
Journal of Computer Science and Cybernetics, V.41, N.3 (2025), 245–264

DOI no. 10.15625/1813-9663/22770

MAMBA-MHAR: AN EFFICIENT MULTIMODAL FRAMEWORK
FOR HUMAN ACTION RECOGNITION

TRUNG-HIEU LE1,2, THAI-KHANH NGUYEN1,2, TUAN-ANH LE2,

MATHIEU DELALANDRE3, TRUNG-KIEN TRAN4, THANH-HAI TRAN1, CUONG PHAM5,∗

1School of Electrical and Electronic Engineering, Hanoi University of Science and
Technology, 01 Dai Co Viet Street, Bach Mai Ward, Ha Noi, Viet Nam

2Dai Nam University, 01 Pho Xom, Phu Luong Ward, Ha Noi, Viet Nam
3Polytechnic University of Tours, France

4Institute of Information Technology, AMST, 17 Hoang Sam, Nghia Do Ward, Ha Noi,
Vietnam

5Posts and Telecommunications Institute of Technology, Nguyen Trai Street, Mo Lao Ward,
Ha Noi, Viet Nam

Abstract. Human Action Recognition (HAR) has emerged as an active research domain in re-

cent years with wide-ranging applications in healthcare monitoring, smart home systems, and hu-

man–robot interaction. This paper introduces a method, namely Mamba-MHAR (Mamba based

Multimodal Human Action Recognition), a lightweight multimodal architecture aimed at improving

HAR performance by effectively integrating data from inertial sensors and egocentric videos. Mamba-

MHAR consists of double Mamba-based branches, one for visual feature extraction - VideoMamba,

and the other for motion feature extraction - MAMC. Both branches are built upon recently intro-

duced Selective State Space Models (SSMs) to optimize the computational cost, and they are lately

fused for final human activity classification. Mamba-MHAR achieves significant efficiency gains in

terms of GPU usage, making it highly suitable for real-time deployment on edge and mobile devices.

Extensive experiments were conducted on two challenging multimodal datasets UESTC-MMEA-CL

and MuWiGes, which contain synchronized IMU and video data recorded in natural settings. The

proposed Mamba-MHAR achieves 98.00% accuracy on UESTC-MMEA-CL and 98.58% on MuWiGes,

surpassing state-of-the-art baselines. These results demonstrate that a simple yet efficient fusion of

multimodal lightweight Mamba-based models provides a promising solution for scalable and low-power

applications in pervasive computing environments.
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1. INTRODUCTION

Human Activity Recognition (HAR) is a research field that focuses on the automatic
identification of human actions using data collected from various sensors [1]. Applications of
HAR span across healthcare monitoring, fitness tracking, smart homes, and human-computer
interaction [2–5]. With the growing availability of wearable and ambient sensing technologies,
multimodal HAR (multiHAR) which combines multiple data sources such as accelerometer,
gyroscope, audio, and video has emerged as a promising approach to improve recognition
accuracy and robustness in real-world environments [6]. However, leveraging multiple modal-
ities often leads to increased computational complexity and memory usage, making it chal-
lenging to deploy these models on edge devices like smartphones, smartwatches, or embedded
IoT systems, which have limited processing power and storage. As a result, there is a growing
need to develop lightweight and efficient multimodal HAR models that balance performance
with the constraints of low-resource hardware platforms.

Several approaches have been proposed for tackling HAR by using video and motion
data, which are typically extracted using deep learning models such as CNNs [7, 8], LSTMs
[9], or Transformers [10, 11]. For fusion, features from different modalities are often fused
either at early stages (early fusion) or at later stages (late fusion) of the network. CNNs are
commonly used for spatial feature extraction from video frames or sensor signals, but they
tend to be computationally expensive due to convolution operations. Transformers, on the
other hand, are powerful in capturing long-range dependencies but require large-scale data
to generalize effectively [12]. When combining video and motion streams, especially using
cross-attention mechanisms or complex fusion strategies, these models can become heavy
and resource-intensive, making them difficult to deploy on low-power hardware platforms
such as mobile devices or embedded systems.

Recently, State Space Models (SSMs) have been introduced as a promising alternative
for sequence modeling, offering a compelling balance between performance and efficiency
[13, 14]. The core idea behind SSMs is to model sequences using linear state dynamics
combined with learned input and output projections, which allows them to capture long-
range dependencies with significantly lower computational cost and memory usage compared
to traditional architectures like CNNs or Transformers. SSMs have demonstrated strong
performance in various sequence-based tasks such as language modeling [15], time-series
forecasting [16], and audio processing [17]. In the context of HAR, a few studies have
begun to explore the use of SSMs, but mostly in single-modality settings (e.g., using only
inertial data [18] or video data [19]), where they have shown competitive or even superior
results compared to conventional models. However, their potential in multimodal HAR
remains underexplored. This motivates our work to investigate the integration of SSMs
into a lightweight yet effective architecture for multiHAR, aiming to take advantage of their
efficiency while leveraging complementary information from multiple sensing modalities.

