Journal of Computer Science and Cybernetics, V.41, N.2 (2025), 135-161
DOI no. 10.15625,/1813-9663 /22522
REVIEW

A SURVEY ON GENERATIVE ADVERSARIAL NETWORKS
FOR MALWARE ANALYSIS

LAM BUI THU!, HOANG THANH NAM'*, PHAM DUY TRUNG!, NGUYEN LE MINH?

L Academy of Cryptography Techniques, 141 Chien Thang Street, Tan Trieu Commune,
Thanh Tri District, Ha Noi, Viet Nam
2 Japan Institute of Advanced Science and Technology, 1-1 Asahidai, Nomi, Ishikawa
923-1292, Japan

; Crossref

Similarity Check
Powered by Mhenticate

Abstract. Generative Adversarial Networks (GANs) have recently become an interesting subject
for researchers due to their diverse applications across various fields. Initially focused on image-
related tasks, they then have been used to generate new synthetic data for applications across many
areas of machine learning research. In malware analysis, GANs have rapidly expanded and are used
to generate adversarial data for enhancing the effectiveness of malware detection systems. This paper
reviews the application of GANs in malware analysis to generate adversarial examples, to modify
semantic information within data, to augment datasets for rare classes, and to support representation
learning. The paper provides an extensive overview that serves both as a primer for cybersecurity
specialists and a resource for machine learning researchers. The paper outlines the fundamentals of
GANSs, their operational mechanism, the current types of GANSs, the challenges faced, and future
directions for exploration in malware analysis.

Keywords. Generative adversarial network, malware analysis, cybersecurity.

1. INTRODUCTION

The malware is the top threat to computer systems. Recent studies have shown that
approximately 190,000 malware attacks occur every second, with nearly 90% of which are
phishing attacks using social engineering [1]. Recently, with the digital transformation, new
types of malware have increasingly appeared. In addition, the prevalence of mobile malware
and document-based malware is increasing rapidly. Statistics highlight the following trend:
(1) by the end of 2023, cryptojacking attacks increased to over 1 billion, likely correlated
with Bitcoin’s value, which reached an all-time high [1]; (2) the number of encrypted threats
has more than doubled over the past year, especially in the retail, government, and education
sectors [1]; (3) malicious code is frequently transmitted through PDF files, particularly in
social engineering attacks like phishing schemes that imitate “expiring password” notifica-
tions [2]; (4) current security incidents impacting well-known companies remain a concern
in 2024, including the breaches at SpaceEyes and AT&T [3].

*Corresponding author.
E-mail addresses: lambt@actvn.edu.vn(L.B. Thu); hoangthanhnam@actvn.edu.vn(H.T Nam);
trungpd@actvn.edu.vn(P.D Trung); nlminh2007@gmail.com(N.L Minh).

mailto:lambt@actvn.edu.vn
mailto:hoangthanhnam@actvn.edu.vn
mailto:trungpd@actvn.edu.vn
mailto:nlminh2007@gmail.com

136 LAM BUI THU et al.

In recent years, a large number of researchers have focused on GANs, which are originally
introduced in 2014 by Ian Goodfellow and his team [4]. The GAN model is grounded in game
theory and represents a fascinating recent advancement in machine learning. Like generative
models, GANs produce new data instances that mimic training data. For instance, GANs
can generate images that resemble photographs of human faces, even if those faces do not
correspond to real individuals. The applications of GANs cover diverse fields, from general
areas such as image synthesis, image-to-image translation|[5], video generation [6], generating
images from text[6], language generation, data augmentation, to more specific applications
in agriculture, medical imaging and drug discovery. In cybersecurity, various initiatives
have leveraged GANSs, including intrusion detection systems (IDS)[7], mobile and network
security([8], BotNet detection and malware analysis [9], etc...

Our paper focuses on the use of GANs for malware analysis, which addresses the chal-
lenges and limitations of employing GANs and suggests potential avenues for further research.
The paper will provide an in-depth examination of how GANs can strengthen cybersecurity
measures. It highlights the need for further work to exploit these capabilities. In detail,
the paper first examines the core principles of typical adversarial algorithms and categorize
adversarial attacks within the malware sector, considering different attack vectors. Given
that Windows malware is the most common and frequently targeted area, these attacks are
further differentiated according to the algorithms used. Then, this study investigates attacks
on less typical file formats, including those associated with Android. In addition, it addresses
the challenges and constraints of applying existing adversarial attack-based GANSs in practi-
cal settings. Finally, the paper emphasizes future research avenues focused on creating more
effective, resilient, efficient, and generalized adversarial attacks on malware classifiers.

The paper is organized as follows: Section 2 offers a background overview of malware,
covering detection methods and the challenges faced in malware analysis. Additionally,
we will introduce the concepts of GAN composition and principles, along with a review of
common problems encountered by GANs and the various solutions proposed for each issue
in Section 3. Section 4 examines the application of GANs in malware analysis, focusing on
their use in cybersecurity, particularly for Windows and Android malware, and compares
and evaluates significant studies on GANs. Section 5 will discuss the challenges currently
faced in the field and explore potential directions for applying GANs in malware analysis.

2. MALWARE ANALYSIS

2.1. Overview

Malicious software, often called malware, is a key factor in most computer breaches and
security events. Any program that causes damage to an individual, computer, or network
can be categorized as malware [10]. Malicious software can be embedded in various binary
formats, each functioning in distinct ways. These formats include the Windows PE files
encompassing Portable Executable files with extensions such as .exe, .dll, the Unix ELF files
being used as Executable and Linkable Format files in Unix operating systems, the Android
APK files referring to Android Package Kit files, which typically have the .apk extension,
and additionally, document-based malware can be found in files with extensions such as .doc,
.pdf, and .rtf. It is important to note that malware can also be embedded within extensions
and plug-ins for popular software platforms, including web browsers and frameworks. The

A SURVEY ON GENERATIVE ADVERSARIAL NETWORKS FOR MALWARE ANALYSIS 137

details of malware types can be found in Table 1.

Malware analysis assesses the effect, source, and purpose of the malware and aims to
(1) malware detection: identifying if a sample is harmful; (2) malware similarity analysis:
finding commonalities among malware samples, for instance, to evaluate whether a new
sample resembles those previously encountered, this aim has multiple versions, such as variant
detection, similarity detection, family detection and difference detection; and (3) malware
category detection: identifying the particular type of malware based on a specific malware

taxonomy.

Table 1: Types of malware

Type

Actions

Real-work example

Ransomware

Prevents the victim from accessing their data until a ran-
som is paid.

RYUK

Fileless Malware Modlifies files that are inherent to the operating system. | Astaroth
Spyware Gathers user activity information without their aware- | DarkHotel
ness.
Adware Delivers undesirable promotions. Fireball
Trojans Camouflages itself as appealing code. Emotet
‘Worms Disseminates across a network by copying itself. Stuxnet
Rootkits Allows cybercriminals to control a victim’s device from | Zacinlo
a distance.
Keyloggers Tracks the keystrokes made by users. Olympic Vision
Bots Launches a broad flood of attacks. Echobot
Mobile Malware Infects smartphones and tablets. Triada
Wiper Malware Eliminates user information to a point where recovery is | WhisperGate

impossible.

Malware analysts play a critical role in investigating security in order to understand
the specific actions that a potentially harmful binary can execute, establish methods for its
detection within the network, and evaluate the extent of its impact to contain any resulting
damage. After dissecting the samples thoroughly, analysts create the malware signatures
that facilitate the detection of malware infections on the network. The insights from malware
analysis are essential for creating host-based and network signatures, enhancing the overall
security posture.

Host-based signatures (or indicators, patterns) are employed to detect malicious codes
on compromised computers by identifying files created or modified by malware and changes
to the system registry. Unlike antivirus signatures focusing on malware characteristics, these
indicators track malware’s actions, making them more effective in detecting malware that
changes form or has been deleted. Meanwhile, network signatures are used to identify mali-
cious codes by monitoring network traffic. While signatures can be created without malware
analysis, those developed with it are usually more effective, leading to higher detection rates
and fewer false positives. Ultimately, the goal is to understand how the malware operates, a
question frequently posed by senior management following a major security breach [11].

2.2. Malware analysis techniques

Malware analysis can be divided into two primary approaches: static and dynamic. Static
analysis examines the malware’s characteristics without executing it, while dynamic one in-
volves executing the malware to observe its behavior. Each of these approaches can be further

138 LAM BUI THU et al.

categorized into basic and advanced techniques, allowing for a comprehensive evaluation of
potential threats [11].

