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Abstract. Person re-identification (ReID) plays a crucial role in computer vision-based surveillance

systems, enabling the accurate identification of individuals across multiple camera views. Traditional

convolutional neural network (CNN)-based approaches, such as those utilizing ResNet-50, struggle

to capture long-range dependencies and contextual relationships, limiting their effectiveness in di-

verse real-world scenarios. To overcome these challenges, recent advancements have explored Vision

Transformer (ViT)-based architectures, leveraging self-attention mechanisms for enhanced feature

representation. In this research, we introduce a ViT-based framework, namely ViTC-UReID, for

unsupervised person ReID by incorporating a camera-aware proxy learning mechanism to improve

feature consistency across different camera viewpoints. Moreover, ViTC-UReID also uses cluster-

ing algorithms to generate pseudo labels for samples in training datasets. Our approach significantly

enhances cross-camera adaptation, reducing domain shift effects while maintaining strong feature dis-

crimination. We evaluate our method on three widely used benchmarks Market-1501, MSMT17, and

CUHK03, demonstrating its superior performance compared to existing state-of-the-art unsupervised

methods, particularly those utilizing camera identity cues. Furthermore, our model achieves com-

petitive accuracy with fully supervised methods, highlighting the effectiveness of transformer-based

representations in complex person ReID scenarios. Our findings reinforce the growing potential of

unsupervised person ReID methods and demonstrate that ViT architectures combined with camera-

aware learning can drive substantial improvements in person ReID.

Keyword. Unsupervised person re-identification, enhanced image representation, camera-aware

learning, vision transformer.

1. INTRODUCTION

Person re-identification (ReID) is a fundamental challenge in computer vision-based
surveillance systems, involving the recognition of individuals across multiple security images
or video frames captured from diverse viewpoints. As a critical component of intelligent
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surveillance, person ReID supports applications such as threat detection, criminal identifica-
tion, and multi-camera tracking. With the increasing deployment of surveillance infrastructure
and heightened focus on public safety, the demand for robust person ReID solutions has
surged, drawing significant attention from the research community.

ResNet-50 [1] has traditionally served as the backbone for image feature extraction in
person ReID tasks, owing to its efficiency, stability, and strong benchmark performance.
However, its limitations become evident in complex real-world scenarios: (i) It lacks the
ability to model spatial relationships and long-range dependencies between body parts; (ii) It
is not designed to capture semantic content or comprehend high-level contextual information;
(iii) Its performance degrades under challenging conditions, such as low-light environments,
occlusion, and variable camera angles. These limitations underscore the necessity for models
with enhanced representational power and better generalization capabilities across diverse
environments.

Initially, supervised person ReID methods employing deep network models were widely
explored. However, models trained on publicly labeled datasets often struggle to perform
effectively in specific real-world settings. Moreover, the escalating volume of data and
the increasing time investment required for manual annotation pose substantial challenges
in practical applications. To address these issues, researchers have shifted focus toward
unsupervised person ReID approaches, which leverage unlabeled data for model training.
These methods can be broadly categorized into two types: unsupervised domain adaptation
(UDA) [2, 3] and fully unsupervised learning (USL) [4, 5]. UDA-based person ReID models
employ an unlabeled source domain and a fully annotated target domain via transfer learning.
However, reliance on the source domain can hinder model performance due to distribution
discrepancies, adversely affecting knowledge transfer and effectiveness in the target domain. In
contrast, USL-based person ReID methods exhibit greater flexibility and scalability, training
directly on unlabeled datasets without external dependencies, making them more suitable for
diverse real-world scenarios.

Modern USL person ReID frameworks integrate various components, including clustering
algorithms [6, 7], memory banks [5, 8], and contrastive loss functions coupled with network
models [4], leading to enhanced performance. Typically, USL person ReID involves generating
pseudo-labels through clustering, computing contrastive loss using positive and negative
memory bank samples, and iteratively updating cluster representation vectors to refine
feature learning. However, a major challenge remains: effectively aligning images of the same
individual despite pseudo-label noise.

Given these challenges, our contributions in this paper are threefold. First, we introduce
a novel model based on the Vision Transformer architecture, which effectively captures both
global contextual information and fine-grained local details. Unlike conventional convolutional
networks, ViT employs self-attention mechanisms to extract meaningful representations,
ensuring robust person ReID by leveraging both structural and contextual features. Second,
we propose the integration of a camera-aware proxy learning mechanism within our model’s
training process. This approach mitigates domain shift issues stemming from variations in
camera viewpoints, lighting conditions, and resolution inconsistencies. By incorporating
camera-aware proxies, our method enhances feature consistency across different camera
sources, thereby improving generalization and adaptability to real-world scenarios. Third, we
conduct extensive evaluations on three widely recognized person ReID benchmarks Market-
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1501, MSMT17, and CUHK03 to rigorously assess our approach. Comprehensive experiments
demonstrate that our method significantly outperforms existing state-of-the-art techniques,
reinforcing its effectiveness in tackling complex person ReID tasks.

