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Abstract. In the face of the explosive growth in data volume, current technologies have encountered
many difficulties in both storage and knowledge discovery processes. Moreover, the quality of data
has also deteriorated due to excessive noisy information, which reduces the effectiveness of machine
learning models. Therefore, many solutions have been proposed, in which attribute reduction has
emerged as an important research direction. Currently, research on attribute reduction has become
very active and is primarily focused on the processing of decision tables. In this area, research on
attribute reduction based on rough set theory and its extensions is considered a promising direction,
which has been yielding many impressive results. To gain a clearer understanding of the attribute
reduction research direction, this study will provide an overview of the methods of attribute reduction
from their inception to the methods proposed in recent times.
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1. INTRODUCTION

In addition to the basic tasks of data preprocessing, attribute reduction has the main
function of reducing the dimensionality of the data while preserving the information com-
pared to the original dataset. Additionally, attribute reduction improves the effectiveness
of data mining algorithms by: increasing the simplicity and understandability of rules, en-
hancing the performance of algorithms by eliminating redundant attributes, and increasing
the accuracy of models by removing noisy attributes. Research on attribute reduction is
rapidly growing and primarily focuses on processing decision tables. Currently, there are
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many approaches to the attribute reduction problem. Among them, approaches such as fil-
tering, wrapper, and hybrid can be mentioned. Each approach has its own objectives, either
to reduce the number of attributes or to improve the accuracy of the classification model.
However, studies often use the filtering approach due to its ability to find a representative
reduct that performs well on classification models. The methods following the filtering ap-
proach currently all use a measure as the basis to evaluate the significance of a obtained
attribute subset. Through the properties of the measure, this method defines a reduct as a
subset of attributes that preserves the amount of information in the data compared to the
entire original attribute set. In this way, the most significant attributes based on the measure
will be selected consecutively until the stopping condition occurs or the obtained attribute
subset satisfies the properties of the reduct. Finally, the method will use the obtained reduct
to evaluate performance on learning algorithms.

Based on the approaches presented, the attribute reduction problem has been imple-
mented on various models. These models always have distinct features and are applied to
attribute reduction algorithms to handle specific cases of decision tables. However, in ad-
dition to their advantages, they also have limitations when applied in practice. A typical
example is the rough set model proposed by Pawlak in 1984 [1]. This model was the first
tool applied to the attribute reduction problem due to its usefulness in solving classification
problems and discovering rules when the data contains vague and uncertain information. To
provide a comprehensive overview of attribute reduction methods across different models,
this paper will thoroughly analyze the advantages and disadvantages of each model, thereby
guiding future research directions. Specifically, Section 2 will provide an overview of the
attribute reduction problem based on the rough sets and relational database approach. In
Sections 3 and 4, we will analyze some attribute reduction algorithms based on the neigh-
borhood rough set model and the fuzzy rough set model. These models are considered as the
initial extensions of the rough set model. Section 5 and 6 will present attribute reduction
methods based on newly developed models in recent years, such as the intuitionistic fuzzy
rough set model and the «, 8-level intuitionistic fuzzy rough set model. Finally, Section 7
will present the conclusion on the contributions of the research.

2. ROUGH SETS AND THE RELATIONAL DATABASE APPROACH

First, the research object of rough sets theory is called the decision table, which can be
expressed as a pair Z = (U,C U D), in which U is a finite nonempty set of objects, C' is
the set of condition attributes, D is the decision attribute set, satisfying C N D = (). Each
attribute b € C'U D determines a mapping b : U — V3, where V}, is the value set of attribute
b. Then, for u € U, the value of b for u is written as b (u).

Without loss of generality, assume that D contains only one decision attribute d (in cases
where D has more than one attribute, it can be transformed into a single attribute through
encoding). Thus, we only need to consider Z = (U,C U D).

In this model, an indiscernibility relation generates equivalence classes, which are used
to construct the dependency function between condition and decision attributes [2]. Then,
the dependency function is used to determine the classification ability of each attribute in
the decision table. The primary advantage of rough set theory is that it does not require any
prior or supplementary information about the data, such as probability in statistics, basic
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probability assignment in Dempster-Shafer theory [3]. Based on this model, several attribute
reduction algorithms have been developed, leading to significant success in complete decision
tables. Subsequently, M. Kryszkiewicz [4] introduced the concept of a tolerance relation to
address issues associated with to incomplete decision tables. Building on tolerance relations
and Boolean reasoning methods, the authors in [5] proposed a technique for identifying
reducts in incomplete decision tables. Using the relational data model approach [6, 7], the
authors in [8] proposed an algorithm to find all reducts in a consistent decision table, and
[9] proposed an improved entropy measure to define a new reduct that is equivalent to
Pawlak’s reduct, serving as the foundation for designing an attribute reduction algorithm
on inconsistent information systems. Besides, [10] extended the Liang entropy measure and
proposed a heuristic algorithm to find a reduct of the table. Additionally, the authors in [11]
demonstrated that reducts in an incomplete information system are equivalent to a Sperner
system. In other words, the set of reducts in an incomplete decision table forms a Sperner
system, and conversely, for a given Sperner system /C, there always exists an incomplete
decision table such that its set of reducts is exactly K.