This paper introduces a novel multimodal recognition framework named Mamba-MHAR,
which exploits the efficiency of SSMs for both RGB and IMU data streams. The proposed ar-
chitecture is designed to effectively integrate features extracted from multiple sensor modali-
ties, including visual data (video frames) and inertial signals (accelerometer and gyroscope).
Mamba-MHAR consists of two Mamba blocks, one dedicated to processing visual inputs
and the other tailored for handling sensor data. Each block independently learns modality-
specific representations, thereafter, these learned features are integrated using a late fusion
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strategy, allowing the model to preserve modality-specific advantages while leveraging com-
plementary information across channels. In summary, the contributions of this paper are
threefold.

• First, we propose to investigate two Mamba-based architectures MAMC [17] and Video-
Mamba [19] for the task of Human Action Recognition (HAR). While VideoMamba
has been applied to video recognition, MAMC was originally designed and evaluated
on radio signals. Its performance has not yet been explored for HAR tasks.

• Second, we introduce a new framework, Mamba-MHAR, that adopts a late fusion strat-
egy to effectively combine the high-level features extracted from the two Mamba blocks,
enabling the model to leverage complementary information from different modalities.
To the best of our knowledge, this is the first work to investigate the use of Mamba
models for multimodal human activity recognition.

• Finally, we evaluate the proposed framework on two publicly available benchmark
datasets: UESTC-MMEA-CL [20] and MuWiGes [21]. Experimental results demon-
strate that our method outperforms both unimodal baselines and several existing mul-
timodal approaches in terms of recognition accuracy. The proposed Mamba-MHAR
is lightweight with memory and computational requirements optimized for RAM and
GPU efficiency, making it highly suitable for deployment on edge devices.

The rest of the paper is structured as follows: Present the relevant works in Section 2.
We introduce our framework in Section 3. Experiments and conclusions are presented in
Sections 4 and 5, respectively.

2. RELATED WORKS

This section provides a brief overview of related works in Human Activity Recognition
(HAR) using multimodal sensor data, with a focus on combining motion sensors and visual
sensors, as well as the use of State Space Models (SSMs). Previous studies have shown that
integrating data from IMU sensors and images can improve HAR performance by capturing
both temporal and spatial information. At the same time, SSM-based approaches, especially
Mamba and its recent variants, have become promising solutions for modeling long sequences
efficiently, while being lightweight enough for deployment on mobile and edge devices.

2.1. Multimodal fusion for HAR

Early multimodal systems in human action recognition (HAR) have shown marked im-
provements by integrating heterogeneous sensor modalities, such as vision, depth, and iner-
tial data. These systems leverage the complementary nature of spatial and motion signals
to significantly enhance recognition accuracy and robustness in real-world applications. For
instance, Radu et al. [22] proposed deep neural network architectures with modality-specific
branches and feature concatenation, employing CNN and DNN backbones to jointly infer
human activity and environmental context. Yen et al. [23] demonstrated the effectiveness of
combining depth and inertial modalities, showing that spatial structure from depth sensors
and motion dynamics from inertial data yield richer, more discriminative features. Expand-
ing on these insights, Imran et al. [24] developed a multi-stream deep learning framework for
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fusing RGB-D and inertial sensor data, where spatial features were extracted using CNNs
and temporal dependencies modeled through LSTM layers. Their results confirmed that
multimodal integration provides superior performance, particularly in complex or occluded
scenes. Xin Chao et al. [25] proposed a late fusion approach in which separate classifiers
CNN for depth data and MLPs for each inertial sensor were trained independently, and final
decisions were obtained through weighted majority voting. In a more recently, Yadav et al.
[26] introduced a two-stream decision-level fusion model, where CNNs processed spatial cues
from video frames while LSTMs captured temporal motion from inertial sensors. This ar-
chitecture proved highly effective in dynamic and unconstrained settings. Likewise, Wei et
al. [27] presented a CNN-based fusion system that combined video and inertial data at the
feature level, demonstrating resilience to variations in human motion and environment.

In continuous action recognition, Dawar and Kehtarnavaz [28] applied a deep fusion
strategy to jointly learn from visual and inertial streams, outperforming unimodal baselines
especially in the presence of overlapping or subtle movements. Most recently, Tang et al.
[29] provided a comprehensive review of wearable multimodal HAR systems, highlighting the
growing adoption of hierarchical and stacked CNN-LSTM fusion architectures, optimized for
both real-time inference and computational efficiency.

2.2. State space models

2.2.1. Background

State Space Models (SSMs) have recently become prominent in sequence modeling due
to their scalability and efficiency, especially when handling long-range dependencies in se-
quential data [13]. Among these, Mamba stands out as a selective SSM that integrates
time-varying parameters and a hardware-aware design, enabling efficient training and infer-
ence [30]. By leveraging selective scan operations and a recomputation mechanism, Mamba
avoids storing intermediate activations in the forward pass and reconstructs them during
backpropagation, leading to reduced GPU memory usage and improved computational per-
formance.