The remainder of this paper is structured as follows: Section 2 presents the problem
formulation and discusses prior work. Section 3 focuses on the proposed methodology in
detail. Section 4 reports and analyzes the experimental findings. Finally, Section 5 concludes
the paper and outlines directions for future work.

2. PROBLEM STATEMENT AND RELATED WORKS

2.1. Problem statement

In the USL person ReID problem, we train a model Ω on an unlabeled dataset containing
N person images D = {xi}Ni=1, aiming for high retrieval accuracy that can be deployed in
real-world environments.

To evaluate the performance of person ReID models in real-world scenarios, we assess
their accuracy on a test dataset D′ = {x′i, y′i}Mi=1, where {x′i, y′i} represents the i-th labeled
sample, and M denotes the number of test samples. The USL person ReID problem can be
formulated as follows

score = Fscore(Ω̂,D′) where Ω̂ = Fusl(Ω,D). (1)

Here, Fscore represents the metric function, while Fusl denotes the unsupervised learning
process. Assuming that a higher score corresponds to better model performance, our objective
is to train models that achieve the highest possible score value.

2.2. Person ReID

In the early development of person ReID, hand-crafted features such as color histograms,
texture descriptors, and local patterns (e.g., SIFT, LBP) were commonly paired with metric
learning techniques. However, these methods struggled to cope with significant appearance
variations caused by changes in pose, lighting, occlusion, and camera viewpoints. With the rise
of deep learning, CNNs became the dominant approach due to their ability to automatically
learn robust and discriminative visual features. CNNs effectively capture identity-related
cues such as clothing, body shape, and color, enabling more accurate person matching. To
further improve performance, researchers have explored various strategies. Specialized loss
functions have been designed to enhance feature discriminability [9, 10], while others have
proposed local feature learning techniques [11, 12] and attention mechanisms [13, 14, 15]
to focus on salient regions of the person. Hybrid models combining both global and local
representations have also shown strong performance [16, 17, 18]. In parallel, Generative
Adversarial Networks (GANs) have been leveraged to synthesize cross-domain images and
augment training data for person ReID [3, 19, 20]. Recently, transformer-based architectures
and attention-driven models have gained popularity for their ability to model long-range
dependencies. Notably, TransReID [21] improves robustness against appearance variations
by leveraging global contextual information. Additionally, camera-aware learning methods
such as CAP [22] address intra-class variance induced by camera discrepancies, significantly
boosting unsupervised person ReID performance. Collectively, these advances have greatly
improved the accuracy and robustness of modern person ReID models.
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2.3. Vision transformers

Recently, Transformer-based architectures [23] have demonstrated superior performance
in many computer vision tasks. Vision Transformer (ViT) [24] divides an image into patches,
linearly projects them into tokens, and processes the sequence through a Transformer encoder
with a learnable class token. Unlike CNNs, which rely on local receptive fields, ViTs leverage
self-attention to capture long-range dependencies and global context. This capability is
especially valuable for person ReID, where variations in viewpoint, illumination, pose, and
occlusion often hinder recognition. Building on ViT, TransReID [21] adapts Transformer
models for object ReID, introducing patch shuffle operations and incorporating side infor-
mation such as camera and view IDs to enhance robustness. Other extensions integrate
local or hybrid mechanisms: DCAL [25] employs a Transformer decoder to implicitly capture
local features, while PAT [26] and HAT [27] combine CNNs and Transformers, with PAT
using Transformers to generate attention masks and HAT aggregating hierarchical CNN
features. Although these methods improve performance, most still lack explicit alignment
for discriminative part-level features. To address this, PASS [28] proposes a pre-training
framework with contrastive learning, introducing [PART] tokens to automatically extract
local features. These studies highlight the growing potential of Transformer-based models in
person ReID, where balancing global context and fine-grained part cues remains an open and
promising research direction.

2.4. Image representations for person ReID

Global-level matching has long dominated person ReID, where image embeddings are
compared in a shared space. Most methods employ ResNet backbones [1], applying global
pooling to feature maps and optimizing with cross-entropy or triplet loss. While effective for
overall appearance, these holistic features often miss fine-grained cues crucial for distinguishing
similar identities. To address this, works such as CAMERA [29] adopt dilated convolutions,
attention-based methods [30, 31] emphasize discriminative regions, and multi-granularity
frameworks like MGN [32] and PPLR [16] combine global and local features. Meanwhile,
ViT [24] excel at modeling global dependencies via self-attention, but may overlook local
details since images are split into patch tokens. Recent works address this by enhancing local
representation: TransReID [21] improves patch alignment, Token Labeling [33] supervises
tokens directly, and multi-granularity or region-based frameworks [32] integrate global and
local cues. More recently, NCL [34] proposes noisy-correspondence learning to strengthen
patch-level alignments in ViT, proving that reliable local cues significantly boost discriminabil-
ity. Building on these insights, our work leverages ViT with enhanced local correspondence
modeling to balance holistic context and fine-grained details for robust person ReID.