2.2.1. Static analysis

Basic static analysis entails analyzing an executable file without running it or directly
inspecting its instructions. This approach can help identify whether a file is malicious and
offer insights into its functionality. It may also aid in the creation of simple network sig-
natures. While fundamental static analysis is relatively quick and easy to perform, it is
often insufficient against more advanced malware and may miss significant behaviors. On
the other hand, advanced static analysis entails reverse-engineering a malware by loading
its executable file into a disassembler and scrutinizing the program’s instructions to under-
stand its behavior. As the CPU executes these instructions, advanced static analysis affords
a comprehensive understanding of the program’s functionality. Nonetheless, this approach
presents a steeper learning curve than fundamental static analysis and necessitates special-
ized knowledge in disassembly, coding constructs, and concepts pertinent to the Windows
operating system.

2.2.2. Dynamic analysis

Basic dynamic analysis techniques involve executing malware to observe its behavior on a
system, either removing the infection, creating effective signatures, or both. However, before
safely running malware, it is crucial to establish a controlled environment that allows for
thorough examination without risking damage to your system or network. Similar to ba-
sic static analysis techniques, most individuals can employ basic dynamic analysis methods
without requiring extensive programming knowledge. Nevertheless, it is important to rec-
ognize that these techniques may not be effective for all types of malware and may overlook
critical functionalities [12].

Advanced dynamic analysis entails utilizing a debugger to assess the internal state of
a running malicious executable. This methodology provides a robust means of extracting
intricate details that may prove challenging to obtain through alternative techniques.

2.3. Malware detection

Current malware detection techniques are typically categorized into two main approaches:
signature-based and behavioral-based methods. Traditionally, signature-based methods serve
as the primary means of malware detection. However, due to their inability to identify zero-
day attacks, there has been a notable shift towards dynamic and online detection based on
behavior. Many modern practical solutions utilize hybrid methods combining signature and
behavioral techniques. The following sections will explore the various malware detection
approaches in detail [13].

2.3.1. Signature-based malware detection

A signature is defined as a short sequence of bytes unique to each type of malware,
facilitating its identification among various files. These detection methods depend on main-
taining a comprehensive database of malware signatures, which leads to a notably low rate of

A SURVEY ON GENERATIVE ADVERSARIAL NETWORKS FOR MALWARE ANALYSIS 139

false positives. While signature-based detection has proven effective and efficient in identify-
ing known malware, it has certain limitations, particularly its inability to detect previously
unknown malware. Figure 1 represents the malware detection process utilizing signatures.

Analysis and
report

Anti-virus
Software

Suspicious
file

Signature
matching

Figure 1: A malware detection based on signature

The signature database consists of a comprehensive list of all potential malware signa-
tures and plays a crucial role in malware detection. When the anti-malware engine identifies
malicious objects, it updates the signature database with the corresponding malware sig-
natures for future reference. A robust malware detector features signature database rich in
signatures, enabling it to effectively recognize various forms of malware.

Signature-based malware detection excels in speed, operational efficiency, and accessi-
bility. However, its inability to identify zero-day malware—those threats lacking a known
signature in the anti-malware engine’s database—raises concerns about its reliability. At-
tackers can easily extract digital signature patterns, enabling them to obscure the actual
signature of the malware. Modern malware often exhibits polymorphic and metamorphic
traits, allowing it to alter its behavior and file signature seamlessly. Consequently, signature-
based detection is heavily dependent on known malware, proving ineffective against zero-day
attacks or variations of existing threats. The signature database is also expanding rapidly,
keeping pace with the alarming proliferation of malware families.

Analysis Guests
A clean environment when
run a sample. The sample

behavior is reported back to
Cuckoo host

the Cuckoo host 4
Responsible for guest and ——
por & |
analysis management. =
Start analysis, dumps traffic —=
and generates reports Analysis VM no.1

1 A
- =]
3 =
|

Analysis VM no.2

A7
Internet/ jo—
Sinkhole Virtual network ='
An isolated network —=
where run analysis virtual Analysis VM no.3
machine

Figure 2: The architecture of Cuckoo sandbox

140 LAM BUI THU et al.

2.3.2. Behavioral-based detection

Dynamic methods for malware analysis involve executing potentially harmful files within
isolated virtual environments, commonly known as sandboxes. This methodology enables
researchers to identify a malware based on its behavior during execution while safeguarding
the primary system from potential threats. During this process, the malware may manipulate
registry keys and attempt to gain elevated privileges within the operating system. As the
malware operates, various operating system characteristics may change; these alterations are
meticulously recorded by monitoring agents in the controlled environment.

Each analysis (see Figure 2) is performed on a dedicated and isolated virtual or physi-
cal machine. Cuckoo’s infrastructure consists of two main components: The Host machine,
which acts as the management software, and several Guest machines designated for the anal-
ysis process. These Guest machines can either be virtual or physical [14]. The Host machine
executes the core components of the sandbox, overseeing the entire analysis process. In con-
trast, the Guest machines serve as isolated environments where malware samples are safely
executed and analyzed. The following Figure 2 depicts Cuckoo’s primary architecture [14].

Dynamic analysis effectively captures real-time indicators, including API (application
programming interface) calls, registry modifications, file locations, domain names, dumps
traffic, generates reports and other relevant system metrics.

2.4. Malware classification

The classification of malware is an important goal in malware analysis. This process
involves organizing different malware samples into categories based on shared characteristics.
Depending on a specific task at hand, malware analysts might select different methods for
classifying malware [15]. For instance, security operations teams may classify malware based
on its severity and function to efficiently manage the risks it poses to an organization; security
response teams may categorize malware according to its potential damage and entry points to
formulate remediation and mitigation plans; meanwhile malware researchers could organize
malware by its origins and authorship to gain insights into its lineage and intent.

In general-purpose malware analysis, it is a standard procedure to group samples into
families. Malware analysts employ this classification approach to monitor authorship, link
relevant information, and identify new variants of recently discovered malware. Malware
samples that belong to the same family may exhibit shared code, capabilities, authorship,
functions, purposes, or origins.

Nevertheless, attributing malware to specific families poses a considerable challenge, with
results often differing based on the definitions and techniques utilized for classification by the
analyst. Traditionally, this process depends on signature matching. By evaluating the char-
acteristics and behaviors of previously identified malware, analysts can compare incoming
binaries against this dataset to determine if they align with known samples.

2.5. Machine learning in malware analysis

An essential phase in detecting and classifying malware using machine learning techniques
involves the practical training of the models. This training process necessitates rigorous
preprocessing of malware datasets to create accurate and informative feature vectors. It
is a common practice to employ a combination of feature extraction and feature selection

A SURVEY ON GENERATIVE ADVERSARIAL NETWORKS FOR MALWARE ANALYSIS 141

techniques to construct a robust feature vector space (see Table 2). Feature extraction
involves identifying and isolating relevant characteristics from the raw data and transforming
it into a structured format suitable for analysis. This can include methods such as analyzing
byte sequences, opcode frequency, or behavior-based features, depending on the type of
malware and the detection model being utilized [15].

Table 2: Key features for malware analysis

sequences and combinations of n bytes.

Features Description Features for ML-based anal-
ysis
Byte sequences Identifying the frequency of occurrence for specific | n-grams

Opcodes

Machine-level interaction of PE

Opcode sequences

API and system calls

Compilation of calls made and referenced by the
PE file.

Execution traces

Network activity

Collaboration between PE and the network con-
cerning the C&C server.

Protocols, DNS interactions,
HTTP requests, TCP/UDP
port

File system

Malware performs certain file operations to estab-
lish persistence on a system.

Number of files created,
modified, encrypted, deleted

CPU registers

Records of concealed registers utilized by the PE.

FLAG register values

PE file characteris-
tics

Details regarding the sections of the PE file.

Imports, compilers, symbols

Strings

Strings found in a PE file that hold information
related to

Signatures, file names, code
fragments

Control Flow Graphs
(CFGs)

Details regarding the structure of the program.

Functions, control relation-
ships, code sequences

Once the relevant features have been extracted, feature selection comes into play. This
process entails evaluating the various features to determine which ones contribute the most
to the model’s ability to differentiate between malware and benign software. By selecting
the most significant features, this method can enhance the model’s performance, reduce di-
mensionality, and prevent overfitting, all of which are critical for achieving accurate malware
detection and classification outcomes.

2.6. Challenges in malware analysis

Malware are developed with particular objectives, such as keystroke logging, establish-
ing backdoor access, or utilizing a target system to send excessive emails that can disrupt
servers. Malware authors frequently go beyond these fundamental functions by implementing
advanced techniques to obscure their activities from users or system administrators. This
may involve rootkits, process injection, or strategies designed to evade analysis and detec-
tion. The field of malware analysis presents a range of challenges, which can be summarized
as follows:

Anti-disassembly techniques that deter disassembly aim to postpone or obstruct the ex-
amination of harmful code. Any code that runs without issues can be reverse-engineered.
However, by equipping their code with anti-disassembly and anti-debugging measures, mal-
ware creators raise the expertise the malware analyst needs. The investigative process,
which is often time-sensitive, is complicated by the analyst’s difficulty in comprehending
the malware’s functionalities, extracting essential host and network signatures, and creat-

142 LAM BUI THU et al.

ing decoding algorithms. These extra protective measures may deplete the skills available
within many organizations, necessitating the involvement of expert consultants or extensive
research efforts to reverse-engineer the code.