However, these methods are often suitable only for nominal/categorical attributes, while
data in practice may comprise continuous numerical/real attributes. To handle this case,
traditional methods require a preprocessing step to discretize the data. Naturally, the data
discretization process may result in information loss, ultimately leading to a decrease in the
classification performance of the obtained reducts.

3. NEIGHBORHOOD ROUGH SETS-BASED ATTRIBUTE REDUCTION

Given a decision table Z = (U,C U D), an attribute subset B C C and two objects
u,v € U, the distance between u and v with respect to B, denoted dp (u,v), is determined
by

0p (u,0) = o> [b(u) =b(v)P, (1)

beB

where is called Manhattan distance if p = 1, Euclidean distance if p = 2, and Chebyshev
distance if p = oc.

To solve the issue of attribute reduction without the need for discretizing the data, the
neighborhood rough set model uses a neighborhood relation instead of the indiscernibility
relation in the classical model. Accordingly, each object in the universe is characterized by a
neighborhood class, which contains objects that have a neighborhood relation with the given
object within a A radius.

Suppose that A is a neighborhood radius with a value in the range [0,1], and ¢ is a given
distance function. Then, a binary relation R)E‘; becomes a neighborhood relation on U from
the attribute set B is defined as

Ry = {(u.v) €U x U|¥b € B, 3 (u,0) S A} .

Based on the neighborhood relation, the neighborhood class of an object uw € U on the
attribute subset B is represented by the following formula

[u]g:{veU](u,v)eRg}. (3)
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Clearly, the neighborhood class of any object © € U is a non-empty set that satisfies
u]h C U. If we consider all the objects in the space U, we obtain a family of neighborhood
B

classes, denoted as U/R} = {[u])f‘; lueU }, which is called a neighborhood cover of the

attribute set B. Through these neighborhood classes, the basic concepts of neighborhood
rough sets are defined as follows.

Consider a decision table Z = (U,C U D), a partition from the decision attribute set
U/D = {D1, Dy, ..., D,} and aneighborhood relation R7, the lower and upper neighborhood
approximations of a decision class D; € U/D are respectively determined by

Ng (D) = {u |} € Diuev} (4)

and
Ng (D;) = {u|uly N Di £ 0,uc U}, (5)

Based on this model, many attribute reduction methods have been proposed. First, Hu
et. al. proposed several attribute reduction methods for mixed decision tables (containing
both discrete and continuous attributes) with various measures, such as dependency degree
[12, 13] and the decision error rate in the neighborhood [14]. In [12], the dependency function
has been extended by Hu on the neighborhood rough set model as follows

POSgp(D
DFg (D) = M, (6)
U
where POSp(D) = |J Ngp(D;) is called neighborhood positive region of B. From this

D;eU/D
measure, the authors designed the NFARNRS algorithm with the steps presented in Algo-
rithm 1.

Algorithm 1 NFARNRS [12]
Input: A decision table Z = (U,C' U D) and a threshold A
Output: One reduct red

1 let red =10

2: for b € C\red do

POS,.. D
compute Dfredu{b} (D) = W

3
4 compute the significance Sig (b, red) = DF,cquqp) (D) — DFreq (D)
5: end for

6: find by with maximum value Sig (bg, red)
7. if Sig (by, red) > 6 then

8 red < red U {bo}

9: goto step 2

10: end if
11: else return red

Next, Wang [15] selected an optimal attribute set by using the neighborhood discrimina-
tive index. Additionally, Sun et al. in [16] presented the FSNTDJE algorithm for attribute
selection based on the entropy measure combined with tolerance dependency in the neighbor-
hood. In other approaches, Wang in [17] developed an attribute reduction algorithm based
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on the k-nearest neighborhood rough set, and Yang in [18] also developed an algorithm based
on the Pseudo-label neighborhood rough set. For incomplete decision tables, Yuan et al. in
[19] defined the tolerance neighborhood relation and neighborhood multigranulation rough
sets to design an attribute reduction algorithm (PTSIJE-FS), using the entropy measure.
The algorithm was then compared with the DMRA [20] and PDJE-AR [21] algorithms, as
shown in Table 1.

Table 1: Classification accuracy of algorithms based on neighborhood rough sets using the
obtained reducts in the KNN classifier.