State Space Models (SSMs) are a class of mathematical models that employ first-order
differential equations to describe the temporal evolution of hidden (latent) states in dynamic
systems. These models also incorporate a secondary equation to connect the hidden states
with the observable outputs. Given a known input sequence x(t) ∈ RD, the system transi-
tions through a latent state h(t) ∈ RN , from which the output sequence y(t) ∈ RN can be
derived as follows

h′(t) = Ah(t) +Bx(t), (1)

y(t) = Ch(t), (2)

where A ∈ RN×N and B,C ∈ RN×D are the system matrices to be learned. To model
discrete sequences, the above functions can be discretized using a time step ∆

h(n) = Āh(n− 1) + B̄x(n), (3)

y(n) = Ch(n), (4)
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where Ā = exp(∆A) and B̄ = (∆A)−1(exp(∆A) − I) · ∆B. Obtained transforming the
continuous form (∆,A,B,C) into the discrete form (Ā, B̄,C). This transformation allows
the system to operate in a linear recurrent fashion, which notably improves computational
efficiency during both training and inference phases [13].

To improve the capacity of modeling long-range dependencies embedded in the hidden
state h with respect to the input signal x, the HiPPO matrix is utilized to augment the
discrete transition matrix Ā by the Structured SSM (S4) [14]. Concurrently, by employing
approximate diagonalization techniques, the matrix Ā can be simplified to a Normal Plus
Low-Rank (NPLR) format, consisting of a limited number of normal and low-rank terms.

Ank = −


√

(2n+ 1)(2k + 1) if n > k

n+ 1 if n = k

0 if n < k

(5)

A = VΛV∗ −PQ⊤ = V (Λ− (V∗P)(V∗Q)∗)V∗ (6)

where V ∈ RN×N is unitary, Λ is diagonal, and P ∈ RN×1, Q ∈ RN×1 are low-rank matrices.

This transformation significantly reduces the computational burden of the recurrent ar-
chitecture, lowering the complexity from O(L2) to O(L).

2.2.2. Selective SSM

Recent innovations in State Space Models (SSMs) have led to the development of Mamba,
a selective and hardware-efficient architecture that significantly enhances both computational
and memory performance for long sequence modeling tasks [30]. Built upon the foundation of
structured SSMs (SSSMs), Mamba integrates three key components: (i) a gating mechanism
akin to the Gated Linear Unit (GLU), (ii) residual connections, and (iii) normalization
layers such as LayerNorm or RMSNorm. The gating mechanism enables input-conditioned
modulation, while the residual and normalization components facilitate the training of deeper
networks by ensuring stable gradient propagation.

Unlike conventional time-invariant SSMs that rely on fixed parameters (A,B,C), Mamba
introduces input-dependent dynamics by computing the time step ∆, and matrices B and C
directly from the input. These dynamic components are then used to generate a discretized
transition matrix defined as Ā = exp(∆A), allowing the model to adjust the influence of
past versus recent inputs based on context. A large ∆ emphasizes current observations, while
a small ∆ retains long-term dependencies.

To improve runtime and memory efficiency, Mamba adopts a hardware-aware strategy.
During each forward pass, parameters ∆, A, B, and C are fetched from high-bandwidth
memory (HBM) and transferred to static RAM (SRAM), where all computation is performed
in-place. This design eliminates the need to store intermediate hidden states, as they can be
recomputed during the backward pass. As a result, the total memory access complexity per
forward step is reduced to O(BLN), where B is the batch size, L is the sequence length,
and N is the hidden state dimension. Compared to Transformer-based architectures, which
require O(BLN) due to attention operations, Mamba achieves a memory reduction factor
of O(N). This efficiency makes Mamba particularly suitable for real-time inference and
deployment on edge devices with constrained computational and memory resources.
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2.2.3. Mamba architecture

Mamba [30] introduces input-dependent parameters including the step size ∆ and tran-
sition matrices B and C. These are computed as functions of the input x through learnable
linear projections

∆,B,C = f(x).

The recurrence dynamics is governed by a discretized version of the SSM:

Ā = exp(∆A), B̄ = discretize(∆,A,B),

where Ā and B̄ are the input-conditioned state transition and input matrices, respectively.

During the forward pass, Mamba avoids storing intermediate states by recomputing them
during the backward pass. It also transfers key matrices to static RAM (SRAM) for in-place
computation, significantly reducing the volume of memory transactions between SRAM and
high-bandwidth memory (HBM). The total memory complexity is reduced to O(BLN),
where B is the batch size, L is the sequence length, and N is the hidden state size.

2.2.4. Mamba in downstream tasks

Thanks to the efficient design, Mamba has inspired various domain-specific adaptations.
For vision tasks, LightM-UNet combines Mamba with a lightweight UNet structure for real-
time medical image segmentation [31], while 2D-SSM [32] and DenseMamba introduce vari-
ations focused on spatial modeling and shallow state fusion for better feature retention [33].
ConvSSM merges SSMs with convolutional recurrence (ConvLSTM) to allow parallel scan
operations and faster training [34]. In time-series domains, TimeMachine applies Mamba to
multivariate forecasting tasks with long-term temporal dependencies [35], and MotionMamba
introduces hierarchical spatio-temporal blocks for human motion synthesis [36]. More re-
cently, lightweight variants of Mamba have been proposed for human activity recognition
(HAR) using visual sensor and IMU sensor data. VideoMamba extends Mamba’s selective
scanning along spatial and temporal axes to model video dynamics efficiently [19]. In paral-
lel, MAMC (Mamba for Multimodal Cross Attention) introduces a low-latency pipeline for
fusing 1D motion signals from IMU sensors, using a soft-thresholding denoising block and
Residual Selective SSM for robust real-time processing [17]. In this study, we adopt Video-
Mamba [19] and MAMC [17] as the visual and motion backbones in our proposed multimodal
HAR framework. Their lightweight design and complementary strengths allow accurate and
efficient recognition, even on edge devices.