Malware frequently employs anti-debugging techniques to identify when it is being ana-
lyzed with a debugger and to obstruct the debugging process. Malware creators understand
that malware analysts depend on debuggers to grasp how the malware operates, so they
incorporate anti-debugging tactics to hinder the analyst’s work. When malware recognizes
that it is running under a debugger, it may alter its usual code execution flow or change the
code in a manner that leads to a crash. This disrupts the analysts’ efforts to study the mal-
ware, ultimately prolonging the time and resources required for their investigation. Malware
uses a variety of methods to determine if a debugger is present. These techniques involve
leveraging the Windows API, inspecting memory structures for indications of debugging ac-
tivity, and looking for traces left by a debugger on the system. Recognizing debuggers is one
of the most prevalent anti-debugging approaches utilized by malware. Methods to counteract
virtual machines are employed to hinder analysis attempts. These methods allow malware
to determine if it operates within a virtual machine environment. If a virtual machine is
recognized, the malware may alter its actions or choose not to run. This scenario poses
considerable difficulties for analysts.

Packers, also called packing programs, have gained significant popularity among malware
creators because they aid in hiding malicious software from antivirus tools, hinder malware
analysis, and decrease the size of harmful executable. Most packers are easy to use and
available at no cost. Fundamental static analysis proves ineffective on packed applications;
packed malware must be unpacked first for static analysis to occur, complicating the evalu-
ation process. Two primary purposes for using packers on executable are to reduce program
sizes or avoid detection and analysis. While there are numerous types of packers, they typi-
cally operate similarly: they transform an executable file into a new version that houses the
transformed executable within it, along with an unpacking stub that the operating system
calls. When malware is packed, analysts generally can only access the packed file and not
review the original unpacked program or the packing software itself. To unpack an exe-
cutable, it is necessary to reverse the actions performed by the packer, which requires a solid
understanding of the packer’s mechanics [11].

Polymorphic malware is regarded as a complete entity equipped with a compiler capa-
ble of decrypting and obfuscating the code, followed by recompiling it as a whole. The
unencrypted virus body generates a new mutated decryptor utilizing a random encryption
algorithm and enables the decryptor to self-encrypt before reconnecting both parts. Nev-
ertheless, the fundamental emulation issue persists: the virus code section is decrypted in
memory, rendering it detectable and flaggable by security analysts [16].

The emergence of metamorphic viruses introduced the idea that no two generations of
these viruses can have similar signatures. This differs from polymorphic malware, which
maintains a consistent structure. In contrast to polymorphic malware, a metamorphic virus
completely alters and obscures its entire code. An essential issue for malware analysts is
the lack of sample data for malware analysis. There are many different strains of malware,
but collecting samples faces significant challenges due to the scarcity of available samples.
Therefore, additional tools, such as machine learning applications, are needed to analyze
malware.

A SURVEY ON GENERATIVE ADVERSARIAL NETWORKS FOR MALWARE ANALYSIS 143
3. GENERATIVE ADVERSARIAL NETWORKS

3.1. Overview

A GAN comprises two fundamental neural network models: the generator (referred to as
G) and the discriminator (referred to as D). It operates on the principle of a zero-sum game
played between the generator and the discriminator, aiming to make the samples produced
by the generator closely resemble the original input data [4]. The readers are recommended
to look at Table 3 for all relevant notations.

Table 3: GAN'’s notations

Notation | Description

G Generator responsible for producing synthetic (fake) data samples.

D Discriminator that assigns a probability score (between 0 and 1) indicating whether
an input is real or fake.

Tdata A real data sample drawn from the original dataset.

Paata The underlying probability distribution from which the real data xqata is sampled.

z A noise vector sampled from a predefined latent space; serves as input to the generator

P, The distribution from which the latent noise vector z is drawn.

G A generated data instance produced by feeding z into the generator G .

P, The distribution learned by the generator; ideally approximates Pgata

D, The discriminator’s confidence score that input z is a real sample.

D The discriminator’s optimal state after convergence during training.

G* The generator’s optimal state when it successfully mimics the real data distribution.

Latent space D rue ?
(I — Discriminato or False:

i A
Noise
G |
samples _'Generato
Fake samples |

Real samples

—>*|Loss

Figure 3: A snapshot of the GAN architecture

As depicted in Figure 3, G employs a generation process (typically by introducing a
Gaussian noise function) to create a set of samples known as “fake samples” from a predefined
latent space. Subsequently, G submits these fake and real samples to D, which assesses how
realistic the fake samples appear. Following this, D produces an output of either 0 or 1,
based on the sample’s authenticity, where “0” denotes “fake” and “1” signifies “real” The
concept of adversarial training entails that G strives to convince D to classify the samples
it generates as true. At the same time, D aims to classify those generated samples as false
whenever possible. Ultimately, after the training, D and G may reach a Nash equilibrium.

The training process is described in Algorithm 1, where two networks are manipulated
interchangeably. The overarching goal of adversarial training is to refine the generator so

144 LAM BUI THU et al.

that the distribution of its data generated P, closely matches the original, accurate data
distribution Pgata. This matching is crucial for the generator to produce realistic samples
that are indistinguishable from actual data.

Meanwhile the discriminator network operates as a binary classifier. Its primary function
is to differentiate between the actual data samples, which are expressed as © ~ Pyata(2) and
the synthetic samples generated by G, represented as G(z) ~ P;(G(z)). The discriminator’s
effectiveness plays a critical role in the training of the GAN. It provides feedback to the
generator on the quality of the generated outputs, ultimately driving the entire process
toward key objectives, such as achieving high fidelity in the generated samples and improving
the discriminator’s ability to distinguish between real and fake data.

Algorithm 1 Training algorithm of original GANs

1: for number of training iterations do
2: for k steps do

3: Sample minibatch of m noise samples from noise prior P, — fake_data

4: Sample minibatch of m examples from data generating distribution Pgat, —
true_data

5 Discriminator training (D, G, fake_data, true_data)

6 end for

7: Sample m samples from Py,, — true_data

8 Generator training (G, D, fake_data)

9: end for

Note that the variable z represents the random noise vector serving as input to the gen-
erator G. This generator is designed to create synthetic data distributions that resemble
real-world data. The random noise vector samples are drawn from z ~ P, where the distri-
bution P, can be either a uniform (providing a constant probability across a specified range)
or a normal (centered around a mean with values tapering off as they move away from that
center). Once processed by the generator G, the output G(z) follows a specific distribution
denoted as F.

The overall loss function for GAN training is as follows

minmax V(D, G) = Byep,y, () l08(D(@)] + Fovp.[log(1 — D(G(2)))]. (1)

The term log(D(z)) in the first expression indicates D’s assessment of genuine data,
while the second term log(1 — D(G(2))) reflects D’s evaluation of the synthesized data. D’s
objective during training is to categorize the training samples with the highest probability,
while G aims to reduce log(1—D(G(2))), effectively seeking to increase D’s loss. Throughout
the training phase, the network’s parameters are adjusted by keeping G and D fixed alter-
nately. Ultimately, G becomes capable of estimating the distribution of the sample data.
This process resembles a minimax game where G and D are optimized in turn to develop
the necessary generative and discriminative networks until they reach a Nash equilibrium.
Algorithm 1 outlines the training procedure for the original GAN. In lines 2-6, D undergoes
training for k iterations based on a batch of m samples, and once the training is concluded,

A SURVEY ON GENERATIVE ADVERSARIAL NETWORKS FOR MALWARE ANALYSIS 145

the optimal D is achieved, as demonstrated in Equation (2)

Pdata(x)
Pg(x) + Pdata(x)‘

D*(x) = (2)

Subsequently, as demonstrated in lines 7-8, G is trained while keeping D constant. Ide-
ally, when G achieves optimal training, the distribution P,(z) will closely match Pyaea(),
at which point D*(x) in Equation (2) will be equal to 1/2. Once D is functioning at its
best, D*(x) can be substituted into Equation (1), enabling us to derive G's loss function as
outlined in Equation (3)

G" = 2D j5(Pyata(z)||Py(x)) — 21og 2. (3)

At this stage, the Jensen-Shannon (JS) divergence between the generated data distribu-
tion and the real data distribution has been effectively minimized. A key factor contributing
to the success of Generative Adversarial Networks (GANSs) is their ability to address the
limitations of Kullback-Leibler (KL) divergence, which is asymmetrical and inadequate as
a distance measure. The gradient descent strategies used in these processes can be any
stochastic gradient method, such as the Adam optimizer or Momentum [17].