ID | Dataset Raw | FSNTDJE | PDJE-AR | PTSIJE-FS
1 Credit 0.7046 0.7046 0.8551 0.8652
2 Heart 0.7652 0.7741 0.8037 0.8222
3 Sonar 0.7262 0.6975 0.7240 0.8365
4 Wdbc 0.9124 0.9466 0.9561 0.9561
5 Wine 0.9195 0.9057 0.9494 0.9775
6 Wpbc 0.7475 0.7374 0.7576 0.7626
7 DLBCL 0.8960 0.8050 0.9350 0.9870
8 Leukemia | 0.7340 0.8330 0.8750 0.9583
9 Lung 0.9310 0.8920 0.9410 0.9890
10 | MLL 0.6528 0.9167 0.8722 0.9722
11 | Prostate | 0.7820 0.7870 0.8680 0.8824

Overall, methods based on the neighborhood rough set approach are highly effective in
handling numeric or mixed decision tables owing to their ability to offer a more comprehensive
characterization of an object’s attributes compared to traditional rough set theory. Notably
that the neighborhood rough set model only focuses on objects within a neighborhood.
Accordingly, the model can reduce the computational space and minimize the processing for
attribute reduction algorithms. However, the neighborhood relation is still simple and does
not fully describe the relationship between objects. In reality, decision tables always contain
objects with diverse distributions. Therefore, the relationship between objects also needs to
be characterized by different values.

4. FUZZY ROUGH SETS-BASED ATTRIBUTE REDUCTION

By combining traditional rough set theory and fuzzy set theory, the fuzzy rough set
theory was proposed by Diibois and Prade [22] as an effective model for handling continuous
data. In this model, each given object is represented by a fuzzy equivalence class, where the
remaining objects from the universe will belong to this class based on a degree of membership.
Specifically, the authors in [22] used equivalence relations to approximate the fuzzy sets.
Accordingly, each relation Rp determined on the attribute subset B C C is called a fuzzy
equivalence relation if it satisfies the following conditions for any w,v € U:

1) Reflexivity: Rp (u,u) = 1,

2) Symmetry: Rp (u,v) = Rp (v, u),

3) Sup-min transitivity: Rp (u,v) > sup {min (EB (u,t),Rp (t, v)) }

teU
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Through fuzzy equivalence relations, each object u € U will define a fuzzy equivalence
class, denoted as [u]g, which consists of all objects in U presented by similarity degrees.
Clearly, the family of all fuzzy equivalence classes, U/Rp = {[ii]z|u € U}, form a fuzzy
partition on U.

Based on the fuzzy rough set model, the first study applying it to the web classification
problem was proposed by Jensen [23]. In this study, the authors developed a dependency
function from the traditional rough set model and proposed an attribute reduction algo-
rithm based on the fuzzy rough set model. Subsequently, Tsang et al. [24] defined reducts
of decision tables and proposed a method to find all reducts based on indiscernibility matri-
ces. Based on these indiscernibility matrices, many methods have been proposed to process
continuous data, such as [25, 26, 27, 28]. Besides, Dai and Xu in [29] designed an attribute
reduction algorithm using the information gain ratio. From a hybrid filter-wrapper approach,
Zhang et al. in [30] proposed a two-stage attribute reduction algorithm. In the first stage,
candidate reducts are generated, and in the second stage, the best reduct is selected with
the highest classification accuracy. Based on the fitting model, Wang et al. [31] proposed an
attribute reduction method to minimize misclassification from objects in decision tables. To
preserving the invariability of knowledge structure, Zhai et al. in [32] designed an attribute
reduction method using Lukasiewicz adjoint operators and hedges. Additionally, some typ-
ical methods of fuzzy rough set theory include fuzzy distance [33, 34|, fuzzy positive region
[35, 36, 37], fuzzy mutual information [38], fuzzy entropy [39, 40|, and fuzzy information
granulation [41]. In [33], the authors proposed a distance measure called fuzzy partition
distance and defined an optimal reduct that preserves the information of the decision table

([@lo| — |l N [ p|)
U

Dis (U/Be, U/Reup) = 3

uelU

(7)

Based on the hybrid filter-wrapper approach, they then designed the FW_FDAR attribute
reduction algorithm, which is presented in detail in Algorithm 2. Accordingly, the authors
also compare the proposed algorithm with several algorithms based on rough set and fuzzy
rough set approaches (as shown in Table 2) to demonstrate the effectiveness of the algorithm.

Table 2: Classification accuracy of algorithms based on fuzzy rough sets using the obtained
reducts in the CART classifier.

ID | Dataset | FW_FDAR | RDRAR [42] | GFS [43]

1 | Libra 0.54640.028 | 0.508+0.028 | 0.496+0.016
2 | WDBC | 0.889+0.018 | 0.8520.028 | 0.83640.016
3 | Horse 0.76540.048 | 0.706-£0.032 | 0.7022-0.026
4 | Heart 0.76840.064 | 0.7260.038 | 0.706=-0.025
5 | Credit 0.80240.048 | 0.764=0.027 | 0.692-4-0.026
6 | German | 0.7254£0.026 | 0.70640.818 | 0.69540.028
7 | CMC 0.69240.012 | 0.505+0.038 | 0.504=-0.026
8 | Waveform | 0.785+0.016 | 0.682-£0.015 | 0.65240.027

In general, experimental results show that attribute reduction algorithms based on fuzzy
rough set theory are more effective than traditional algorithms for decision tables with con-
tinuous and numeric attributes. However, the fuzzy rough set model still has the following
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Algorithm 2 FW_FDAR [33]