3. PROPOSED METHOD

3.1. Proposed framework for multimodal human action recognition

Our proposed framework that combines multimodality for recognition of action / gesture
is illustrated in Fig 1. The architecture comprises three stages:

1) Pre-processing: We pre-process raw data before inputting it into the Mamba models.
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Figure 1: Our proposed lightweight multimodal framework Mamba-MHAR for human action
recognition.

• For the video stream, we resize each frame toW×H and apply a random sampling
technique to extract a T-frame clip for each video sample. The input video is
represented as a tensor Xv ∈ R3×T×H×W .

• For the IMU stream, we smooth the signal using an average filter, resample the
signal, and compute the magnitude for the accelerometer and gyroscope signals.
The motion data is represented as a tensor Xm ∈ R8×P where P is the length of
each motion signal.

2) Single model learning: The pre-processed data are input separately into each
Mamba model to extract features and output the corresponding classification scores,
denoted as sv and sm. VideoMamba is deployed for the video stream, while MAMC is
used for the IMU stream.

3) Multimodal fusion: Finally, we apply late fusion of the two score vectors using a
simple addition rule to generate the final score vector s for multimodal classification.

In the following, we will detail the Mamba models for processing each data stream and
the multimodal fusion.

3.2. Visual modality learning

Numerous models leveraging 3D CNN architectures such as TSM [37], SlowFast [38], and
Transformer-based methods [39] have been widely adopted for HAR using RGB data. While
some models focus on improving recognition accuracy, others reduce computational overhead
for deployment on resource-constrained devices. Given the demand for real-time inference on
compact hardware, our work emphasizes lightweight models that maintain high performance.
VideoMamba [19] emerges as a compelling solution due to its efficient memory usage, neural
architecture optimization, and strong temporal modeling via ensemble techniques. As a
result, we employ VideoMamba as the video modality learning in our framework.
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VideoMamba is a selective State Space Model (SSM) tailored for video data. It adopts
the Vision Transformer (ViT) design [40], but replaces the conventional self-attention blocks
with Bidirectional Mamba (B-Mamba) blocks to retain linear computational complexity
while capturing long-range dependencies effectively. Given an input video Xv of dimensions
3 × T × H × W , each frame is first divided into non-overlapping spatial patches of size
16×16. A 3D convolution with kernel size 1×16×16 is applied to embed these patches into
a sequence of tokens. The total number of patches is computed as Npatch = T × H

16 ×
W
16 . An

additional [CLS] token,Xcls, is prepended to this sequence to aggregate global information for
downstream classification. To retain positional information that is not inherently captured
by the SSM architecture, both spatial and temporal positional embeddings are added. The
final input to the VideoMamba encoder is formulated as

X̄v = [Xcls,Xv] + ps + pt, (5)

where ps ∈ R(hw+1)×C denotes the learnable spatial position embeddings and pt ∈ RT×C

denotes the temporal position embeddings. This embedding formulation ensures that the
model can encode both spatial layout and temporal dynamics. The resulting token sequence
is then passed through L stacked B-Mamba blocks. Each block performs bidirectional scan-
ning along the temporal axis, both forward and backward, allowing the model to integrate
contextual information from both preceding and succeeding frames. This approach is con-
ceptually similar to bi-directional RNNs but maintains the efficiency and scalability of state
space models.

We choose the VideoMamba-Tiny [19] variant due to its compact size (7M parame-
ters) and its strong capability in temporal modeling. The Spatial-First scanning strategy
is adopted, processing patches at identical spatial locations across time first, which is em-
pirically shown to effectively capture motion continuity. Training is conducted on 8-frame
video clips, each resized to a spatial resolution of 224 × 224 pixels, with a learning rate
of 0.001, batch size of 32, and 35 epochs. Data augmentation includes random cropping,
horizontal flipping, and color jittering. Dropout with a probability of 0.5 is used to prevent
overfitting. The depth multiplier is set to 1.0, and training utilizes the Adam optimizer with
β1 = 0.9, β2 = 0.999. The loss function is categorical cross-entropy, suitable for multi-class
classification. Upon completion of training, the VideoMamba-Tiny model outputs a feature
vector Fv = f(X̄v,Φv) ∈ R192 with Φv representing the VideoMamba model parameters.
This vector encapsulates the spatiotemporal characteristics of the input video, which con-
sists of frames resized to 224× 224 pixels. Through linear layers, we obtain the score vector
sv = Linear(Fv) to classify the action.