3. PROPOSED METHOD

3.1. Approach direction

To tackle the problem described in previous sections, we introduce ViTC-UReID, a
method that combines strong representation using a ViT-based backbone with Camera-aware
Proxy Learning, enabling fully Unsupervised person ReID model training. The essence of
ViTC-UReID lies in its integration of diverse representation techniques to generate more
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Figure 1: Overview of our proposed method, ViTC-UReID

discriminative features for retrieval. Furthermore, throughout training, the model learns to
recognize discrepancies in images taken from different cameras, thereby reducing inter-camera
variability. By incorporating camera-aware proxies, our approach improves feature alignment
and enhances retrieval accuracy across different viewpoints.

Figure 1 visually depicts the core components of our method. Specifically, in the initial
process (indicated by orange arrows), all images are passed through the ReID model to extract
training features. These features are clustered using DBSCAN to generate initial cluster
pseudo-labels. To further account for cross-camera variations, a camera-aware clustering
step is applied, resulting in camera pseudo-labels. Based on these assignments, we compute
cluster-centroids and cam-centroids by averaging the corresponding features. These centroids
are then used to initialize the cluster-centroid memory bank and cam-centroid memory bank,
respectively.

In the training process (indicated by black arrows), the pseudo-labeled data is divided
into batches and passed through the ReID model to obtain updated embedding representations
(EIRs). These EIRs are then compared with the centroids stored in the memory banks to
compute two contrastive losses, LNCE and LCAP . These losses jointly guide the model toward
learning discriminative and camera-invariant representations.

The following subsections provide a comprehensive breakdown of each module within our
framework.

3.2. Baseline model

Firstly, we leverage clustering algorithms to generate pseudo labels for training sam-
ples, enabling supervised model training without manual annotation. Specifically, given an
unlabeled dataset D, we apply DBSCAN [6] to assign pseudo labels to each sample xi

C = DBSCAN({Ω(xi) | xi ∈ D}). (2)

Here, Ω(xi) represents the extracted image feature for sample xi, while C = {yi}Ni=0 denotes
the pseudo labels assigned to the N samples in D. DBSCAN groups the extracted features
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into inliers (clustered samples) and outliers (unclustered samples). To ensure label reliability,
outliers are discarded in subsequent training iterations, while clustered inliers are assigned to
one of N centroids, forming pseudo labels that serve as supervision signals for loss computation
and model optimization.

To train models for optimizing feature representations, the most recent unsupervised
person ReID methods adopt contrastive learning, where the loss is computed within the
context of a mini-batch. However, such mini-batch-based sampling inherently limits the
diversity of positive and negative pairs, leading to suboptimal training signals. To overcome
the limitation of locally selecting positive and negative samples, SpCL [4] stores feature
representations in a global memory and updates them progressively during training. However,
batch training only updates a subset of instances per iteration, causing an imbalanced
updating pace and shifting the feature distribution. Cluster Contrast [35] addresses this issue
by first calculating the cluster centroids by the mean feature vector of each cluster as

ck =
1

|Ck|
∑
fi∈Ck

fi, (3)

where fi is the feature vector of example i, and Ck denotes the k-th cluster set and | · |
indicates the number of feature vector i per cluster.

It then utilizes a memory bank, which refers to a structure designed to store and manage
encoded feature representations in a flexible and efficient manner. Serving as a dynamic
dictionary, the memory bank provides a large and diverse set of features for contrastive
learning. By maintaining this structure, the model can compute contrastive loss more
effectively without relying on large batch sizes, while also improving training stability and
feature discrimination.

In our framework, the centroids of the feature clusters are stored in a cluster-centroid
memory bank, which extends the memory bank concept to the cluster level. These centroids
act as stable supervisory targets and support a momentum update mechanism, guiding the
gradual refinement of feature embeddings across training epochs. By leveraging memory at
the cluster level, the model benefits from more consistent updates and improved robustness
throughout the USL process.

During the learning process, the ClusterNCE loss [35] is employed to compute the similarity
between the query feature q and all cluster centroids. The formula for the loss function is
given by

LNCE = − log
exp(q · c+/τ)∑K
k=1 exp(q · ck/τ)

, (4)

where c+ indicates the positive centroid class, or the cluster which q is belong to, ck is the
representation vector of the k-th cluster, τ is the temperature hyper-parameter.