Input: A decision table Z = (U,C' U D)
Output: One reduct red

1 let W« 0, red « 0, Dis (U/Ered, U/éredw) —1
2: calculate Dis <U/§red, U/EredUD>
// Filter stage: Finding candidates for reduct
3: while Dis (U/Ered, U/EredUD> # Dis <U/EC7 U/ﬁCUD> do
4: for b€ C\red do

5: compute Dis (U/Eredu{b}v U/éredu{b}UD>
6: compute Sig (b7 Ted) =Dis (U/Ereab U/EredUD) —Dis (U/Eredu{b}a U/éredu{b}UD)
7 end for
8: Select by which satisfies: Sig (bg,red) = max {Sig(b,red)}
beC\red

9: red < red U {bo}

10: W — WUred

11: end while
// Wrapper stage: Finding the reduct as the candidate with the highest classification
accuracy

12: for w € W do

13: compute the classification accuracy on w using a classifier with 10-fold

14: end for

15: red = Wpest PWpest € VV is the attribute subset with the highest classification accuracy.

16: return red

two limitations:

Firstly, the attribute reduction methods based on the fuzzy rough set approach typically
involve constructing evaluation, defining the reduct set according to these measures, and
developing heuristic algorithms to find reducts that preserves the defined measures. These
measures are computed from the primitive computational elements, which represent the car-
dinalities of fuzzy equivalence classes or fuzzy information granules. In the fuzzy rough set
approach, the quantity of fuzzy information granules is calculated by summing the mem-
bership values of all the objects in the decision table. As a result, this calculation becomes
redundant, unnecessary, and fails to characteristic the relationships between the objects in
the decision table.

Secondly, the attribute reduction method based on fuzzy rough sets is less effective when
handling datasets with low classification accuracy and inconsistency [44]. This is because the
model still cannot effectively restrict the influence of certain noisy objects. Therefore, they
still contribute information values to the measure and affect the ability to select an optimal
subset of attributes.

From these difficulties, several state-of-the-art models have been proposed. In the fol-
lowing section, we will present these models through their advantages in applying attribute
reduction algorithms.
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5. INTUITIONISTIC FUZZY ROUGH SETS-BASED ATTRIBUTE
REDUCTION

In recent years, researchers have focused on the approach of calculating the reduct of
decision tables based on intuitionistic fuzzy rough sets. The advantage of this model is the
necessary addition of the non-membership function component, which helps to adjust the
information from certain noisy objects in the data to the correct classification [45]. Therefore,
the intuitionistic fuzzy set has the ability to classify objects better than the classical fuzzy
set, especially on noisy and inconsistent datasets.

We continue to consider a decision table Z = (U,C U D), each attribute subset B C C
will determine a binary intuitionistic fuzzy relation Rp in U x U as follows [46]

B (u,v) = { () 7, (,0) 7y, (,0))| (w0) € U X UY, (8)

where v3 (u,v) € [0,1] and np (u,v) € [0,1] are the similarity and diversity degrees,

respectively, which satisfy: 0 < Vig (u, v)—i—nRB (u,v) < 1. Then, Rp is called a intuitionistic

fuzzy tolerance relation if and only if for any objects u,v € U, Rp satisfies the conditions
1) Reflexivity: v5 (u,u) =1 and n;_ (u,u) =0,

2) Symmetry: Viip (u,v) = Viip (v,u) and Ny (u,v) = Ny (v, u).
From this concept, Zhou in [47, 48] redefined lower and upper approximations of X C U

uGU},

(9)

u € U} .
o (10)
The pair (Rp (X), Rp (X )) is referred to as an intuitionistic fuzzy rough set. Based on

i () = { (1 uf o (2 ()., (009 sup i (v, (000 () )

?B(X) = { <u,§1615 min (71?3 (u,v),vx (U)) , 52{5 max (771?3 (u,v),nx (v)))

this model, several approaches that expand the measures from the fuzzy rough set model
have been proposed, as shown in Figure 1.

1) Intuitionistic fuzzy positive region: Similar to the idea of extending the positive region
measure from the classical model to the fuzzy rough set model, researchers have focused
on the properties of intuitionistic fuzzy sets within the rough set space to construct the
intuitionistic fuzzy rough set model. In this model, t-norm, t-conorm operators, and the
implication operator in the intuitionistic fuzzy set are customized to construct the upper
and lower approximations. Consequently, the intuitionistic fuzzy positive region is the ratio
of the cardinality of an intuitionistic fuzzy set to the cardinality of the data set. According
to the intuitionistic fuzzy positive region approach, Zhang et al. [49] proposed a general
framework for the intuitionistic fuzzy rough set model. Using this framework, researchers
can develop the intuitionistic fuzzy rough set model by customizing the operators. Huang
et al. [45] introduced a novel framework known as the intuitionistic fuzzy multigranulation
rough set. This model combines multigranulation rough sets with intuitionistic fuzzy rough
sets. Tiwari et al. [50] applied positive region theory to the intuitionistic fuzzy rough set
model, developing an algorithm for searching reducts in the decision table. Additionally,
Redman in [51] refined some of Tiwari’s proofs in [50, 52] by restructuring the rough set
model with a new proposal for the intuitionistic fuzzy decision class to reduce noise in
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Figure 1: Some measures have been developed based on the intuitionistic fuzzy set model

data sets. Furthermore, Tan in [53] developed a new model based on intuitionistic fuzzy
information granules to establish the formula for calculating the intuitionistic fuzzy positive
region.