3.3. Motion modality learning

Motion feature extraction aims to process an 8-channel motion signal, comprising tri-axial
acceleration, tri-axial gyroscope, and their respective magnitudes. While traditional models
such as CNNs [23, 41] and Transformers [42, 43] have been widely applied to analyze such time
series data, they face notable limitations in capturing long-term dependencies inherent in
sequential motion signals. CNNs are often constrained by their local receptive fields, whereas
Transformers, despite their global attention mechanism, can be computationally expensive
and memory-intensive when applied to long 1D sequences. Considering the requirements for
real-time and resource-efficient deployment, we adopt the MAMC (Mamba-based Automatic
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Modulation Classification Architecture) model as a motion feature extractor, owing to its
lightweight design and effective modeling capabilities over long-range temporal structures.
MAMC is a selective State Space Model (SSM) architecture tailored to extract meaningful
features from long 1D radio signals while maintaining computational efficiency [17]. We adapt
the model to the sensor time-series data domain, we use 8 input data channels, instead of
2 channels like the original version. The model comprises two main components: a soft-
thresholding denoising block, and a residual selective SSM block.

The denoising module in the MAMC architecture refers to the Deep Residual Shrinkage
Network that begins by applying a 1D convolutional layer to the multi-channel IMU time-
series data Xm ∈ R8×P . This convolution captures short-range temporal dependencies and
local patterns. The output is then passed through a batch normalization to extract localized
signal features from the input time-series data. To generate a dynamic noise-suppressing
threshold, the processed signal undergoes absolute value computation and global average
pooling (GAP) to produce a summary representation. This summary is passed through two
linear projection (LP) layers and a sigmoid activation to yield an adaptive soft-threshold τ .
The soft-thresholding operation is then applied element-wise to the original input feature
Xm to suppress low-amplitude noise while preserving informative signal components. The
soft-thresholding function is formally defined as

y =


x+ τ if x < −τ

0 if − τ ≤ x ≤ τ

x− τ if x > τ,

(6)

where x ∈ Xm is a sample in the motion signal Xm, y denotes the corresponding output
feature and τ is the learned threshold parameter. This function zeros out values near zero,
effectively reducing noise, while maintaining higher-magnitude signal components. To en-
sure stable training, its derivative is piecewise constant, preventing gradient vanishing and
explosion

∂y

∂x
=

{
1 if x < −τ or x > τ

0 if − τ ≤ x ≤ τ.
(7)

The denoised output y is subsequently passed into a residual selective SSM block, which
consists of Root Mean Square (RMS) normalization, a 1D convolutional layer (to mix or
expand channels), a selective SSM for modeling long-term temporal dependencies, and a
final linear projection layer. Skip connections are employed to facilitate efficient gradient
flow and mitigate information loss. By stacking N such MAMC blocks, the architecture
forms a deep sequential model that resembles Transformers but replaces self-attention with
efficient SSMs to maintain linear complexity.

Given the original motion signal Xm ∈ R8×P , the output after the final MAMC block
Fi = f(Xi,Φi) ∈ RG, where Φi is MAMC model’s parameters. Through the classification
head, it produces the score si = Linear(Fi). For training, we use a batch size of 16 and
a learning rate of 0.001. These hyperparameters were selected to ensure a balance between
learning stability and computational efficiency during model convergence. In our implemen-
tation, to better adapt to the characteristics of motion data, we modified MAMC [17] to
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create a smaller version, referred to as MAMC-s. MAMC-s differs from the original MAMC
in the following architectural aspects (as shown in Table 1).

Table 1: Parameter comparison between MAMC and MAMC-s

Model #SSM Layers #FC layers Input Length (samples per activity) Parameter (M)
MAMC [17] 4 2 512–1024 16.8

MAMC-s (Ours) 1 1 256 0.125

3.4. Fusion of visual and motion features

To effectively leverage complementary information from multiple modalities, we adopt
a late fusion strategy in our framework. In this approach, each modality is first processed
independently by its respective model to produce a modality-specific classification score
vector: sv for the video stream and sm for the IMU stream. These score vectors represent the
confidence levels across target classes as predicted by each modality. Rather than combining
features at an earlier stage (early fusion), we defer the integration to the decision level,
allowing each model to specialize in learning from its own data domain. Finally, we apply
weighted fusion of scores as defined below.

s = αsm + (1− α)sv, (8)

where α is a hyperparameter. A higher value of α indicates that decision-making relies more
on motion data, whereas a lower value shifts the reliance toward the video stream.

Here, s ∈ RN is an N -dimensional vector, where N is the total number of classes. Each
element si in the vector s represents the aggregated confidence score for class i. The final
predicted class label ŷ is obtained by selecting the class with the highest score using the
argmax operation

ŷ = arg max
i∈{1,...,N}

si (9)

This decision rule enables the system to combine evidence from both modalities in a straight-
forward yet effective manner, enhancing robustness, especially in scenarios where one modal-
ity may be unreliable or noisy.