3.2. Selected GAN models
3.2.1. Deep convolutional GAN (DCGAN)

The deep convolutional generative adversarial network, known as DCGAN, was first
presented in 2015. The foundation of DCGAN was derived from research related to convo-
lutional neural networks and their capacity to enhance various models in machine learning.
This study focused on generating pseudo-natural images, showcasing the capabilities of GAN
models in image generation tasks. While the majority of deep learning algorithms operate as
black-box systems, it is possible to examine the internal workings of a convolutional neural
network (CNN) model through careful adjustments. The authors made several alterations
to the standard CNN architecture informed by findings from various research papers [18].

3.2.2. Conditional GAN

Generative adversarial networks can be adapted to function as a conditional model by
incorporating additional information into both the generator and discriminator. This in-
formation could represent various auxiliary data, including class labels or information from
different modalities. Conditioning can be achieved by integrating y as an extra input layer
for both the generator and discriminator [19].

In the generator, the input noise P,(z) and y are merged to form a joint hidden rep-
resentation, and the adversarial training framework provides significant flexibility in the
construction of this hidden representation. The discriminator takes both xz and y as input
to a discriminative function, which is again realized by a multi-layer perceptron (MLP). The
objective of the two-player minimax game can be described as follows

mGi’Il IIISX V(Da G) = Exwpdata(x) [10g D(Qf|y)] + Ezwpz(z) [log(l - D(G(Zkl/)))} : (4)

146 LAM BUI THU et al.

3.2.3. CycleGAN

The primary function of the model is to serve as a mechanism for image translation. Its
main objective is to transform an ‘unpaired’ image from one domain to another. Introduced
by Zhu et al. in 2019 [20], CycleGANs have emerged as a dependable resource in image
processing and have aided researchers across various fields. In the context of security, it
is crucial to recognize that CycleGAN models have applications in biometrics, especially
in facial recognition. Recently, a variant of CycleGAN has been introduced for translating
videos, termed Mocycle-GAN. This development opens up the potential for incorporating
this type of GAN into CCTV systems for facial recognition purposes.

3.2.4. LSGAN

The least square GAN (LSGAN) as a variant of generative adversarial networks (GANs)
is utilized the least squares equation for its discriminator. This innovative approach helps
minimize the Pearson X? divergence. The Pearson X? divergence is a specific type of f-
divergence. By employing the least squares function, the model effectively distances correctly
classified samples from the real data, which improves the performance of the classifier and
enhances the training efficiency of the generator. Equation (5), (6) shows objective functions
for the LSGAN model, as referenced in [21].

min V(D)LsgaN = %E-’L'diata [(D(z) —b)*] + %EZsz [(D(G(2)) — ¢)?], (5)
min V(@)isoax = 5 ey, [(D(G(2)) —). (6)

3.3. GAN training issues

Given the unique characteristics of GANs outlined earlier, there are several issues of
GAN training that require careful consideration [17].

3.3.1. Mode collapse

The goal of producing synthesized data from a latent space necessitates generating high-
quality data and ensuring diversity and generalization across various synthesized samples.
In addition, GAN models should be able to reproduce data that has not been encountered
before. However, it is not always the case, there is an issue related to this and called “mode
collapse”. The mode collapse takes place when identical outputs are produced from different
inputs within the latent space. Research has indicated a connection between the quality and
diversity of GANs. Although numerous attempts have been made to tackle mode collapse,
it continues to be a persisting issue.

In practice, a GAN model rarely generates the same output for distinct inputs; this situ-
ation is referred to as complete mode collapse. While complete mode collapse is infrequent,
partial mode collapse is more widely encountered, wherein many outputs are the same. For
example, in the context of image generation, partial mode collapse may surface when vari-
ous outputs exhibit the same color or texture. Investigations have shown that mode collapse

A SURVEY ON GENERATIVE ADVERSARIAL NETWORKS FOR MALWARE ANALYSIS 147

impacts the convergence of GANS, even if an optimal solution is reached. Several recent vari-
ants of GANs have been introduced to help alleviate the mode collapse issue. For instance,
it has been shown that the Wasserstein GAN (WGAN) effectively minimizes mode collapse.

3.3.2. Gradient vanishing

The training of a GAN must be well-balanced, requiring both the generator G and
discriminator D to learn together in a synchronized manner. A highly accurate discriminator
can effectively distinguish between genuine and generated data, represented as D(z) = 1 and
D(G(z)) = 0. In this scenario, the loss function approaches zero, leading to gradients that are
nearly zero and offering minimal feedback to the generator. Conversely, a poorly performing
discriminator is unable to tell the difference between real and generated data, thus giving
the generator ineffective information.

3.3.3. Instability

The distinctive characteristics of GANs render the interaction between the two models
quite intricate as they learn from one another. The training of GANSs functions in which both
networks compete to find their results, essentially participating in a minimax game. This
model architecture depends on collaboration to enhance the overall loss function; however,
the goals that the discriminator (D) and generator (G) aim to optimize are fundamentally
conflicting. Given the nature of these networks’ objective functions, minor adjustments in
one network can result in substantial changes in the other, initiating a series of cascading
effects.

During training, when the two networks start to lose synchronization, the learning pro-
cess becomes unstable; significant fluctuations in gradients may cause one of the networks
to lose its learning capacity. It is crucial to understand that periods of instability often lead
to further instability, exacerbating the problem. Although networks can sometimes recover
from instability, doing so typically means sacrificing training efficiency. Numerous recently
introduced GAN architectures concentrate on stabilizing their training processes. By achiev-
ing a more consistent training procedure, superior network performance is generally secured;
this emphasis on stability is why recent innovations in the field often focus on enhancing
training stability.

3.3.4. Stopping problem

Conventional neural networks are required to minimize a loss function in a steadily re-
ducing manner, theoretically reflecting the cost function. In contrast, GANs engage in a
minimax game for their optimization, which disrupts this monotonic behavior. During the
training of GANSs, the loss function displays no consistent pattern, making it impossible
to gauge the networks’ status based solely on this function. As a result, it is difficult to
determine when the models have reached complete optimization during the training process.

148 LAM BUI THU et al.
3.4. Appications of GANs
3.4.1. GANSs on augmenting the training process

One of the most significant challenges in machine learning for cybersecurity is the imbal-
ance in training datasets. Malware samples are often limited in number compared to benign
software, leading to models that are biased toward the majority class. This imbalance hin-
ders the model’s ability to generalize effectively. GANs present a promising solution by
generating synthetic malware samples that mimic the characteristics of real malware. This
approach enriches the training dataset and provides a more balanced representation of both
benign and malicious classes.

Machine learning methods, especially deep learning approaches, require vast data to per-
form effectively. Data augmentation, or oversampling, is a common strategy to address data
deficiencies, helping to prevent model overfitting and mitigate data imbalance. Imbalanced
datasets—where one class (the majority) vastly outnumbers the other (the minority)—pose
a significant challenge. In binary classification, for example, the model tends to favor the
majority class, which results in skewed performance. Two primary techniques are used to
address this: under sampling the majority class or oversampling the minority class through
methods such as GAN-generated synthetic data.

Furthermore, adversarial examples can be generated by GANs, which can be critical in
assessing the performance of detection systems under adversarial conditions. Hu and Tan
[22] emphasized this utility, noting that “the generated adversarial examples can be used to
evaluate the performance of malware detection systems under adversarial conditions.” This
highlights the dual utility of GANs—not only do they augment training data, but they also
help assess the robustness of detection mechanisms.

3.4.2. Representation learning

GANSs are primarily designed for data augmentation, which involves generating new data
to enhance an existing dataset. They are also utilized in representation learning, helping to
extract meaningful features or patterns necessary for building classifiers or other predictive
models. By taking advantage of their ability to model complex data distributions, GANs
can learn normal and abnormal data characteristics. The generator and discriminator com-
ponents of GANs can effectively model the data properties of specific categories, which can
then be used to identify instances that deviate from expected patterns.

MIGAN is a method that depicts malware binaries as grayscale or color visuals to recog-
nize and extract distinctive features for classification purposes. This approach proves to be
more effective than conventional machine learning-based malware detection methods, which
often necessitate considerable domain knowledge and lengthy behavioral analysis to identify
unique traits. MIGAN framework is tailored for malware image generation. It can rapidly
generate high-quality synthetic malware visuals and categorize malware samples into vari-
ous families. It comprises a generator and discriminator network as well as a classification
module. The innovation of this method lies in its distinctive GAN architecture, hybrid
loss function, newly created dataset, and classification network design [23]. More detail of
MIGAN will be given in Section 4.