Given a decision table Z = (U, C'U D), a condition attribute subset B C C and a partition
U/D = {D1, Ds,...,D;} generated by the decision attribute, for any (1 <14 <), the lower
and upper approximations of decision classes are redefined as follows

Ry (D;) = { <U7Uié1[f)i Ve, (W 0), supmp . (u, U)) u € U} ) (11)

’U¢Di
?B(Di) = { <u,vSéll]% Vizg (u,v) ,Uiengi Niy (u,v)) u € U} . (12)

Then, the intuitionistic fuzzy dependence function is determined as follows

F)= 5+ a7 30 32 (s (0110 ) w

From the proposed measure, the authors in [53] then defined a reduct and a measure
for evaluating the significance of an attribute b € C' when added to a subset of condition
attributes B C C

Sig (b, B) = F (BU{b}) — F(B). (14)

Finally, the authors proposed the IFPR algorithm, as shown in Algorithm 3.

In the experimental process, the authors compared the performance of IFPR with several
typical attribute reduction algorithms based on the rough fuzzy set model, such as B-FRFS
[25], DM-FR [26], and FA-FPR [37]. Specifically, B-FRFS, DM-FR, and FA-FPR are algo-
rithms based on the fuzzy boundary region, discernibility matrix-based fuzzy rough set, and
fuzzy positive region, respectively. The results show that IFPR performs outstandingly by
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Algorithm 3 IFPR [53]

Input: A decision table Z = (U,C U D).

Output: One reduct red

: let red = ()

: for be C do
compute intuitionistic fuzzy relation red U {b}
compute Vi p.y (u) and Nty oa(Ds) (u) for each u € D;
compute the dependence functions F (red) and F (red U {b})
compute the significance Sig (b, red)

end for

find by with maximum value Sig (bo, red)

if Sig (b, red) > 6 then
red < red U{bg} and C < C\ {bo}
goto step 2

: end if

else return red

_ = = =
Wy P9

obtaining an optimal reduct in size and achieving high accuracy on SVM and KNN classifica-
tion models. Table 3 presents the KNN classification accuracy of IFPR and other algorithms
from the obtained reducts.

2) Intuitionistic fuzzy entropy: Entropy in the intuitionistic fuzzy rough set model is
better evaluated due to its stricter constraints compared to classical fuzzy rough sets. Fol-
lowing the research direction on entropy measures, Tan et al. [54] developed intuitionistic
fuzzy entropy measures and proposed a heuristic algorithm for finding a relative reduct. Ad-
ditionally, Revanasiddappa [55] applied intuitionistic fuzzy entropy measures for attribute
reduction to the text classification problem.

3) Intuitionistic fuzzy distance: In the study [56], the authors developed an intuitionistic
fuzzy distance measure and constructed a heuristic algorithm to find a reduct set using a
filter-wrapper approach. On the other hand, Anh et al. in [57] extended the formula for
calculating the intuitionistic fuzzy partition distance to apply it to decision tables with the
addition of object sets. Experimental results show that the reduct set obtained by the intu-
itionistic fuzzy set has higher classification accuracy compared to the reduct set obtained by
the fuzzy rough set on noisy datasets. It can be seen that attribute reduction methods based
on rough set and fuzzy rough set models have been developed in a variety of ways. Each
method yields very good results in handling specific cases of decision tables. However, these
methods are not yet able to effectively handle noisy and inconsistent data. This opens up
several research directions to enhance the intuitionistic fuzzy rough set model. Nevertheless,
the development of algorithms based on this model also presents some challenges that need
to be explored. Firstly, with the addition of non-membership functions, algorithms based on
this approach are costly in terms of storage space and have higher computational complexity
compared to those based on the fuzzy rough set approach. Secondly, some objects that have
a significantly different distribution from the majority of objects in the universe will generate
many elements in the intuitionistic fuzzy information granules with small similarity values
and large diversity values. Intuitively, these objects are created by noise and affect classifica-
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Table 3: Classification accuracy of algorithms based on intuitionistic fuzzy rough sets using
the obtained reducts in the KNN classifier