4. EXPERIMENTS

4.1. Datasets

In this work, we evaluate our proposed method using two publicly available benchmarks:
UESTC-MMEA-CL [20] and MuWiGes [21]. Both datasets are designed to evaluate mul-
timodal human action recognition algorithms by providing synchronized multimodal data
streams. Each sample includes time-aligned RGB video frames along with inertial mea-
surements from accelerometers and gyroscopes. Figure 2 illustrates an example from each
dataset. On the left, a sequence from the UESTC-MMEA-CL dataset demonstrates the
action of “cooking”. On the right, a gesture sample from the MuWiGes dataset illustrates
the execution of the gesture “G5”, captured via a wrist-mounted camera.
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Figure 2: Representation of various modalities captured by sensors in two datasets. The
first row illustrates the raw RGB frames from the datasets UESTC-MMEA-CL [20], and
MuWiGes [21]. The second and third rows present the corresponding accelerometer and
gyroscope signals.

• UESTC-MMEA-CL dataset serves as a multimodal benchmark designed for the
continuous recognition of egocentric human activities. It contains recordings of 32
distinct daily actions (such as climbing stairs, drinking, shopping, playing cards, etc.)
collected across various environments, including both indoor and natural settings, from
10 different participants. Data acquisition was conducted using smart glasses equipped
with a front-facing camera and built-in inertial measurement unit (IMU) sensors. The
visual modality was captured at a resolution of 640×480 pixels with a frame rate of
25 FPS, while the IMU recorded accelerometer and gyroscope signals at 25 Hz. Each
activity class is represented by approximately 200 synchronized sequences, comprising
first-person RGB video and corresponding motion sensor data.

• MuWiGes dataset was collected using a wrist-worn device composed of a camera
and IMU sensors. The camera captures images at a resolution of 1280×720 pixels
with a frame rate of 30 FPS, while the inertial module, including accelerometers and
gyroscopes, samples motion data at 50 Hz. The dataset are collected by 50 subjects
(33 male and 17 female), aging from 10 to 65 years, each performing 12 predefined
hand gestures across diverse indoor settings such as homes and office environments.
Every participant executed each gesture in a natural manner, between 2 and 12 repe-
titions. The collected data were temporally segmented using automatic annotation of
gesture start and end points, resulting in a total of 5,408 multimodal samples combining
RGB video and motion signals. For evaluation purposes, two standard protocols are
supported: cross-subject and cross-scene settings. In this work, we adopt the cross-
subject evaluation protocol to investigate the generalization ability of the proposed
model across different individuals.

Table 2 summarizes the key characteristics of the two multimodal datasets used in this
study. Although both datasets provide synchronized video and inertial sensor data, they
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Table 2: Summary of two datasets used in experiments

Datasets UESTC-MMEA-CL [20] MuWiGes [21]
Activity type Daily activity Hand gesture

Camera mounting Head Wrist
IMU mounting Head Wrist

Scenario Natural Indoor (Home, Office)
Data modalities RGB + Acc + Gyro RGB + Acc + Gyro
Total subjects 10 50

Number of classes 32 12
Total samples 6522 5048

Train/test splitting 4553 / 1316 3276 / 1772

differ in the types of actions performed, sensor placement, and environmental settings. The
UESTC-MMEA-CL dataset employs a head-mounted camera and an IMU sensor, enabling
the capture of egocentric video sequences that include both hands and the frontal scene, of-
fering a comprehensive field of view for daily activity recognition. In contrast, the MuWiGes
dataset features a wrist-mounted device that captures both visual and inertial signals. Al-
though this configuration is well-suited for capturing fine-grained hand gestures, it inherently
limits the camera’s field of view to a narrow region around the hand. This constraint intro-
duces additional complexity to the gesture recognition task due to frequent occlusions and
limited contextual information.

4.2. Experimental results

To ensure a fair comparison with prior studies, we adhere to the same data-splitting
protocols previously adopted for each dataset. Table 3 and Table 4 provide a summary of
performance results across the two benchmark datasets, highlighting the effectiveness of each
method in utilizing visual cues, inertial data, and their late fusion. In these tables, entries
marked with an asterisk (*) indicate results obtained through our own re-implementation
and evaluation on the respective datasets. Other values are taken from the original papers.
All training and evaluation procedures were conducted on an ASUS E900 G4 workstation
equipped with a dual Intel Xeon 4210R CPU, 64GB RAM, and an NVIDIA A30 GPU with
24GB memory.

In the following experiments, we set α = 0.5, which represents the best combination of
video and IMU streams. An ablation study analyzing the impact of α on performance is
presented in Subsection 4.2.3. In the following experiments, we also report results using the
original MAMC for the inertial stream, as well as its combination with VideoMamba-Tiny,
referred to as Mamba-MHAR-l.

4.2.1. Results on UESTC-MMEA-CL

Table 3 presents a comprehensive comparison of human action recognition performance
across various models using different modalities namely inertial, RGB, and their fusion on
the UESTC-MMEA-CL dataset. For inertial modality, MAMC-s* produces lower accuracy
(71.24%) compared to GAFormer (79%). However, it offers significant computational ad-
vantages, requiring only 0.125M parameters, 0.9 GFLOPs, and 0.0021 seconds of inference
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Table 3: Experimental results on the UESTC-MMEA-CL dataset. Bold values represent the
best results.