This loss function guides the model to align each query feature with its corresponding
cluster centroid, thereby improving the consistency and discriminability of the learned
representations. To ensure stable and continuous refinement of cluster centroids, we update
each centroid using the query feature through a momentum-based update

ck ← m · ck + (1−m) · q, (5)

with ck is cluster centroid of cluster k, q is the query feature and m is momentum update.
The parameter m regulates the consistency between the cluster feature and the most recently
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observed query instance. As m approaches 0, the updated cluster centroid becomes more
aligned with the newest query features. This approach enables effective representation learning
without the need for annotated labels, making it well-suited for practical applications where
labeled data is limited.

3.3. Enhanced image representation

Initially, the baseline architecture to be discussed is depicted in Figure 1, which follows the
conventional ViT backbone network to derive representations for images [24]. As mentioned
in Section 2, the image encoder is initiated using the pre-trained model LUPerson-ViT [36]. In
detail, given an input image I that belongs to R(H×W×C), it is divided into non-overlapping
fragments M = H ×W/S2, where S refers to the size of each fragment. These fragments are
subsequently linearly embedded and hence, are learnable. A [CLS] token is appended at the
start to represent the image-level. Following this, the patch set P = {pcls, p1, p2, ..., pM−1, pM}
is introduced to the P transformer blocks of the image encoder. This action yields a sequence
of D-dimensional representations of the image

F ′ = {f ′
cls, f

′
1, f

′
2, ..., f

′
M−1, f

′
M} = Transformer Block (P). (6)

These representations are then fed into a full-connection layer to obtain the fine-grained
features as

F = {fcls, f1, f2, ..., fM−1, fM},where fi = FC(f ′
i) with f ′

i ∈ F ′. (7)

The global visual representation of the entire image is considered to be f I
cls, while the local

features of the patch are denoted as {fj |(i = 1, 2, ...,M)}. In both training and inference,
only the global features are utilized to calculate loss values and compute the distances
between images for retrieval. Although global features provide a high-level summary of an
image’s content and context, including primary objects and scene layout, they could ignore
fine-grained details from local features, such as textures and colors, that play a crucial role in
precise object recognition [34].

Motivated by that, we propose using fused features, which also aggregate crucial local
features from informative tokens and add this information to the global feature. For instance,
as shown in Section 1, given an image I, we can obtain two feature sets F and F ′ as well as
the self-attention map A ∈ R(1+M)×(1+M) from the last layer of the encoder. The correlation
scores between the global token [CLS] and local tokens are denoted as m = A[0, 1 :] ∈ RM .
We then select the top K percent of features with higher scores from the M local embeddings
in feature set F ′ as

F∗ = {f ′
j if mj in top-K}. (8)

Finally, we enhance the feature representation with a multi-layer perceptron (MLP) layer
(including only two fully connected layers) as

V = MaxPool(MLP(∥F ∗∥)⊕ fcls. (9)

where || ∗ || denotes the operator norm and ⊕ is the concatenation operator. We employ max
pooling to refine local information and scale it to vectors with the same dimension as the
set F . According to that, we replace the original global features fcls in loss computation and
retrieval by the enhanced features V .
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3.4. Camera-aware proxy learning

The core challenge in person ReID is matching people across different cameras, so inspired
by Wang et al. [22], we focus on inter-camera learning, which tries to match the same
person across different cameras. Specifically, we apply camera-aware proxy, which is defined
by splitting each identity cluster into multiple subgroups based on CamID. Each subgroup
represents the same identity from a single camera. This means building more reliable pseudo
labels, since samples from the same camera tend to have less appearance variance.

Specifically, for each dataset, we have a set of cameras denoted by C = {c1, c2, . . . , cn}.
We denote a sample x that belongs to both cluster a and camera b as xba. The representation
embedding vector of xba is denoted as f b

a. We define a camera-aware proxy cba as the centroid
of features corresponding to all samples from cluster a captured by camera b

cba =
1

|Xb
a|

∑
x∈Xb

a

f(x), (10)

where Xb
a denotes the set of all samples in the cluster a captured by the camera b, and f(x)

is the feature embedding of the sample x. Like cluster centroids, these camera-aware proxies
are also stored in a memory structure referred to as the cam-centroid memory bank. From
that, the inter-camera contrastive loss is a softmax log loss of query q with one positive
cross-camera proxy and Nneg hard negatives in the memory proxies, as follows

LCAP = − 1

|P(i)|
∑

j∈P(i)

log
exp(q · cja/τc)

exp(q · cja/τc) +
∑

k∈N (i) exp(q · ck/τc)
, (11)

where P and N denote the index sets of the positive and hard negative proxies, respectively,
τc is the temperature hyper-parameter.

3.5. Overall objective function

In summary, we train our model that generates enhanced image representations by
Equation 9. Based on these features, the accuracy and reliability of pseudo labels could
be improved, and the retrieval performance is also enhanced. For model optimization, we
use ClusterNCE and CAP loss functions through training (Equation 4 and Equation 11,
respectively). The overall objective of training can be written as follows

LOBJ = LNCE + λ ∗ LCAP . (12)

Here λ is a coefficient used to control the impact of CAP in training. Besides, we also leverage
the benefits of data augmentation to enhance the robustness and accuracy of person ReID
models. The entire training process is shown in Algorithm 1.