ID Dataset IFPR B-FRFS DM-FR FA-FPR Raw
1 Wine 97.224£2.93  96.04+2.74  95.49+4.41  97.714£2.97  95.49+3.54
2 Heart 85.19+6.30  81.854+6.40  83.33£6.36  74.444+6.16  82.59+6.06
3 Hepatitis 86.50+£6.31  85.00£6.63  81.67£7.17  82.83+£5.56  80.40+5.84
4 ICU 93.084+2.31  91.214+2.25  91.2142.25  91.214+2.25  88.61£1.25
5 WPBC 76.63+8.23  73.68+£6.87  75.79£5.58  T4.7T1£7.95  76.26+5.89
6 Australian 81.304+5.02  78.27+2.27  79.274+3.18  80.23+£5.82  75.25+4.79
7 Soner 75.98+5.43  T73.57£5.57  72.14£6.94  T4.07£8.94  72.62+7.05
8 Horse 89.13+3.61  91.02+3.67  86.45+5.86  89.68+5.05  88.05£5.58
9 WDBC 96.15+3.04  96.50+2.18  96.50+£2.46  96.67£3.00  93.33£2.09
10 Iono 84.12+3.92  82.134£5.56  82.544+4.70  82.724£5.70  82.40£5.02
11 Autovalue B  91.31£4.57  90.66+£4.67  91.35+4.09  91.95+5.09  90.98+4.51
12 Colon 84.58+18.84 87.084+17.17 76.25£12.12 79.58+11.19 73.33£14.05
13 Breast 78.33+£11.08 86.67£13.86 90.42+8.84  82.50£10.54 80.42+6.02
14 Leukemia 80.42+6.98  76.194+6.62  84.22+6.46  83.31£8.54  90.98+4.51
15 MLL 98.57+£4.52  92.29410.69 96.73+8.14  97.144£6.02  79.95+15.97
Average 86.57+6.21  85.54+6.48  85.554+5.90  85.25+6.32  81.73£6.59

tion performance. Clearly, the intuitionistic fuzzy rough set model cannot fully eliminate the
impact of these objects. In other words, although adjusted by diversity values, the attribute
evaluation measures are still performed on noisy values. Thirdly, correctly classified objects
are still adjusted by information from the non-membership function. Therefore, the reduct
obtained from algorithms based on the intuitionistic fuzzy set approach may not always be
optimal for certain datasets. To address these disadvantages, Anh et al. in [58] defined a
new model called the «, 8-level intuitionistic fuzzy set. This model not only inherits the
advantages of the intuitionistic fuzzy rough set model, but also effectively addresses the
disadvantages in some previous models. Accordingly, this study will present the model to
highlight these improvements.

6. a,B-LEVEL INTUITIONISTIC FUZZY SETS-BASED ATTRIBUTE
REDUCTION

Firstly, the concept of intuitionistic fuzzy equivalence relation is formed from the intu-
itionistic fuzzy tolerance relation with the extension of the transitive property. Then, the
intuitionistic fuzzy equivalence relation Rp satisfies the properties following

1) Reflexivity: 75 (u,u) =1 and np  (u,u) =0,

2) Symmetry: vz, (u,0) = 7z, (v,10) and ng, (u,v) = 1, (v,0),

3) Sup—min transitivity: Vit (u,v) > max {min (’yé{c} (u,t) ity (t,v)> },
MRy (u,v) < et {max (UR{c} (u.t) MRy, (t’v))}
It is readily apparent that Rp will generate an intuitionistic fuzzy partition U/Rp =
{[i]g|u € U} on U, where [ii]5 is an intuitionistic fuzzy equivalence class of object u ac-
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Algorithm 4 IFPD [5§]

Input: A decision table Z = (U, C' U D), levels a, 8 and a threshold 6
Output: One reduct red
1: initialize red = ()
2: compute U/R%’B
3: for be C do
4: if baisa contlnous numeric value domain attribute then
5
6

compute U/R{b}
else
U/R o = U/R{b}
end if
8: end for
9: compute U/Rg ﬂbeCU/R{b}

10: red = {bp} which satisfies: D (U/R{b b U/R {bo}uD> = Ibréig{ (U/R{b},U/R{b}UD>}

1 while D (U/RS U/R ) =D (U/RG 0BG, ) > 0 do
12: for b € C\red do

X

13: compute D (U/RO‘ dU{b)” U/Rffe’gu{b}uD>

14: compute Sig (b, red)

15: end for

16: Select by which satisfies: Sig (bg, red) = EHCL’E\LXd {Sig (b, red)}

17: red < red U {bo}
18: end while
19: return red

cording to Rp, referred to as an intuitionistic fuzzy information granulation. Next, let o
and [ be two real numbers in the range [0,1] that satisfy o+ 5 < 1. Then, the ordinary set
based on levels «, 3 of [ii] 5 is a crisp set and is defined as follows

[ 5% = {u € U | g, (v) = a Ay, (v) < B} (15)

It is interesting for us to extend an intuitionistic fuzzy set [ii] B’ﬁ based on a combination
{o,B}

of each element in [i]; "' with the similarity and diversity degrees

) {azﬁ}
-y [i](v) if v € [ii]p
U v) = 0,8 (V), Nrna,s (V) | = 16
[l 5" (v) (%Msﬁ( ) n[u}sﬁ( )) {(0, 1) otherwise. (16)
Then, [i] @B is an a, B-level intuitionistic fuzzy equivalence class of object u, and a family