Method Modality Accuracy (%) Parameter (M) Inference Time (s) FLOPS (G)
Xu et al. (2023) [20] Inertial 59.70 - - -
GAFormer (2023) [44] Inertial 79.00 13.49 0.017 2.1
MAMC* (2024)[17] Inertial 74.77 16.8 0.246 0.7

MAMC-s* Inertial 71.24 0.125 0.0021 0.9
Xu et al. (2023) [20] RGB 92.60 - - -
SNRO (2024) [45] RGB 85.81 - - -

MoViNet (2023) [21] RGB 96.32 8 0.033 9.8
VideoMamba-Tiny* (2024) [19] RGB 97.13 7 0.009 1.1

Xu et al. (2023) [20] Fusion 95.60 - - -
CMR-MFN (2023) [46] Fusion 95.29 - - -

Finetune + PR (2023) [20] Fusion 92.20 - - -
Mamba-MHAR-l (our) Fusion 98.10 23.8 0.255 1.8

Mamba-MHAR (our best ) Fusion 98.00 7.1 0.011 2.0

time. In the case of the RGB modality, all evaluated models generally exhibit higher com-
putational complexity in terms of both parameter count and FLOPs compared to their
inertial-only counterpart. Among these, VideoMamba-Tiny∗ not only reaches the best ac-
curacy (97.13%) but also maintains efficiency with just 7M parameters, 1.1 GFLOPs and
0.009s inference time.

Regarding the fusion of inertial and RGB data, all evaluated methods exhibit improved
accuracy, highlighting the complementary strengths of the two modalities. Notably, the
proposed Mamba-MHAR, which is a fusion of MAMC-s and VideoMamba-Tiny, achieves the
highest overall performance, with an accuracy of 98.00%. This result surpasses traditional
fusion baselines, including Xu et al. (95.6%) [20] and CMR-MFN [46] (95.29%). In addition
to its superior accuracy, Mamba-MHAR maintains a favorable balance between performance
and efficiency, with a modest model size of 7.1M parameters, computational cost of 2.0
GFLOPs, and a fast inference time of 0.011 seconds. It is also noticed that all activities
on the UESTC-MMEA-CL dataset are well recognized by the proposed method as shown in
Figure 3, confirming its robustness and effectiveness in multimodal human action recognition
tasks.

Figure 3: Comparison of the performance for each gesture on the UESTC-MMEA-CL
dataset.
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Table 4: Experimental results on the MuWiGes dataset. Bold values represent the best
results.

Method Modality Accuracy (%) Parameter (M) Inference Time (s) FLOPS (G)
Nguyen et al. (2023) [21] Inertial 95.60 3.51 0.033 9.8
GAFormer* (2023) [44] Inertial 98.33 13.49 0.017 2.1
MAMC* (2024) [17] Inertial 96.2 16.8 0.246 0.7

MAMC-s* Inertial 97.3 0.125 0.0021 0.9
EfficientNet3D-b0 (2023) [21] RGB 52.94 4.72 - 0.06

MobileNet3D v2 1.0x (2023) [21] RGB 67.42 2.4 - 1.1
C3D (2023) [21] RGB 70.88 63.37 - 77.3

R3D-50 (2023) [21] RGB 88.54 46.2 - 80.1
MoViNet (2023) [21] RGB 91.55 8 0.033 9.8

VideoMamba-Tiny* (2024) [19] RGB 97.36 7 0.009 1.1
Mamba-MHAR-l (ours) Fusion 98.31 23.8 0.255 1.8

Mamba-MHAR (our best) Fusion 98.58 7.1 0.011 2.0

4.2.2. Results on MuWiGes

Table 4 reports the performance results on the MuWiGes dataset, which exhibit a trend
consistent with those observed on the UESTC-MMEA-CL dataset. For the inertial modal-
ity, the MAMC∗ model provides a compelling trade-off, achieving 97.3% accuracy, which is
slightly below GAFormer, while significantly reducing complexity, with only 0.125M param-
eters, 0.9 GFLOPs, and a minimal inference time of 0.0021 seconds. For the RGB modality,
VideoMamba-Tiny∗ yields the highest accuracy in its group, reaching 97.36%, while preserv-
ing a lightweight architecture (7M parameters) and rapid inference (0.009 seconds). This
result highlights the model’s strength in balancing accuracy and computational efficiency.

Again, when fusing both modalities, the proposed Mamba-MHAR stands out as the
best-performing model with an accuracy of 98.58%. Notably, Mamba-MHAR maintains
an exceptional trade-off between accuracy and computational efficiency, as its performance
metrics, including the number of parameters, GFLOPS, and inference time, remain consis-
tent across different datasets. This robustness underscores the model’s generalizability and
deployment potential in real-world multimodal scenarios.

Figure 4: Comparison of the performance for each gesture on the MuWiGes dataset

Figure 4 presents the classification accuracy of the proposed Mamba-MHAR model in
comparison with its unimodal counterparts, MAMC and VideoMamba, across twelve hand
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gesture classes in the MuWiGes dataset. Overall, Mamba-MHAR consistently outperforms
the individual models in most gesture categories (with the exception of G3, G8, and G12),
highlighting the effectiveness of RGB and IMU fusion within the Mamba-based architecture.