A SURVEY ON GENERATIVE ADVERSARIAL NETWORKS FOR MALWARE ANALYSIS 149

4. GANS FOR MALWARE ANALYSIS

GANSs have greatly advanced the fields of artificial intelligence, particularly in computer
vision and natural language processing. Recently, their application in malware analysis has
attracted increasing attention. This section explores the various roles of GANs in malware
detection, generation of malware data, and their implications in related areas, supported by
findings from extensive scholarly research.

Firstly, for malware detection, Sonam Bhardwaj et al. [24] introduce MD-ADA see Fig-
ure 4, a framework that employs adversarial domain adaptation (DA) to tackle these difficul-
ties. This approach alters a source dataset for use in a target domain. MD-ADA leverages
image representations of malware binaries extracted from Windows PE files via a convolu-
tional neural network (CNN) to achieve lossless image embedding. It incorporates a GAN
for classification, enabling it to function effectively even in situations with limited labeled
data and varying feature distributions. Experimental results show that MD-ADA outper-
forms the fine-tuning method, attaining an accuracy of 99.29% on the BODMAS dataset,
89.3% on the Malevis dataset under consistent feature distribution, and 90.12% on the CI-
CMalMem2022 dataset (Target) and 83.23% on the Microsoft Kaggle dataset (Target) for
inconsistent feature distribution. The recorded F1-scores of 99.13% and 87.5% for consistent
feature distributions, along with 91.27% and 81.7% for inconsistent distributions, indicate
that the performance of MD-ADA is commendable for both types of data distributions,
particularly when the target domain has very few labeled samples.

Proposed GAN Architecture

Malware

,,,,, Tranning...[1#512
embeddings

PE Mal Source_Gen
alware
Binaries Images Main_Gen

Target_Gen E5h)
embeddings

[—| Discriminator

Predictions

(Domain and Class)

| Classifier

Benign / normal

‘ Domain inavriant mapping ‘

Figure 4: The framework of MD-ADA

Caixia Gao et al [25] propose a new classification model based on an improved lightweight
neural network in Figure 5 that can effectively improve the execution efficiency and detec-
tion performance of malware detection methods against adversarial malware samples. At
first, their strategy utilizes a local information-entropy-driven image generation technique
to develop efficient image feature vectors. Following that, they improve the functionality of
the lightweight neural network model ESPNetV2 by concentrating on four critical factors.
They introduce a novel adversarial malware generation framework for Android applications
known as Mal-WGANGP, which independently generates a substantial volume of adversarial
samples to strengthen the resilience of their model.

150 LAM BUI THU et al.

Malware 128 Vector

fca) Update
I'I
\ = loise N Generator Black-box detector Substitute detector
Xi G(x)* Labeled
(L r“ [’ Labeling " f

Sagin 128 Vector Mal-WGANGP
|

Decompiled

=

Figure 5: The framework of Mal-WGANGP

In their proposal [25], the authors introduce a highly effective approach for identifying ad-
versarial malwares. They begin by creating images of Android applications utilizing a local-
information-entropy-based technique. Afterwards, they refine the ESPNetV2 algorithm to
establish a framework for detecting adversarial malware. By employing the MAL-WGANGP
method, they produce many adversarial samples while maintaining the functionality of the
malware, which are incorporated into their experimental dataset for evaluation. They con-
struct different test datasets and assess 20 neural network detection models. Their findings
validate the efficacy of their method. The static detection technique they implement is
cost-effective and provides rapid detection speeds, making it well-suited for large-scale batch
applications, unlike dynamic detection methods. In the structure of Syndroid in Figure 6,
the gathered samples for classifying Android malware often experience considerable class
imbalance, with ratios that can exceed 100:1. To tackle this issue, they present SynDroid, a
classification model that leverages CTGANSVM to produce high-dimensional samples while
filtering out subpar results. They propose the KS-CIR test to determine which classes need
the most improvement, evaluating both the quality and quantity of the samples. Ultimately, a
Random Forest is employed as the classifier. When assessed on the CCCS-CIC-AndMal2020
dataset, SynDroid surpasses conventional methods, achieving 12% greater accuracy and al-
leviating imbalance concerns [26].

Step 1: KS-CIR test Step 2: samples generating Step 3: dassification

_________ \(‘: L | \
L3 1 JIN| I .'_‘:_‘:7;:3 —

4 R R Random Forest
P LAl i : i 28 : Y fscriminati 22
‘I * * , Class Imbalance Ratio : : : il : %‘ -+ ,-": % Discrimination : yes ﬁbd}b
X 1 Pl crean J i g

L)
. I H @ L oM rate < TH 7
=i : Y B Lo
b | L olmgorovsruimoviest; | | | N | i v —
] i : lil malware of class X
abandon the samples No
I'LIJ B
X/ sythetic malware
of dlass X

Figure 6: The framework of SynDroid

Actually SynDroid is a method for classifying Android malware that uses GAN to ex-
pand the dataset. To identify classes needing improvement, they present the KS-CIR test,

A SURVEY ON GENERATIVE ADVERSARIAL NETWORKS FOR MALWARE ANALYSIS 151

which combines the K-S test with the Class Imbalance Ratio, addressing both the qual-
ity and quantity of samples. While SynDroid improves classification outcomes and shows
promise at CCCS-CIC-AndMal2020, it does not fully resolve dataset imbalance and incurs
higher processing times. Although using SVM has reduced poor results, intrinsic GAN is-
sues remain. Future work aims to refine the method and test additional datasets for broader
application in Android malware detection. Additionally, they seek to develop a metric to
assess overall dataset quality, focusing on error rates and missing values, making malware
data enhancement more systematic and quantifiable [26].

As we early pointed out in the previous section, malware visualization involves converting
malware binaries into grayscale or color images to identify distinct features for classification.
This approach proves to be more efficient than conventional machine learning techniques,
which necessitate significant expertise and lengthy analyses. In [23], the authors present a
GAN architecture named ‘MIGAN’ that rapidly generates high-quality synthetic malware
images and categorizes them into families. The framework consists of a generator, dis-
criminator, and classification module, alongside innovations in structure, loss functions, and
datasets. Images generated by MIGAN attain a superior Inception Score (2.81 compared to
1.90) relative to original malware images and show enhanced Fréchet Inception Distance and
Kernel Inception Distance scores.

X

Synthetic Malware Image generation with MIGAN

Class 1

Class 2

Class n

[= = |) [T
e Siaie e mades
[N N |

Color images

Images
(labelied)

Real Makvare

Digeriminator
Network

Real / Fake

Class
Generator
Network
Noise

Generated

Class Banign [I:_l I:I l:ﬁ

e=12,..n
(class)

Proposed MIGAN architecture
[2] Malware to Image

conversion

[*] pata collection

Malware Detection Malware Detection &
& Classification E] Classification module

Proposed CNN (traditional leaming)
a_a
s ata
Resnet50v2 (iranster lzaming) i

Figure 7: Components of the proposed MIGAN framework

As depicted in Figure 7, MIGAN addresses the problem of class imbalance in both self-
generated and publicly available malware image datasets. The images produced closely mimic
existing malware, proving beneficial for the identification of potential “zero-day” samples.
The model’s robustness improves through training on a variety of samples. The malware
visualization technique assists in recognizing patterns and categorizing samples into differ-
ent families, utilizing both traditional and transfer learning approaches. The framework’s

152 LAM BUI THU et al.

performance is assessed using a custom malware image dataset along with the public “Mal-
img” benchmark, demonstrating enhanced accuracy and F1 scores compared to other leading
methods. The authors showcase a combination of GAN-based and malware visualization-
based techniques for the generation, identification, and classification of Windows malware
images. Nonetheless, this approach has the potential for further improvement in the future
to assess the classification model’s resilience against adversarial attacks. By incorporating
bytes from benign executable into malware files, this experiment will alter the statistical
distribution of malware samples.

In [27], features are extracted from malware executable files and depicted as images
through various methods. The authors experimented with four techniques for extracting
images from malware executable: grayscale, colormap, three-gram, and PE file. The work
then concentrates on a GAN for multiclass classification and assess our GAN outcomes
against other well-known machine learning methods, such as support vector machine (SVM),
XGBoost, and restricted Boltzmann machines (RBM). Its findings suggest that the ACGAN
discriminator (see Figure 8) is generally on par with other machine-learning methods. In
ACGAN, the discriminator outputs both a real/fake decision and a predicted class label ¢
of the input image through Q, the auxiliary classifier. Additionally, the authors explore the
effectiveness of the GAN generative model for conducting adversarial attacks on image-based
malware detection.

real class

[~ G(z)

Figure 8: The ACGAN architecture

Secondly, other application of GANSs in the field of malware analysis involves the gener-
ation of malware, which aids in evaluating the detection effectiveness of machine learning-
based malware detectors. The capability to produce new instances of malware families for
training machine learning detection systems regarding the characteristics of a malware fam-
ily represents significant progress in defensive technology. For instance, deep learning GAN
models are utilized to create unseen malware samples and train detection schemes against
the signatures of these novel malware instances.

