FOR INVESTIGATING NONLINEAR BVPs FOR ODEs: EXISTENCE OF SOLUTION AND ITERATIVE METHOD ON CONTINUOUS LEVEL
	General methodology
	Applications to third order BVPs
	Applications to fourth order BVPs
	Applications to fifth and sixth order BVPs

	CONSTRUCTION OF HIGH ORDER NUMERICAL METHODS FOR ODEs
	General methodology
	Application to third order nonlinear BVPs
	Application to fourth order nonlinear BVPs
	Application to second order nonlinear BVPs

	INTEGRAL BVPs AND INTEGRO-DIFFERENTIAL EQUATIONS
	Integral BVPs for ODEs
	Integro-differential equations

	FUNCTIONAL DIFFERENTIAL EQUATIONS (FDEs)
	PARTIAL DIFFERENTIAL EQUATIONS
	Discussion and future research directions
	Conclusion 