4. EXPERIMENTS AND EVALUATION

To demonstrate the performance of our ViTC-UReID method, we conduct a comprehensive
experiment to analyze the effectiveness of our proposals. Following these objectives, we first
present the experimental settings. Secondly, we discuss several facets of our proposed method
across multiple benchmarks. Finally, we compare the performance of our approach against
several state-of-the-art unsupervised person ReID methods.
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Algorithm 1: ViTC-UReID: Enhancing unsupervised person ReID with ViT image
encoder and camera-aware proxy learning

Input: Training dataset D = {Ii}Mi=1; a model Θ; hyper-parameters: λ, top-K
Output: Trained person ReID model Θ with optimized parameters

1 Initialize Θ with the weights of the pre-trained LUPerson;
2 while not Θ converged do
3 Extract features: V ← Θ(D);
4 Generate cluster pseudo labels: L← DBSCAN(V );
5 Generate camera pseudo labels: P ← CamCluster(L);
6 Initialize cluster-centroid memory bank: M ← Init(V,L);
7 Initialize cam-centroid memory bank: C ← Init(V, P );
8 for each x = {(Ii, ci, Li, Pi)}Bi=1 in zip(D,L, P ) do
9 Vi ← Θ(Ii);

10 L1 ← LNCE(Vi, Li,M);
11 L2 ← LCAP(Vi, ci, C);
12 LOBJ ← L1 + λ · L2;
13 Θ← Optimizer(Θ,LOBJ);

14 end
15 Evaluate the model;

16 end

4.1. Datasets

We use three popular datasets Market-1501 [37], MSMT17 [38], and CUHK03 [39] to
evaluate our method.

• Market-1501: Includes 32,668 images of 1,501 identities from six campus cameras.
Images are pre-cropped using the DPM detector. It’s widely used due to its scale and
real-world relevance.

• MSMT17: A large and challenging dataset with 126,441 images of 4,101 identities from
15 cameras (12 outdoor, 3 indoor). It offers high diversity in environment, weather,
and time, ideal for testing model generalization.

• CUHK03: Contains 13,164 images of 1,467 identities from six cameras at the Chinese
University of Hong Kong. It includes both manually cropped (labeled) and detector-
cropped (detected) versions to assess model sensitivity to detection quality. In our
work, we evaluate on the labeled set.

We refer to these datasets “Market-1501” as “Market” as, “MSMT17” as ”MSMT” and
“CUHK03” as “CUHK” throughout the paper.

4.2. Evaluation metrics

To evaluate the efficacy of the proposed method, we utilize mean average precision (mAP )
and Cumulative Matching Characteristic at Rank@n (CMC R@n) metrics. Mean Average
Precision (mAP ) is frequently employed to evaluate a model’s proficiency in detecting and
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classifying objects, especially in object detection tasks. The calculation involves averaging
the average precision (AP) values across all labels, with each AP obtained from the areas
under the precision-recall curve. The mAP formula is presented in Equation 13

mAP =
1

N

N∑
i=1

APi =
1

N

N∑
i=1

1

Mi

Mi∑
k=1

(P (k) ∗ rel(k)), (13)

where N denotes the total number of queries, Mi signifies the total number of predictions
for a particular label; P (k) represents the precision at cut-off k, defined as the ratio of true
positive items within the top k retrieved items; rel(k) is an indicator function that equals 1 if
the item at position k is a true positive and 0 otherwise.

CMC Rank@n, specifically R@1/5/10, serves as a prevalent evaluation metric for retrieval
tasks. This metric assesses the probability of identifying an accurate match among the top-n
ranked outcomes. Within the realm of retrieval, CMC Rank@n (R@n) is essential as it
assesses the efficacy of a model in recognizing an individual from a gallery of images using a
query image. The formula for calculating the R@n metric is presented in Equation 14

R@n =
Number of correct matches within top-n

Total number of query images
× 100%. (14)

The evaluation protocol focuses on retrieving images that match textual descriptions
of individuals, primarily aiming to maximize the Rank@1 score, while mAP functions as a
supplementary performance metric.

4.3. Experiment setup

Our method standardizes the input image to a resolution of 256× 128 pixels. For data
augmentation, we employ techniques such as Random Horizontal Flipping, Random Cropping
with Padding, and Random Erasing. The model architecture is based on ViT-B/16 as the
image encoder and initialized with pretrained LUPerson [36]. Throughout the training process,
we utilize the SGD optimizer for 60 epochs with a batch size of 128 and an initial learning
rate of 1× 10−3. The learning rate undergoes a tenfold reduction at the milestone epochs 30
and 50.

All of our experiments are conducted on a machine with a single NVIDIA RTX 4060 Ti
with 16GB memory, Intel Core™ i5-13600K, and 64GB RAM. Besides that, we implement
our method using Pytorch v1.12.1 with Python 3.8.18.