Several studies showcase different forms of malware created using GANs, which are com-
monly known as adversarial malware samples. These samples are designed to improve the
resilience of machine learning-based malware detectors. Considerable research has been con-
ducted on adversarial generation for both Windows and Android platforms. This section
focuses on generating adversarial examples that can bypass malware detection systems by
applying slight modifications to existing malware files. The subsequent sections will provide

A SURVEY ON GENERATIVE ADVERSARIAL NETWORKS FOR MALWARE ANALYSIS 153

Table 4: Summary of malware detection studies using GANs

Study Method Dataset GAN Model Used
Sonam Bhardwaj et | MD-ADA a malware detec- | Windows PE | MD-ADA employs the GAN
al. 2024 [24] tion framework model for malware detection
Caixia Gao et al. | Enhanced lightweight neural | Android Mal-WGANGP
2024 [25] network
Junhao Li et al. 2024 | An Adaptive Enhanced An- | Android CTGAN-SVM
[26] droid Malware Classification
Method
Osho Sharma et al. | GAN for facilitating mal- | Windows PE MIGAN
2024 [23] ware image synthesis
Nguyen et al. (2023) | Malware classification based | Windows PE | ACGAN
[27] on images

a brief overview of various adversarial generation studies conducted by researchers in the
field of malware analysis. The adversarial research has been categorized according to the
attack domain, which includes Windows and Android.

Much of the current research on adversarial malware generation focuses on utilizing
gradient information and manually designed rules. However, the limited representational
power of existing gradient-based models has made achieving a high true positive rate (TPR)
difficult. GANs have successfully facilitated black box attacks on malware detectors with
notably high TPR. The typical GAN architecture employed for executing adversarial malware
attacks is illustrated in Figure 9. A summary of adversarial attacks targeting anti-malware
engines is given in Table 4.

Adversarial Benign & Adversarial

Malware Malware Examples
Examples [A with Labels

Black-Box Substitute
Detector Detector

—/

Malware
Generator
Noise '—\

Benign
Files

Figure 9: An adversarial malware generation architecture using GAN

Among those proposed, Hu et al. [22] introduced a technique for generating adversar-
ial examples called MalGAN, which successfully evades black-box machine learning models.
Unlike other GAN architectures, MalGAN consists of a generator and a substitute detector,
both designed as feed-forward neural networks. The model takes binary features indicating
the presence or absence of APIs as its input, with the number of input features corresponding
to the input’s dimensionality. The generator’s role is to convert malware into an adversarial
variant by generating a probability distribution of adversarial examples that are distant from
the detector. By merging malware feature vectors with noise vectors, the generator can cre-
ate multiple adversarial examples from a single malware feature vector. A substitute detector
is utilized to adapt the detector model and supply gradient information necessary for train-
ing the generator. MalGAN is developed using 160 system-level Application Programming

154 LAM BUI THU et al.

Interfaces (APIs) focused on various machine-learning detectors. Separate experiments were
carried out using both MalGAN and detector models while either sharing or dividing the
training dataset. A true positive rate of zero has been recorded on the majority of machine
learning models, indicating the high accuracy with which the substitute detector can fit.
MalGAN’s capability to execute complex transformations has led to a zero TPR for both its
training and testing datasets.

Given the influence of using multiple malware to train MalGAN on its evasion perfor-
mance, Kawai et al. [28] suggested an enhanced version of MalGAN that utilizes only one
malware for its training process. MalGAN takes in malware detectors for both training and
prediction, which is cumbersome for attackers. This enhanced version of MalGAN employs
Python’s subprocess library to solely import detection results into MalGAN. The authors
opted to utilize all the APIs associated with malware to feature a larger quantity as opposed
to the 128 APIs that were used in the original MalGAN. A different dataset was employed to
create API lists for training both the detectors and MalGAN. These API lists were compiled
by merging numerous cleanware and individual malware samples to prevent the malware de-

tection process from being influenced by the inclusion of cleanware features in the malware
files.

The generator and substitute model were also modified to use Deep convolutional GAN
(DCGAN), as initially introduced by Radford et al. [18] in the context of image generation.
In the malware domain, the activation function was switched to the Parametric Rectified
Linear Unit (PReLU) due to its capacity to self-learn the negative component of the Leaky
ReLU function. MalGAN improves its performance by incorporating cleanware features
into the original malware file, thus avoiding detection by malware detectors. However, the
assumptions underlying the design of MalGAN are somewhat unrealistic and restrict its
ability to evade genuine malware classifiers. One such assumption is that it is presumed
that malicious users have complete access to the feature space within the detector model.
Furthermore, API features are viewed as an overly extensive means of representing malware.

To address these shortcomings, Castro et al. [29] released a poster advocating for the use
of a GAN-based approach to create adversarial examples through byte-level perturbations.
The suggested model operates with actual PE files rather than relying on API feature repre-
sentations. By combining automatic byte-level real perturbation with feature representation,
adversarial examples are generated. The generator processes a vector of 2,350 features, de-
livering a comprehensive outline of each piece of malware, and produces a random sequence
of perturbations with nine different options for each injection. The integration of a more
detailed feature representation and the capability of generating valid PE binaries enables
the system to bypass not just the GBDT detector, but also to cross-evade various classifiers.
Relying on API sequences or feature representations entails considerable manual effort to
obtain the training data.

As listed in Table 5, which presents a summary of adversarial attacks targeting anti-
malware engines, Shahpasand et al. [8] created adversarial data with GAN by maintaining
threshold on the distortion values of generated samples see Figure 10. The existing malware
data is modified by adding the generated optimum perturbation § to produce adversarial
one. Like every other GAN architecture, the generator can learn the distribution of benign
samples, generating perturbations that can bypass the learning-based detectors. The adver-
sarial samples are identifiable with benign files by the discriminator implicitly improves the

A SURVEY ON GENERATIVE ADVERSARIAL NETWORKS FOR MALWARE ANALYSIS

155

Table 5: Windows adversarial malware generation architecture using GAN

Paper/ Key - Motiva- | Target Model | Byte/ Approach Feature
Year tion Feature Count
Hu. et al. | The im- | ML-based Feature - Feed Forward Neural Net- | 128 APIs
2017 [22] portance of | (RF, LR, works are utilized for both
developing a | DT, SVM, the generator and the sub-
flexible black | MLP, VOTE) stitute detector.
box adver- | detectors - An iterative method in-
sarial attack volves altering one feature
mechanism. with each iteration.
Kawai et | Using single | ML-based Feature - A Deep Convolutional | All APIs
al. 2019 | malware for | (RF, LR, GAN is used for the Substi-
[28] realistic at- | DT, SVM, tutor (S) and Generator (G).
tacks MLP, VOTE) - An API list is compiled
detectors from multiple cleanware and
a single malware.
Castro et | Automatic GBDT Model | Byte Level | - Enhanced Feature Repre- | 2350 Fea-
al. 2019 | byte-level sentation tures
[29] modifications - Produces a random per-
turbation sequence utilizing
nine distinct options at each
injection point.
Yuanetal. | Using gener- | MalConv Byte Level | - Dynamic thresholding is | Raw
2020 [30] ating pertur- employed to enhance pay- | Bytes
bations that load effectiveness.
can bypass - An automatic weight tun-
the learning- ing mechanism balances the
based detec- attention of the generator
tors between payloads and ad-
versarial samples.
Shahpasand| End-to-End SVM, Neural | Features - GAN architecture with a | 128 APIs
et al. 2019 | blackbox at- | network, RF threshold on generated dis-
[8] tacks at byte | and LR tortion
levels -Different loss functions to
generate benign like adver-
sarial and to produce high
misclassification
Nam et al. | Using a flexi- | ML-based Features - Double detectors and a | 160 APIs
2024 [31] ble black box | (RF, LR, DT, least squares loss function.
adversarial SVM, MLP,
attack mecha- | VOTE |AB,
nism GB, KNN)
detectors

perturbation with escalating the loss of generator.