Figure 5 presents the confusion matrices illustrating the classification performance of the
proposed models on both the UESTC-MMEA-CL and MuWiGes datasets. The top row
shows the confusion matrices for the 12 gesture classes in the MuWiGes dataset, while the
bottom row depicts results for the 32 activity classes in UESTC-MMEA-CL. Each matrix
highlights the per-class accuracy and misclassification patterns, enabling visual assessment
of model strengths and weaknesses across different gesture types.

Figure 5: The confusion matrix of human action recognition on MuWiGes (first row) and
UESTC-MMEA-CL (second row) datasets. Columns represent the confusion matrix by
MAMC (first column), VideoMamba-Tiny (second column) and our Mamba-MHAR (last
column).

4.2.3. Ablation study

In this subsection, we try to answer three questions: i) Is multimodal recognition better
than unimodal recognition ?; ii) Which modality impacts more on recognition performance ?
iii) Is MAMC-s is better than the original MAMC ?

Is multimodal recognition better than unimodal recognition ? In both experi-
ments, we observed that Mamba-MHAR outperformed Video-Mamba-Tiny with an slight
improvement of 1.22% on the MuWiGes dataset and 0.87% on the UESTC-MMEA-CL
dataset. However, a detailed analysis of per-gesture accuracy on the UESTC-MMEA-CL
dataset revealed that incorporating inertial data particularly improved the recognition of
some activities such as “downstairs,” “shopping” and “walking” by 6.61%, 4.7% and 9.19%
respectively. On the MuWiGes dataset, we observed an accuracy increase of 6.76% and
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4.76% for gestures G11 and G12, respectively. These results suggest that many gestures or
actions are better recognized when video data is combined with motion sensor input. Addi-
tionally, the motion model MAMC-s is highly lightweight, making the fusion strategy both
effective and efficient in many cases.

Which modality impacts more on recognition performance ? To further assess
the contribution of each modality in our fusion framework, we vary the weight α in the fusion
function (Eq. (8)) from 0.1 to 0.9 in increments of 0.1. Figure 6 presents the accuracy of the
proposed model on two datasets across different values of α. On the MuWiGes dataset, the
accuracy remains relatively stable, with a slightly higher value at α = 0.7, suggesting that
motion data has a greater impact on performance. This is consistent with the nature of the
dataset: the RGB video streams are captured from a wrist-worn camera, which primarily
records background scenes and rarely captures hand movements. As a result, the visual
data is less reliable for recognizing certain activities. In contrast, on the UESTC-MMEA-CL
dataset, the accuracy decreases as α increases, indicating that placing greater emphasis on
motion data reduces performance. Overall, α = 0.5 yields high accuracy on both datasets
and was therefore used in the experiments discussed in the previous section.

Figure 6: Evaluation of Mamba-MHAR performance with different α values

Is MAMC-s is better than the original MAMC ? As mentioned earlier, in this
work, instead of using the original MAMC [17] for the inertial stream, we modified it to
create a smaller version, referred to as MAMC-s. Tables 3 and 4 show that MAMC-s achieves
higher accuracy with fewer parameters on the MuWiGes dataset. On the UESTC-MMEA-
CL dataset, MAMC-s yields a 3.50% drop in accuracy compared to the original MAMC.
However, when combining MAMC-s with VideoMamba-Tiny to form Mamba-MHAR, the
model achieves competitive accuracy compared to Mamba-MHAR-l (which combines the
original MAMC and VideoMamba-Tiny). Notably, Mamba-MHAR is approximately three
times lighter in terms of parameter size and has significantly faster inference time than
Mamba-MHAR-l. This makes it an optimal trade-off between computational cost, memory
usage, and performance.
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5. CONCLUSIONS

This paper presented a novel model, Mamba-MHAR, for multimodal human action recog-
nition. Our proposed method utilized multimodal data, which passes through two inde-
pendent feature extractors VideoMamba for the video stream and MAMC for the motion
stream to obtain high-level representations from each. The scores outputed from each stream
were then combined in late fusion. We evaluated our proposed model on two benchmark
datasets (UESTC-MMEA-CL and MuWiGes), demonstrating that Mamba-MHAR achieved
very competitive accuracy. With UESTC and MuWiGes datasets show superior accuracies
of 98.00%, and 98.58% compared to single modality models and some existing fusion models.
In addition to its strong recognition performance, Mamba-MHAR maintains a high computa-
tional efficiency, requiring only 7.1M parameters and 1.1 GFLOPs, with a low inference time
of 0.011 seconds. In future work, we aim to expand this framework by exploring alternative
feature extractors, adapting it for continuous activity streams, and testing its robustness
across a wider range of users and diverse real-world environments.
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[2] F. J. Ordóñez and D. Roggen, “Deep convolutional and lstm recurrent neural networks
for multimodal wearable activity recognition,” Sensors, vol. 16, no. 1, p. 115, 2016.
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with forced attention for behavior analysis,” in Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, 2023, pp. 3392–3402.

[12] R. Pramanik, R. Sikdar, and R. Sarkar, “Transformer-based deep reverse attention
network for multi-sensory human activity recognition,” Engineering Applications of Ar-
tificial Intelligence, vol. 122, p. 106150, 2023.

[13] A. Gu, I. Johnson, K. Goel, K. Saab, T. Dao, A. Rudra, and C. Ré, “Combining
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