4.4. Ablation studies

Analysis of Baseline: Initializing the ViT backbone with pre-trained weights from
the large-scale unlabeled dataset LUPerson [36] has proven to be an effective approach in
person ReID tasks. The pre-trained ViT backbone acts as a powerful feature extractor,
capable of capturing fine-grained visual details from human images, which significantly
enhances the model’s robustness and generalization ability. Similar strategies have been
employed in works like TransReID-SSL [31] and TMGF [40], demonstrating that leveraging
pre-trained backbones is a widely accepted technique. However, to assess the impact of this
initialization, we establish a baseline by evaluating the model’s performance when initialized
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Table 1: Ablation studies on Market and MSMT

Method Market MSMT

R@1 R@5 R@10 mAP R@1 R@5 R@10 mAP

Pretrained 34.2 49.7 57.3 11.3 20.5 29.5 34.1 4.7

Baseline 96.4 98.8 99.4 90.7 78.9 88.0 90.8 53.3

Baseline+ EIR 96.5 98.8 99.5 92.5 80.6 88.7 91.3 55.7
Baseline+ CAP 96.6 98.9 99.5 92.0 85.4 92.1 94.0 62.9

Baseline+ EIR+ CAP 97.1 99.1 99.5 92.8 85.8 92.3 94.1 63.6
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Figure 2: Performance R@1 and mAP under different top-K values on Market and MSMT

with LUPerson’s pre-trained weights before fine-tuning. The initial results, as seen in Table
1, show that while the Pretrained provides a strong starting point, it performs poorly when
directly applied to domain-specific datasets, achieving only 34.2% R@1 and 11.3% mAP
on Market, and 20.5% R@1 and 4.7% mAP on MSMT. This underscores the necessity of
fine-tuning in adapting the model to specialized domains.

Next, we fine-tune the initialized model using the basic approach using DBSCAN and
train with only LNCE as described in Section 3.2. The results, considered as the baseline,
are presented in the second row of Table 1, highlighting the crucial role of domain adaptation.
Following fine-tuning, the model achieves significant performance improvements, reaching
96.4% R@1 and 90.7% mAP on Market, and 78.9% R@1 and 53.3% mAP on MSMT. These
results confirm that while pre-training provides the model with generalized feature extraction
capabilities, fine-tuning is essential for optimizing performance within specific domains.
Through this adaptation process, the model refines its feature representations, aligning
them with dataset-specific characteristics to enhance retrieval accuracy. Thus, the findings
reinforce that fine-tuning plays a vital role in developing a high-performing model tailored to
a particular domain. Relying solely on knowledge transferred from a large-scale pre-trained
backbone proves insufficient for achieving optimal performance, underscoring the necessity of
domain adaptation.

Different combinations of the components: In this section, we assess the effectiveness
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Figure 3: Performance R@1 and mAP under different λ on Market and MSMT

of the proposed components, beginning with the EIR module. As demonstrated in Table
1, integrating EIR enhances model performance by up to 2% in R@1 and mAP. Notably,
the most significant improvement is observed on the MSMT benchmark. Unlike the Market
dataset, MSMT consists of images captured under diverse environmental conditions, leading
conventional models to overlook essential features. This variability can hinder accurate
identity retrieval, as models may fail to focus on the most relevant attributes of an individual’s
appearance. By incorporating EIR, the most crucial features of a person’s image are reinforced
within the feature representation, ensuring a balanced integration of both local and global
information. Consequently, this enhancement significantly improves retrieval precision across
challenging scenarios.

Besides, we also present the best top-K percent of local features used to generate EIR in
Figure 2. The figure shows that EIR stabilizes when top-K exceeds 0.2. If we set a small
top-K (top-K < 0.2), it could lack sufficient information to make an improvement. Otherwise,
using a high top-K (≥ 0.5) adds unnecessary complexity in calculation, while the performance
is not improved significantly. Based on findings, we set top-K to 0.4 to achieve optimal
performance with reasonable training time.

Similarly, we fine-tune models without EIR but with the addition of CAP, and we present
the results in the fourth row of Table 1. Like EIR, CAP contributes a slight performance
increase on the Market dataset; however, it leads to a significant improvement on the MSMT
benchmark. This observation underscores the importance of CamID as a crucial factor in
enabling the model to learn more discriminative representations. By incorporating CAP, the
model is better equipped to account for variations in camera viewpoints, enhancing its ability
to differentiate individuals effectively.