The authors conducted their study using the Drebin dataset, which is widely recognized
for its application in malware detection. They focused on identifying a subset of features that
exert the most considerable influence on the classification process. This careful selection was
aimed at ensuring that the performance of the classifier would remain comparable to that
achieved with the full feature set, thereby optimizing efficiency without sacrificing accuracy.
The results showed that while the classifiers maintained a high level of accuracy on the
original samples, the adversarial data generated by the proposed model posed a significant
threat. In fact, this model was capable of successfully compromising the classifiers with a

156 LAM BUI THU et al.

remarkable success rate of up to 99%. This finding underscores the vulnerabilities present in
current classification systems and highlights the need for ongoing research to enhance their
robustness against adversarial attacks.

Benign
Application 4>LGAN
L]
sl Malicious

"' Application Discriminator
X' =X+ 0
Noise Vector I __>®
(z2) =8
A Adversarial
Generator Malware

—>—’Ladv. Mal

Malware Detector

Figure 10: The architecture for generating adversarial malware

The authors in [31] proposed generating adversarial malware samples using GANs to
enhance the robustness of malware detectors. The new model, Mal-D2GAN, as illustrated
in Figure 11, consists of two main components: the generator and the detectors. Unlike the
original MalGAN model, the Mal-D2GAN incorporates an additional detector block, which
works with the substitute detector to improve its ability to identify malware generated by
the generator block. They further evaluated this model using the new ACTMalv2 dataset
and compared the results with those obtained from the ACTMalv1 dataset.

‘ Detector
- Malware or
Adversarial .
Benign & ‘-g ?
Malware malware g : benign?
— Adversarial
- Generator —l— Blackbox Detector = malware —
Noise example
— ‘ with labels
Benign

Figure 11: The architecture of Mal-D2GAN

The results presented in Table 6 indicate that the Mal-D2GAN model has reduced the
detection accuracy (true positive rate, TPR) in eight malware detection scenarios across
both datasets. Despite this reduction, the Mal-D2GAN model outperforms existing malware
detection benchmarks regarding high-performance metrics. When evaluated across various
algorithms, including Random Forest (RF), Logistic Regression (LR), Decision Tree (DT),
Support Vector Machine (SVM), Multi-Layer Perceptron (MLP), AdaBoost (AB), Gradient
Boosting (GB), and k-Nearest Neighbors (KNN), the true positive rate usually drops to
nearly 0%.

A SURVEY ON GENERATIVE ADVERSARIAL NETWORKS FOR MALWARE ANALYSIS 157

Table 6: The model’s true positive rate (in percentage) on the training set. “Adver.” repre-
sents adversarial samples.

Model Mal-D2GAN Mal-D2GAN
Dataset ACTMalvl ACTMalv2
Original | Adver | Original | Adver

RF 97.25 2.28 100 0
LR 94.69 0 100 0
DT 97.35 0 100 0
SVM 96.10 0.07 100 0.75
MLP 98.31 0.16 100 0
AB 93.66 0 100 1.1
GB 97.35 0.37 100 4.5
KNN 98.10 0.15 99.9 0

These experimental results highlight the significant impact of an additional detector
within the Mal-D2GAN model, which leads to a substantial decrease in detection accuracy
across the eight malware detection methods.

5. CHALLENGES AND FUTURE DIRECTIONS OF GAN IN MALWARE
ANALYSIS

5.1. Challenges

In this section, we examine the key challenges when applying generative adversarial
networks (GAN) to malware analysis. These insights are crucial for developing more effective
and reliable models in the field [32].

One of the most significant problems is limited and imbalanced datasets, which can
severely hinder the training phase and performance of GAN-based models. In malware de-
tection, particularly PE files, datasets often have uneven class distributions and a scarcity
of labeled samples, thus not only degrading the accuracy of the model but also posing diffi-
culties in generating synthetic samples. GANs must be carefully trained to avoid reinforcing
imbalances [33], and several studies have highlighted these limitations. The authors in [9]
show that GANs struggle with adversarial learning in botnet datasets characterized by high
levels of imbalance. Also, pre-processing plays a critical role in achieving the good perfor-
mance for GAN; poor data quality or inadequate feature representation can reduce the value
of synthetic samples [34].

From a technical aspect, computational complexity is a major constraint because training
GAN models requires significant time and processing power. In addition, GANs can alleviate
data scarcity by producing synthetic malware variants, but their real-world deployment de-
mands careful consideration of available resources. Furthermore, ensuring that these models
remain robust against adversarial attacks requires extensive fine-tuning and validation [35].
Similarly, the research in [36] emphasizes the challenges posed by limited training data and
underscores the reliance on domain expertise for the extraction of hand-crafted features, an
approach that may not be accessible to all researchers.

In practice, detecting zero-day malware remains particularly difficult due to its previously
unseen patterns and behaviors, leading to the lack of comprehensive, standardized samples
to support robust model evaluation [37]. The GAN-based toolkits can address the shortage

158 LAM BUI THU et al.

of evaluation frameworks for malware detection methods with benchmarks. They assist in
performance assessment and craft both novel attack and defense strategies. Drawing from
successful practices in other domains, a collaborative and standardized approach integrating
GANS into evaluation pipelines can also benefit Windows PE malware detection.

5.2. Future directions

Generative Adversarial Networks (GANs) have demonstrated a pivotal role in creating
synthetic data by effectively modeling inherent variability. This variability directly influences
the quality, diversity, and reliability of the generated samples. Future research directions
should focus on leveraging GANs to address the challenges outlined above, with emphasis
on:

(1) Data augmentation: Synthesizing malware samples across various categories in or-
der to facilitate the construction of diverse datasets, which are essential for training and
evaluating malware detection systems [32]. Specifically GANs can generate synthetic sam-
ples for minority classes, thereby addressing the problem of data imbalance in cybersecurity
datasets. This approach helps create more balanced training datasets, allowing classifiers to
detect underrepresented malware variants better.

(2) Model stability: In order to fully leverage the potential of GANs in cybersecurity,
future research should also focus on training instability, mode collapse, and solving the
problems associated with evaluating the quality of generated samples.

(3) Practicality: GANs can enhance feature representation by integrating visual char-
acteristics with sequential behavioral data of malware to solve the limitation of feature
extraction capability in malware detection. This multimodal feature construction not only
improves the system’s ability to differentiate malware types but also significantly enhances
classification performance.

These existing issues will be addressed in order to develop robust, accurate, and adap-
tive malware detection systems that can effectively respond to increasingly sophisticated
malicious threats.

6. CONCLUSION

This survey investigates in depth the significant roles of Generative Adversarial Networks
in malware analysis. GANs based on deep learning, in particular, are a potential and practical
approach for tackling the continuously changing challenges of malware analysis in the digital
environment.

In this study, we examined GANs in malware analysis with their current challenges
and limitations. Major issues such as data accuracy, imbalanced datasets, computational
expenses, zero-day malware threats, and adversarial attacks must be addressed. Future
studies should aim to improve the resilience of GAN models against malicious instances,
overcome resource constraints, and improve data preparation techniques. Furthermore, eth-
ical and responsible management is essential when applying GANs in cybersecurity to avoid
disseminating propaganda and misinformation because GANs can create misleading media
that confuse human and machine perceptions.

In summary, this survey provides a comprehensive overview of the existing research on
GANS in malware analysis. It highlights both limitations and potential advantages of GANs

A SURVEY ON GENERATIVE ADVERSARIAL NETWORKS FOR MALWARE ANALYSIS 159

in malware analysis. If those problems, such as ethical issues and managing data responsibly,
can be solved, GANs can be leveraged in malware analysis and digital environment protection
from emerging malicious threats.

1]

[5]

[6]

ACKNOWLEDGMENTS

This work has been supported by Academy of Cryptography Techniques.

REFERENCES

SONICWALL. (2024) Sonicwall cyber threat report. Accessed on March 7, 2025. [Online]. Avail-

able: https://www.sonicwall.com/resources/white-papers/2024-sonicwall-cyber-threat-report

B. K. Luis Corrons. (2023) Report, avast q4/2023 threat. Accessed on March 7, 2025. [Online].
Available: https://decoded.avast.io/threatresearch/avast-q4-2023-threat-report/

J. V. Estenssoro. (2024) Malware and virus statistics 2024. Accessed on March 7, 2025. [Online].

Available: https://www.avg.com/en/signal/malware-statistics#notable-attack-examples

I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. C. Courville,
and Y. Bengio, “Generative adversarial nets,” in Neural Information Processing Systems,
2014.

P. Isola, J. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with conditional adver-
sarial networks,” CoRR, vol. abs/1611.07004, 2016.

Y. Li, M. R. Min, D. Shen, D. Carlson, and L. Carin, “Video generation from text,” in Pro-
ceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth
Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Sympo-
sium on Educational Advances in Artificial Intelligence, ser. AAAT'18/TAAT'18/EAAT’18.
AAAIT Press, 2018.