{ U B’ﬁ ) uelU } shall create an intuitionistic fuzzy partition on U. This family is called the

a, f-level intuitionistic fuzzy partition, denoted by U/ RaB’ﬁ . From this concept, Anh et al. in
[58] proposed a formula for calculating the «, S-level intuitionistic fuzzy distance to measure
the amount of information in an attribute set B that is not in the decision class, as follows

.. 1
D (U/R U/RBUD> = m ;] E[Sl]l{liﬁ} {1 + 'YM%,B (v) — 77[@%,6 (U)} . (17)
U v u B
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Through this measure, the authors have redefined a reduct and established the signif-
icance of each attribute in the decision table as the foundation for proposing an attribute
reduction algorithm based on the filter approach

Sig (b, B) = D (U/R%’B, U/R“B’LED) ) (U/Rgf{b}, U/Rj;f{b}w) . (18)

Finally, the authors designed the IFPD algorithm to search for an optimal subset of
attributes on the fixed decision table. The steps of the method are detailed in Algorithm 4.

To demonstrate the effectiveness of the proposed algorithm (IFPD), the authors then
conducted several experiments to compare it with typical algorithms based on the intuition-
istic fuzzy rough set model, such as IFPR, IFIE [54], and FMIFRFS [52]. In which, IFPR
uses the intuitionistic fuzzy dependency measure, IFIE uses intuitionistic fuzzy entropy, and
FMIFRFS uses a fitting model combined with the intuitionistic fuzzy dependency function.
The comparison process was conducted on 15 datasets taken from the UCI machine learning
repository! and evaluated through three criteria: reduct size, execution time (second), and
classification accuracy from the obtained reducts.

Table 4: Size of the reduct and execution time (second)

D | Dataset IFPD IFPR IFIE FMIFRFS
Time Size | Time Size | Time Size | Time  Size
1 | Vehicle 0.017 13.7 | 0.240 12 0.027 6.6 0.091 12.7
2 | Satimage 2.692 17.1 | 5,300 17.2 | 12.44 18.6 | 22.70 29.1
3 | Ozone 0.017 43 | 0.792 7.1 0.935 125 | 0.392 5.6
4 | Qsar 0.058 18 | 0.548 20.6 | 0.217 14.4 | 0.226 23
5 | Robot 0.019 6.6 | 0.579 4.7 | 0.023 2.8 0.074 5.4
6 | Triazines 0.021 12.2 | 0.665 13.5 | 0.060 11.8 | 0.066 12.8
7 | Movement 0.071 14.9 | 7703 17.6 | 0.500 39.5 | 1.064 15.9
8 | Sona 0.011 5.8 | 0.772 21.1 | 0.087 15.2 | 0.225 15.6
9 | Agnostic 1.885 22,5 | 4.719 33.3 | 5.012 31 3.346  30.2
10 | Tecator 0.069 11.3 | 1.087 11.7 | 0.042 3.7 | 0.121 7.4
11 | LSVT 0.113 12.3 | 2.744 15.1 0.263 11.3 | 0.223 9.2
12 | PD 1.966 45.1 | 26.07 44.7 | 7.752 52.1 | 7.312 42.7
13 | warpAR10P | 1.469 20.3 | 61.72 14.2 | 7.448 37.5 | 1553 18.8
14 | Tumors 0.464 2.4 | 29.58 7 2.868 5.2 0.753 1.3
15 | Leukemia 0.726 3.7 | 29.22 7.1 6.695 11.7 | 2.311 34
AVERAGE | 0.646 14.0 | 11.45 16.46 | 2.958 18.26 | 3.629 15.54

The experimental results in the study have shown (as in Tables 4 and 5) that IFPD
outperforms other algorithms in terms of execution time, reduct size, and classification accu-
racy. This can be demonstrated by two main advantages of the model. The first advantage
is based on the nature of the intuitionistic fuzzy rough set model, where the addition of the
non-membership function component helps adjust noisy objects to the correct class. The
second advantage comes from the characteristics of the «, G-level sets, which help eliminate
objects with low similarity or high diversity in the intuitionistic fuzzy information granules.

"https://archive.ics.uci.edu/
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By removing these objects, the impact of noise information on the attribute evaluation mea-
sures is minimized. These two advantages have shown that the algorithms perform very well
on datasets with initially low classification accuracy. In other words, these are datasets that
contain some objects with distributions differing from most objects in the universe. From
these advantages, the authors in [59] continued to use the «, 8-level intuitionistic fuzzy set
model to develop incremental algorithms for handling practical data scenarios involving the

addition and removal of object sets.