Finally, we integrate both EIR and CAP into the training process. Compared to the
original baseline, the final model demonstrates a noticeable performance boost. Specifically,
we achieve 97.1% and 92.8% in R@1 and mAP on the Market benchmark, while on MSMT,
the model attains 85.8% and 63.6% in R@1 and mAP. To achieve these outcomes, we have to
adjust the value λ to control the effect from CAP. As illustrated in Figure 3, the best values
are 0.7 and 1.0, leading to the most optimal and stable performance on Market and MSMT
datasets, respectively. On the other hand, these results also validate the effectiveness of
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Figure 4: Computational efficiency: Baseline vs ViTC-UReID on Market

combining EIR and CAP, highlighting their complementary roles in improving representation
learning and retrieval accuracy across diverse datasets.

4.5. Computational efficiency

To further assess the practical impact of our method, we evaluate the computational
efficiency of ViTC-UReID compared to the baseline approach on the Market dataset using
a batch size of 128 as a representative case. While the introduction of EIR and CAP
significantly improves feature discriminability and overall person ReID performance, it also
incurs additional computational overhead during training. Using PyTorch’s profiling tools,
we measure peak GPU memory consumption and training time per epoch.

As shown in Figure 4, GPU memory usage remains nearly identical between the two
methods, with ViTC-UReID consuming 8,460 MB, only slightly higher than the baseline’s
8,415 MB. In terms of training time, ViTC-UReID requires 180 seconds per epoch compared
to 140 seconds for the baseline, representing a 28.5% increase. This overhead primarily
stems from the integration of local feature enhancement within the ViT encoder and the
camera-aware proxy learning mechanism.

Despite the additional training cost, the performance gains in mAP and R@n accuracy
clearly justify the trade-off. Furthermore, the enhanced training stability and improved
representation learning achieved by ViTC-UReID are crucial for robust and generalizable
person ReID, especially in cross-camera and real-world deployment scenarios.

4.6. Visualization analysis

To provide a more intuitive demonstration of ViTC-UReID’s effectiveness, we conduct
multiple visualization analyses. In Figure 5, we utilize t-SNE to visualize the learned features
of the six identities with the highest sample count in the MSMT dataset. Each point is
color-coded, with identical colors indicating samples belonging to the same identity. As shown
in Figure 5(b), our model effectively clusters features corresponding to the same identity
while maintaining clear separation between images of different identities. In contrast, Figure
5(a) illustrates that the baseline model struggles with identity separation, often grouping
features from different identities together, making distinguishing between individuals more
challenging. On the other hand, these figures also indicate noise in pseudo labels, which is an
inevitable challenge in clustering-based USL person ReID.

We present representative retrieval results to qualitatively assess the effectiveness of
our proposed method. Figure 6 showcases the top 10 retrieval results, highlighting both
successful and failure cases in comparison to the baseline model. On the left, the results
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Figure 5: T-SNE visualization of features on MSMT
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Figure 6: A comparison of the ten highest retrieval results on the MSMT dataset. We use
the baseline model (a) and the ViTC-UReID model (b) for each query.

from the baseline model are displayed, while the right side presents the retrievals generated
by ViTC-UReID, with correctly retrieved images marked by green boxes. In the majority
of cases, our model successfully retrieves images of the targeted individual, demonstrating
superior ranking capability. Notably, ViTC-UReID excels in ranking the correct matches
higher than other candidates, reinforcing its effectiveness in person ReID. However, it is
worth mentioning that some retrieved images, despite belonging to different identities, bear a
strong resemblance to the query and appear visually plausible.
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Table 2: Comparison with SOTA methods. [Keys: The best of unsupervised methods, †
indicates methods using the camera information].

Back
bone Method Venue

Market MSMT CUHK

R@1 R@5 R@10 mAP R@1 R@5 R@10 mAP R@1 R@5 R@10 mAP

Fully supervised methods

CNN
ABNET+
NFormer [41]

CVPR22 95.7 - - 93.0 80.8 - - 62.2 80.6 - - 79.1

ProNet++ [42] ArXiv23 96.0 − − 90.2 85.4 − − 65.5 85.2 − − 82.7

ViT
TransReID [21] ICCV21 95.2 − − 89.5 86.2 − − 69.4 − − − −
CLIP-ReID AAAI23 95.5 − − 89.6 88.7 − − 73.4 − − − −
TMGF† [40] WACV23 96.3 98.9 99.3 91.9 88.2 94.1 95.4 70.3 − − − −

Fully unsupervised methods

CNN
CC [35] ACCV22 92.9 97.2 98.0 83.0 62.0 71.8 76.7 33.0 − − − −
PPLR† [16] CVPR22 94.3 97.8 98.6 84.4 73.3 83.5 86.5 42.2 − − − −
ISE [43] CVPR22 94.3 98.0 98.8 85.3 67.6 77.5 81.0 37.0 − − − −

ViT
PASS [28] ECCV22 94.9 - - 88.5 67.0 - - 41.0 − − − −
PCL-CLIP† [44] Arxiv23 94.8 98.0 98.7 88.4 84.9 92.0 94.0 65.5 − − − −
TMGF† [40] WACV23 95.5 98.0 98.7 89.5 83.3 90.2 92.1 58.2 − − − −
ACFL-ViT [45] PR24 95.1 - - 89.1 70.1 - - 45.7 − − − −
TCMM [46] Arxiv25 96.0 - - 90.5 78.4 - - 52.0 − − − −

ViT ViTC-UReID (our) 97.1 99.1 99.3 92.8 85.8 92.3 94.1 63.6 91.1 95.1 97.1 89.8

4.7. Comparison with state-of-the-art methods

Our final experimental results, as displayed in Table 2, demonstrate that our method
achieves superior performance across multiple evaluation metrics when compared to several
well-known methods.