K. T. Chui, B. B. Gupta, P. Chaurasia, V. Arya, A. Almomani, and W. Alhalabi, “Three-stage
data generation algorithm for multiclass network intrusion detection with highly imbalanced
dataset,” International Journal of Intelligent Networks, vol. 4, pp. 202-210, 2023.

M. Shahpasand, L. Hamey, D. Vatsalan, and M. Xue, “Adversarial attacks on mobile malware
detection,” in 2019 IEEFE 1st International Workshop on Artificial Intelligence for Mobile
(AL4Mobile), 2019, pp. 17-20.

R. H. Randhawa, N. Aslam, M. Alauthman, H. Rafiq, and F. Comeau, “Security hardening of
botnet detectors using generative adversarial networks,” IEEE Access, vol. 9, pp. 78 276-78 292,
2021.

K. Baker. The 12 most common types of malware. Accessed on March 7, 2025. [Online].
Available: https://www.crowdstrike.com/en-us/cybersecurity-101/malware/types-of-malware/

M. Sikorski and A. Honig, Practical Malware Analysis - The Hands-On Guide to Dissecting
Malicious Software, ser. AMS Chelsea Publishing Series. Chelsea Publishing Company, 2012.

https://www.sonicwall.com/resources/white-papers/2024-sonicwall-cyber-threat-report
https://decoded.avast.io/threatresearch/avast-q4-2023-threat-report/
https://www.avg.com/en/signal/malware-statistics#notable-attack-examples
https://www.crowdstrike.com/en-us/cybersecurity-101/malware/types-of-malware/

160 LAM BUI THU et al.

[12] K. Aryal, M. Gupta, M. Abdelsalam, P. Kunwar, and B. Thuraisingham, “A survey on adver-
sarial attacks for malware analysis,” IEEE Access, vol. 13, pp. 428-459, 2025.

[13] A. Souri and R. Hosseini, “A state-of-the-art survey of malware detection approaches using data
mining techniques,” Human-centric Computing and Information Sciences, vol. 8, no. 1, p. 3,
2018.

[14] Cuckoo sandbox. Accessed 7-3-2025. [Online]. Available: https://cuckoo.readthedocs.io/en/
latest/introduction/what/

[15] E. Bertino, S. Bhardwaj, F. C. S. Gong, I. Karim, C. Katsis, H. Lee, A. S. Li, and A. Y.
Mahgoub, Machine Learning Techniques for Cybersecurity. Springer, 2023.

[16] P. Beaucamps, “Advanced polymorphic techniques,” International Journal of Computer Sci-
ence and Information Engineering, vol. 2, no. 3, pp. 194-205, 2007.

[17] Y. Wang, Q. Zhang, G.-G. Wang, and H. Cheng, “The application of evolutionary computation in
generative adversarial networks (GANSs): a systematic literature survey,” Artificial Intelligence
Review, vol. 57, no. 182, 2024.

[18] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep con-
volutional generative adversarial networks,” in 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings, Y. Bengio and Y. LeCun, Eds., 2016.

[19] M. Mirza and S. Osindero, “Conditional generative adversarial nets,” 2014. [Online]. Available:
https://arxiv.org/abs/1411.1784

[20] M. Zhu, S. Gong, Z. Qian, and L. Zhang, “A brief review on cycle generative adversarial net-
works,” Proceedings of The 7th International Conference on Intelligent Systems and Im-
age Processing 2019.

[21] X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. P. Smolley, “Least squares generative adver-
sarial networks,” in 2017 IEEE International Conference on Computer Vision (ICCV),
2017, pp. 2813-2821.

[22] H. Weiwei and Y. Tan, “Generating adversarial malware examples for black-box attacks based on
GAN,” in Proceedings of the Data Mining and Big Data: 7th International Conference,
DMBD 2022, Beijing, China, November 21-24, 2022, vol. Part II. Singapore: Springer
Nature, 2023, pp. 409-423.

[23] O. Sharma, A. Sharma, and A. Kalia, “MIGAN: GAN for facilitating malware image synthesis
with improved malware classification on novel dataset,” FExpert Systems with Applications,
vol. 241, p. 122678, 2024.

[24] S. Bhardwaj, A. S. Li, M. Dave, and E. Bertino, “Overcoming the lack of labeled data: Training
malware detection models using adversarial domain adaptation,” Computers & Security, vol.
140, p. 103769, 2024.

https://cuckoo.readthedocs.io/en/latest/introduction/what/
https://cuckoo.readthedocs.io/en/latest/introduction/what/
https://arxiv.org/abs/1411.1784

[25]

[28]

[29]

[30]

A SURVEY ON GENERATIVE ADVERSARIAL NETWORKS FOR MALWARE ANALYSIS 161

C. Gao, Y. Du, F. Ma, Q. Lan, J. Chen, and J. Wu, “A new adversarial malware detection
method based on enhanced lightweight neural network,” Computers & Security, vol. 147, p.
104078, 2024.

J. Li, J. He, W. Li, W. Fang, G. Yang, and T. Li, “Syndroid: An adaptive enhanced android
malware classification method based on CTGAN-SVM,” Computers & Security, vol. 137, p.
103604, 2023.

H. Nguyen, F. Di Troia, G. Ishigaki, and M. Stamp, “Generative adversarial networks and
image-based malware classification,” Journal of Computer Virology and Hacking Tech-
niques, vol. 19, no. 4, pp. 579-595, 2023.

)

M. Kawai, K. Ota, and M. Dong, “Improved MalGAN: Avoiding malware detector by learning
cleanware features,” in 2019 International Conference on Artificial Intelligence in Infor-
mation and Communication (ICAIIC), 2019, pp. 040-045.

R. L. Castro, C. Schmitt, and G. D. Rodosek, “Poster: Training GANs to generate adversarial
examples against malware classification,” in IEEE Symposium on Security and Privacy,
2019.

J. Yuan, S. Zhou, L. Lin, F. Wang, and J. Cui, “Black-box adversarial attacks against deep
learning based malware binaries detection with GAN,” in Furopean Conference on Artificial
Intelligence, 2020.

N. T. Hoang, T. D. Pham, and L. T. Bui, “Mal-D2GAN: Double-detector based GAN for
malware generation,” 16th IEEE International Conference on Knowledge and Systems
Engineering, 2024, Accepted to appear. [Online]. Available: https://arxiv.org/abs/2505.18806

M. M. Arifin, M. S. Ahmed, T. K. Ghosh, I. A. Udoy, J. Zhuang, and J. haw Yeh, “A survey
on the application of generative adversarial networks in cybersecurity: Prospective, direction
and open research scopes,” 2024. [Online]. Available: https://arxiv.org/abs/2407.08839

F. Demirkiran, A. Cayir, U. Unal, and H. Dag, “An ensemble of pre-trained transformer models
for imbalanced multiclass malware classification,” Computers & Security, vol. 121, p. 102846,
2022.

D. Park, H. Khan, and B. Yener, “Generation & evaluation of adversarial examples for mal-
ware obfuscation,” 2019 18th IEEFE International Conference on Machine Learning and
Applications (ICMLA), pp. 1283-1290, 2019.

A. Dunmore, J. Jang-Jaccard, F. Sabrina, and J. Kwak, “Generative adversarial networks for
malware detection: a survey,” 2023. [Online]. Available: https://arxiv.org/abs/2302.08558

F. Mazaed Alotaibi and Fawad, “A multifaceted deep generative adversarial networks model for
mobile malware detection,” Applied Sciences, vol. 12, no. 19, 2022.

D.-O. Won, Y.-N. Jang, and S.-W. Lee, “Plausmal-GAN: Plausible malware training based on
generative adversarial networks for analogous zero-day malware detection,” IEEE Transactions
on Emerging Topics in Computing, vol. 11, no. 1, pp. 82-94, 2023.

Received on February 08, 2025
Accepted on May 07, 2025

https://arxiv.org/abs/2505.18806
https://arxiv.org/abs/2407.08839
https://arxiv.org/abs/2302.08558

	INTRODUCTION
	MALWARE ANALYSIS
	Overview
	Malware analysis techniques
	Static analysis
	Dynamic analysis

	Malware detection
	Signature-based malware detection
	 Behavioral-based detection

	Malware classification
	Machine learning in malware analysis
	Challenges in malware analysis

	GENERATIVE ADVERSARIAL NETWORKS
	Overview
	Selected GAN models
	Deep convolutional GAN (DCGAN)
	Conditional GAN
	CycleGAN
	LSGAN

	GAN training issues
	Mode collapse
	Gradient vanishing
	Instability
	Stopping problem

	Appications of GANs
	 GANs on augmenting the training process
	Representation learning

	GANS FOR MALWARE ANALYSIS
	CHALLENGES AND FUTURE DIRECTIONS OF GAN IN MALWARE ANALYSIS
	Challenges
	Future directions

	CONCLUSION