Table 5: Comparison on classification accuracies of reduced data with SVM

ID Dataset IFPD IFBR IFIE FMIFRFS Raw

1 Vehicle 0.763 £ 0.048 0.759 £ 0.052 0.678 £ 0.051 0.763 £+ 0.043 0.752+0.041
2 Satimage 0.896 £ 0.011 0.894 £ 0.013 0.888 £ 0.010 0.899 £ 0.015 0.900 £ 0.014
3 Ozone 0.937 £ 0.013 0.937 + 0.013 0.937 £ 0.013 0.937 £ 0.013 0.937 +£0.013
4 Qsar 0.864 + 0.025 0.862 £+ 0.025 0.847 £ 0.034 0.864 £+ 0.030 0.854 £0.031
5  Robot 0.452 £ 0.109 0.423 £ 0.084 0.493 £ 0.096 0.463 £0.121 0.397 £ 0.075
6  Triazines 0.791 £ 0.078 0.785 £ 0.084 0.769 £ 0.100 0.769 £ 0.082 0.764 £0.013
7 Movement 0.792 £ 0.072 0.783 £0.077 0.756 £ 0.087 0.781 £ 0.088 0.775 £ 0.077
8  Sona 0.852 + 0.088 0.822+0.079 0.822 £ 0.093 0.822 £ 0.089 0.793 £ 0.099
9  Agnostic 0.827 £+ 0.021 0.824 £0.018 0.824 £ 0.016 0.825 £ 0.021 0.821 £0.018
10 Tecator 0.942 + 0.045 0.933 £ 0.049 0.912 £ 0.050 0.925 £ 0.056 0.933 £ 0.053
11 LSVT 0.896 = 0.124 0.847 £ 0.136 0.872 £0.139 0.913 £ 0.079 0.809 £0.122
12 PD 0.866 + 0.034 0.849 £ 0.036 0.865 £ 0.036 0.857 £ 0.043 0.857 £ 0.033
13 warpARIOP 0.723 £ 0.146 0.654 £ 0.196 0.738 £+ 0.224 0.654 £ 0.162 0.677 £ 0.148
14 Tumors 0.667 £ 0.157 0.617+£0.113 0.650 £ 0.123 0.667 £ 0.157 0.650 £ 0.166
15 Leukemia 0.930 + 0.120 0.871+£0.125 0.930 £ 0.100 0.914£0.145 0.875 £ 0.100

AVERAGE 0.813+0.07 0.791 £ 0.08 0.795 £ 0.08 0.804 £ 0.08 0.786 £ 0.07

In Table 6, we summarize the complexity of several typical algorithms presented in the
paper, where we denote n as the number of attributes, m as the number of objects, and T’
as the processing time of a classification model. All of these algorithms have been proven to
have polynomial time complexity and are fully applicable to practical scenarios.

Table 6: Computational complexity of algorithms

ID | Algorithm | Model Complexity

1 | NFARNRS | Neighborhood rough sets O(n?logm)

2 | PTSIJE-FS | Neighborhood multigranulation rough sets | O(n3m)

3 | FW_FDAR | Fuzzy rough sets O(n?*m?) +O(Tn)
4 | IFPR Intuitionistic fuzzy rough sets O(nm?)

5 | IFPD a, f-level intuitionistic fuzzy sets O(n?m?)

As the results have shown, the «, (-level intuitionistic fuzzy sets have demonstrated
exceptional performance when processing noisy and inconsistent data tables. However, com-
pared to previous models such as rough sets, neighborhood rough sets, and fuzzy rough sets,
the processing time of this model has not yet seen significant improvement. With the rapid
development of information technology and high-performance computing systems, parallel
and multi-threaded processing algorithms can be applied to significantly improve the effi-
ciency of this model. Integrating these algorithms into attribute reduction models will not
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only help reduce computation time but also optimize system resources, leading to substan-
tial performance improvements, especially when working with large and complex datasets.
Furthermore, with the scalability and flexibility of modern computing systems, attribute
reduction algorithms based on parallel computing approaches will play a crucial role in op-
timizing data analysis processes in the future.

7. CONCLUSIONS

Attribute reduction is one of the important problems that has received significant at-
tention from the research community. Over many years of development, attribute reduction
methods have continuously evolved to achieve breakthroughs in performance, aiming to ef-
fectively address challenges in the context of big data. Through diligent research efforts,
researchers have continuously proposed various models to develop attribute reduction meth-
ods that can handle different data scenarios. In this study, we have synthesized and analyzed
several models, highlighting their advantages and limitations when applied to attribute re-
duction algorithms. Specifically, the rough set model proves effective when handling uncer-
tain data with discrete attributes, but it encounters difficulties when applied to numerical
or continuous data. To overcome this limitation, the rough set neighborhood model and
its subsequent extensions were developed. However, these models focus only on objects
within a neighborhood, assuming that all objects in a neighborhood have the same classifi-
cation ability, despite their varying importance. This leads to limitations when applied to
data classes with diverse distributions. The fuzzy rough set model was also developed to
represent the characteristics of objects in a fuzzy equivalence class through the degree of
similarity between objects. However, on noisy data, this model has not yet achieved high
performance. To overcome this issue, the intuitionistic fuzzy rough set model was proposed,
demonstrating improved performance on noisy data, although the processing time is slower
due to the addition of the non-membership function in the model. Therefore, in the future,
studies could propose a new model that combines the advantages of the current models to
be effectively applied to different data classes in practice. Additionally, the consideration
of parallel processing approaches in attribute reduction algorithms should be emphasized,
especially as high-performance computing systems continue to evolve.
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