Comparison between CNN-based and ViT-based unsupervised methods. On Market, the
unsupervised methods based on CNN architectures (eg., CC, PPLR, and ISE) generally
yield R@1 accuracies in the low-to-mid 90s with mAP values ranging from 83.0% to 85.3%.
In contrast, the unsupervised methods built on ViT such as TransReID [21], PASS [28],
PCL-CLIP [44], TMGF [40], ACFL-ViT [45], TCMM [46] tend to achieve slightly higher
R@1 accuracies (around 94.8% to 96.0%) and notably improved mAP scores (from 88.4%
up to 90.5% on Market). On MSMT, this trend is even more pronounced: while CNN-
based methods report rather modest mAP values (e.g., PPLR at 42.2%), several ViT-based
approaches push the performance significantly higher. These results indicate that ViT-based
representations can better capture global and contextual information, thus offering a clear
performance edge in unsupervised person ReID tasks.

Comparison of unsupervised methods incorporating CamID information: A number of unsu-
pervised approaches incorporate CamID cues to handle cross-view inconsistencies, as denoted
by the dagger (†) symbol. In the CNN-based category, PPLR demonstrates competitive
performance with a R@1 accuracy of 94.3% and an mAP of 84.4% on Market. On the ViT
side, two methods TMGF and PCL-CLIP exploit CamID information, with TMGF achieving
an R@1 of 95.5% and mAP of 89.5%, and PCL-CLIP further enhancing performance on
challenging datasets. Compared to them, our ViTC-UReID also utilizes CamID information,
and reaches the highest performance with 97.1% and 92.8% in R@1 and mAP on Market,
as well as obtains an R@1 of 85.8% and mAP of 63.6%. These observations confirm that
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the integration of CamID information within unsupervised frameworks improves feature
discrimination across different camera views, which is especially beneficial when handling
diverse data distributions such as those in MSMT.

Comparison with fully supervised methods: When compared to their unsupervised counterparts,
fully supervised methods continue to hold an advantage across several benchmarks. In the
CNN-based group, methods like ABNET+NFormer [41] achieve a R@1 accuracy of 95.7%
with an impressive mAP of 93.0% on Market. Similarly, among the ViT-based supervised
approaches, TMGF (with supervision) and TransReID maintain high performance, with
TMGF reporting a R@1 of 96.3% and mAP of 91.9% on Market. Although these supervised
methods tend to deliver superior results due to the availability of annotated data, the
performance gap between our model and them is narrowing as we leverage ViT architectures
and additional CamID cues, and continue to evolve. Apparently, with the ViT-backbone-
based model, our method greatly outperforms CNN-based methods, even when training in
an unsupervised manner.

5. CONCLUSION

In this work, we have addressed the enduring challenges of person ReID, which include
handling diverse real-world scenarios, coping with complex variations in camera viewpoints,
and overcoming the limitations of conventional backbone networks such as ResNet-50. The
key challenges lie in effectively capturing long-range spatial dependencies, modeling high-level
semantic context, and mitigating the inevitable domain shifts arising from varying conditions
such as illumination, occlusion, and low resolution.

Our proposal introduces an unsupervised framework built upon the ViT architecture,
which significantly enhances feature representation by harnessing self-attention mechanisms to
capture both global contextual and fine-grained local details. We further integrate a camera-
aware proxy learning strategy to alleviate cross-view discrepancies, thereby promoting feature
consistency across heterogeneous camera sources. Extensive evaluations on benchmarks such
as Market-1501, MSMT17, and CUHK03 reveal that the proposed approach not only surpasses
several state-of-the-art unsupervised methods, especially those incorporating CamID cues,
but also starts to close the performance gap with fully supervised techniques.

While our method demonstrates clear advantages in robustness and adaptability, several
limitations remain. The reliance on high-quality pseudo-label generation may still incur
noise, particularly in highly cluttered or low-quality visual environments. Moreover, the
computational demands of transformer architectures limit deployment in resource-constrained
settings. Future work will focus on improving pseudo-label reliability, exploring lightweight
architectures for real-time applications, and extending the camera-aware proxy learning
mechanism to better handle extreme environmental variations. These directions promise
to further bridge the gap between unsupervised and supervised person ReID performance,
paving the way for more versatile and scalable surveillance solutions.
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